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1 S1 - Criteria for deciding the number of

mRNAs/cell

The number of mRNAs/cell is constantly object of study because of several
experimental settings. Bartolomaus et all. provide two mRNAs/cell quan-
tities in different experimental settings: upon osmotic stress in the minimum
medium, the number of mRNAs decreases from ≈ 2400 mRNA copies/cell to
≈ 1600 mRNA copies/cell (this is our lower bound). Instead, upon an heat
stress in nutritionally rich medium, it is recorded a reduction of copies/cell
from ≈ 7800 mRNAs to ≈ 7200 mRNAs [1] (this is our upper bound). Steady
state conditions minus treatment conditions on average lead to a value be-
tween ≈ 2000 mRNAs/cell and ≈ 7500 mRNAs/cell. Furthermore, E.coli
under exponential growth at medium growth rate is known to contain about
3000 mRNA copies/cell [2]. Thus, considering the different growth condi-
tions, our scaling coefficient for the normalisation is considered as a fraction
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of ≈ 3800 mRNA copies/number on the summatory of totalRNA for each
microarray replicate. Note that this scaling factor does not change the mR-
NAs fold change and it is simply a change of measure units.

2 S2 - Criteria for the trasformation of pro-

tein abundance ppm in proteins/cell

Protein abundance furnished in ppm is transformed in molecules
cell

. The first step
is to compute the scaling factor to normalize the data. Then it is computed
the molecular weight gram/mole for each protein: it is accomplished extract-
ing the molecular weight of each amino acid, and then applying equation 1
according to the involved chemical quantities :

ppmi ∗
gram
cell
· molecules

mole∑n
j ppmj · grammole j

=
molecules

cell
(1)

In this case, at the numerator the total mass of proteins estimated per
cell is of 2.35e6 grammes per cell [2] and the constant implied in the conver-
sion of molecules per mole is the number of Avogadro. The denominator of
the equation represents the summation of the expressed protein abundances
grammes/moleperppm. Then the scaled protein abundance is obtained in
molecules/cell via the multiplication of the scaling factor times the i-th value
of protein abundance expressed in ppm (ppmi).

3 S3 - Static and dynamic multi-omics

We can separate omic sources in two category: the first one represent the
data that could be intended as variable because are changing due to the effect
of treatments, the second one represent the data that are static because does
not change during perturbations. In all the cases omic data subject to per-
turbations (for example protein abundance or mRNA expression levels) and
static omic data (like codon usage) maintain the same schema and the same
identifier over all the sources. The names of the proteins and the structure of
the pathways are extracted from the KEGG REST API [3] and EcoCyc[4].
The protein pathways of KEGG [5] can be used for the extraction and associ-
ation of other types of information extracted from NCBI[6] and EcoCyc and
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vice-versa. From Ecocyc are extracted the information about the operons
and protein complexes, co-regulations, enzymatic functions and their direc-
tion of reaction: the latter will be of central importance when reconstructing
a protein centric metabolic network. The NCBI information outlines genes
and their positions on the DNA double strand; moreover, they give us infor-
mation about the direction, 5’-3’ or 3’-5’, of these genes in the double strand
that are presented as + and − in my multi-omic space. From this source it is
extracted also the position of the genes on the double strand which is an in-
trinsic information fundamental for the definition of the multi-layer structure.
For each gene name are downloaded the DNA sequences and it is computed
the codon usage. We have described till now static omic sources. Instead,
variable omic sources are extracted from NCBI Gene Expression Omnibus
(GEO) [7] and protein abundance database PaxDB [8]. In particular, we
have used a web-service called GEO2R, that in turn is based on GEOquery
[9] and limma [10]. GEO2R is a very useful web-service through which it is
possible to generate R [11] code for obtaining information about microarray
experiments and gene expression profiles with a user-friendly web interface.
From this service it is possible to obtain mRNA amounts in steady state con-
ditions (controls) and after perturbations (treatments). Instead from PaxDb
it is extracted the protein abundance in standard conditions. Leveraging the
services of NCBI are unified the names that on the selected microarray are
obsolete, thus avoiding the lack of collinear schema information. Coupling
informations about mRNA controls and protein abundance it is inferred a
protein variation (pv) as it is described in the paper.

4 S4 - Correctness of the relative and abso-

lute score for oscillating multi-omics on se-

quences

4.1 Theorem 1

For each mov the relative multi-omic sequence score (equation 2) is just the
number of adjacent couple of values divided by N :

a.s =
div∑
j=1

| movj −movj+1 | ·
1

N
(2)
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Th 1: The maximal score from the equation 2 is obtained if and only if
on a multi-omic pattern there are fully oscillating multi-omics.

Proof: The maximal score corresponds exactly to the expected value
of a random variable X ( see equation 3) defined as follows: each of the
events | ej − ej+1 | can fall in 0 or 1 showing or not oscillating multi-omcis;
therefore, this event is represented by a binary random variable Xi for all the
0 ≤ i ≤ div which represent the chances of seeing an oscillation of multi-omic
values.

Xi =

{
1 if | ei − ei+1 | == 1

0 otherwise
(3)

Then, for each Xi, the expected number E[Xi] of occurrences of an os-
cillation is equal to E[Xi] = 1 · ( 1

N
) + 0 · (1 − 1

N
) = 1

N
, and it is similar

to take into consideration a bound to the load balancing problem [12]. The
expected number E[X] = E[

∑
Xi] ∀ 0 ≤ i ≤ div of seeing a fixed anti-

dyadic effect on N classes for the div independent chances is a balls and bins
problem where it is considered the max loading of a fixed machine [13] and
in equation 4 it follows by leveraging the property of linearity for the i.i.d.
Xi:

E[X] = E[X0] + ..+ E[Xi] + ...+ E[Xdiv] =
div

N
(4)

The correctness of this result is not difficult to prove. It is given for
induction on the expected value E[X]. The base of the induction is for
i = div then for E[Xdiv] = 1

N
we arrive to E[0] = 0. For hypothesis a single

oscillation is founded with a chance of 1
N

that corresponds to the chance of
a ball to fall in a fixed bin. For our random variable of Equation 3 there
are two outcomes: either a ball falls into the fixed bin and Xi adds 1 for the
property of linearity of the expected value, or it adds 0. Therefore, we have:

E[Xdiv] =
1

N
(1 + E[Xdiv−1]) +

N − 1

N
(0 + E[Xdiv−1]) (5)

resembling equation 5 it is proved that E[Xdiv] = 1
N

+E[Xdiv−1] and resolving
this one for each i corresponds to obtain equation 4. In conclusion, the score
of equation 2 in the case that all the observed multi-omic values in a sequence
are oscillating (maximal score) it is equal to the expected value of X defined
by equation 4.
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4.2 Theorem 2

The absolute score 6 is obtained dividing the relative score (equation 2) by the
number of divisors thus showing an absolute score oscillation measurment,
as written in equation 6.

w.s =

∑div
j=1 | ej − ej+1 | · 1N

div
(6)

Th 2: The maximal absolute score on equation 6 is just the expected value
of Xi and it is referred to the expectation of seeing an ideal oscillation where
each 1 follows a 0 or vice-versa (i.e. movid : 1−0−1−0−1−0−1−0−1−0).

Prof : In the following equation 7, where l − 1 = div it is proved the
relation with the maximal absolute score and the expected value of Xi:

l − 1 · 1
N

div
= E[Xi] =

1

N
(7)

5 S5 - Multi-omic layers integration

5.0.1 Genomic layer: the role of codon usage

One of the most relevant omics considered is the codon usage. The latter is
widely proved being a fundamental component showing relevant patterns on
the genome [14, 15]. The codon adaptation index (CAI) [16] is an index of
non-uniform codon use [17]. The CAI of each gene sequence of l codons is a
measure of the bias in codon usage and it is defined as follows:

CAI =

(
l∏

k=1

wk

) 1
l

; CAI ∈ (0, 1) (8)

where the product of wk = w(ik) is considered over the DNA code under
examination. The quantity w(ik) for a codon i at position k is given by the
relative frequency of the codon i with respect to the most used codon for the
same amino acid in a set of highly expressed genes (i.e. ribosomal proteins).
In organisms the synonymous codons are not chosen randomly but they fol-
low a rule, thuus it is more common that the beginning of the gene is more
composed of rare codons. This is due to the influence of the machinery of
translation that is conditioned by the presence of rare tRNAs [18, 19]. The
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genes that present high values of CAI, for instance, ribosomal and major
outer membrane genes whose products are required in large quantity with
respect to other proteins for high duplication rates, are the effective fitness
bottleneck of the bacterial duplication machinery. Until a few years ago,
most of the researchers believed that the codon usage could be used to study
the elongation rate in the translation process, being the pairing between
codon and anticodon of the diffusing tRNA, a rate-limiting step compared
with the peptide bond formation and translocation steps [20]. Recent dis-
coveries based on ribosome profiling and next generation sequences seem to
contrast the previous demonstration proving that rare codons, the so-called
slow codons, are generally translated at similar average speed than abundant
codons [21, 22, 23] . It remains de-facto that all the translational machines,
and not only if we think to the duplication machinery, are dominated by
regulation mechanisms. Furthermore, if the codon usage, in particular, the
CAI, is not a rate-limiting index it does not affect the fact that a priori shows
some new regularities in our multi-omic spaces and it is an oscillating omic
on multi-omic patterns.

5.0.2 Transcriptomic layer: mRNA amounts

The omics extracted in the transcriptomic layer are the mRNA amounts and
their fold changes (fc) caused to the effect of antibiotics. Two compendia of
micro arrays are considered: The first compendium extracted from GEO with
accession number GSE6836 is the one of Faith et al. [24] and contains 121
experimental conditions. The second compendia is of Suzuki et al. [25] with
GEO accession number GSE59408 is based on the study E.coli resistance
to 10 different antibiotics. From these compendia are selected 69 experi-
ments between those one with a reasonable statistical reliability [26, 27] and
a ’control vs treatment’ expression matrix design. Reliabilities, described in
equation 9, are fundamental in the definition of the Spearman’s correct cor-
relation (S. correction). The latter is leveraged for the compendia analysis
within-studies and between-studies because is a stable form of correlation
that take into account the noise propagation and stabilize the analyses con-
sidering microarray replicates. Then S. correction within-studies is consid-
ered on replicates of the same experiment in one of the possible compendia.
S. correction between-studies is utilized when we compare mRNAs stud-
ies that come from different compendia between two different experiments
(Figure 1 (red and blue arrows))) and in between-studies of the same exper-
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iment but between replicates of controls and treatments ( Figure 1 (green
arrow)). Within-studies and between-studies median values of Spearman’s
correct correlations and Pearson’s correlation (P.correction) are computed
for each compendia. The results are reported in the Table 1. Once it is con-

Table 1: Median and standard deviation (±) within-studies (inter relation of
all the i-th (i) microarray replicated measures within the control (C) or/and
treatment (T)). Median and standard deviation (±) between-studies (cross
relation between the replicated measures of the i-th (i) microarray and the
j-th (j ) microarray considering control (C) or/and treatment (T)). Median
and standard deviation are above all Spearman’s correction (S.correction)
for attenuation and sample Pearson’s correlation (P.correlation) in separate
columns. (see also Figure 1)

Within Studies Between Studies

1: Suzuki et al. (10 experiments)
S. correction P. correlation S. correction P. correlation

Ci/Ci 1 Ci/Cj 1
Ti/Ti 0.97± 0.02 0.93± 0.03 Ti/Tj 0.98± 0.01 0.91± 0.02
Ci/Ti 0.95± 0.02 0.92± 0.03

CTi/CTj 0.99± 0.01 0.92± 0.02

2: Faith et al. ( 59 experiments )
S. correction P. correlation S. correction P. correlation

Ci/Ci 0.99± 0.01 Ci/Cj 1± 0.07
Ti/Ti 1± 0.01 0.99± 0.01 Ti/Tj 0.98± 0.04 0.96± 0.04
Ci/Ti 0.92± 0.03 0.91± 0.03

CTi/CTj 1± 0.03 0.93± 0.04

sidered the Spearman’s correct correlation through these data it is possible
to prove that the selected experiments could be integrable and robust with
respect the noise. After all the median values in Table 1 reports a maintained
coherence within experiments reporting small variations between replicates
of control and treatments. That’s mean in specific contexts that antibiotics
in the most of the cases considered presents a specific cellular target, thus
altering the mRNA expression of a little group of genes (Table 1 Ci/Tis).
The total mRNA extracted from the platforms is normalised to the averaged
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value of mRNAs/cell considering ≈ 3800 mRNA copies/number as scaling
factor over all the compendia ( see also supplementary material S1 ).

5.0.3 Proteomic layer: protein abundance and protein variation

E.coli steady-state protein abundance is downloaded from the PaxDb web-
service [8]. We have considered all the studies with a coverage ≥ 98 % on the
whole genome. In this way it is obtained the protein abundance in steady
state. Then we need to extract the protein variation. The mRNAs amount
and their relative fold changes play a central role in the evaluation of protein-
level variation and, due to the heterogeneity of data, it is not a process so
obvious. Furthermore, in the literature, there are a lot of methodologies for
determining the variation of protein abundance caused by a treatment i.e.
mRNAs levels, codon usage and amino-acid usage [28, 29]. In more published
works mRNA and protein abundance are showed to be correlated weakly,
with a coefficient of determination R2 ≈ 0.17− 0.47 [30]. However, the lack
of correlation it is imputed several control factors and due to the presence of
noisy data [31]. It is possible to obtain a relevant correlation between protein
abundance and mRNA if it is accounted the noise and separated from the
rest of the information [27, 32]. Frost and Thompson [33] discussed several
methods for the regression dilution bias. Then, protein variation will be
inferred through a noise-robust linear model stabilized with reliabilities.

In the figure 2 the pipe-line of the method adopted is shown: steady-state
protein abundance it is indicated as B and controls mRNAs amount as A.
In this setting, the observations A and B are considered with additive noise.
Then Ã = α + nα with respectively Ã ≈ N(µ, σ2

A) and noise nα ≈ N(0, σ2
α)

with α the true value. Steady-steate protein abundance B are defined as the
latter with B̃ = β+nβ. Consider Ã as a predictor of the mRNA controls true

value α and B̃ as the dependent variable. Ã and B̃ are normally distributed.
We are interested into the reliability of Ã that is defined as the variance ratio
of the true value and the observed value:

ψα =
σ2
α

σ2
Ã

=
σ2
α

σ2
α + σ2

nα

=
σ2
Ã
− σ2

nα

σ2
Ã

(9)

When the true value it is unknown the definition of reliability above re-
mains theoretical. Even if it is possible to reach an estimation of ψα through
the Pearson coefficient of correlation ρ. Then, each couple of observed values
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(i,j) of Ã are considered as follows: ψ̃α = ρÃiÃj . Reliability functions are

furnished by Csardi et al. [27] in R. The reliability ψ̃α will be multiplied to
an estimated slope according to some models in literature [34, 33]. Once the
reliability it is obtained we can compute the protein variation leveraging a
random effect model [35]. The random effect model considered is based on a
linear regression with a random estimation (log-likelihood) for the slopes and
intercepts. It is given as independent variable a selected group of mRNAs
replicates in steady-state conditions (controls). The latter are chosen above
all the 69 experiment considering those one that once perturbed are differen-
tially expressed with a specific threshold γ and that maintain an acceptable
reliability (ψα > 0.5). The threshold γ permits to filter the differentially
expressed genes by a variable fold change fc (±fc, 0.1 ≤ fc ≤ 1.2) and a
significant p-value ( ≤ 0.05 with Bonferroni correction). From these selected
groups are removed the outliers. The predictors left are those biologically
valid, because are those one that are really expected to change between exper-
iments. Then, the latter could predict in a correct way the protein variation.
If γ is more restrictive the reliability of A decrement making not afford-
able the predictors. In fact increasing the number of measurement, then the
reliability coefficient increases:

ψ̃newα =
γ · ψ̃α

1 + (γ − 1) · ψ̃α
(10)

where γ is the factor by which the test length is increased: it is proportionally
related to the reliability. In a classical linear model for a j-th observation the
mRNA predictors and the steady state protein abundance it is represented in
the following form: Bj = mAj + εj, εj ≈ N(0, σ2) and j = 1, ..., n. Note that
in this way it is not possible to consider the mRNA replicates decreasing the
stability with respect the noise. Instead, the relationship in a random effect
model it is repeated for N=8 controls times the replicates. Then the random
effect model it is defined with i = 1, ..., N and a shared variable θi as follows:

Bij = θi +mAij + εij (11)

Due to the Wilks’s theorem [36] we can compare, with a log likelihood
ratio test, the null model Bij = mAij + εij (who does not take into account
the random effect) with the random effect model Bij = θi+mAij+εij [37, 32]
( an approximated chi-square distribution with an associated p-value which
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returns the goodness of fit). This procedure is repeated each time varying
the fold change, thus obtaining a relevant fc threshold that could make the
model significant.

Table 2: The table show the threshold utilized for obtaining a significant set
of random effect model predictors used for inferring the protein variation.
It is reported the log fold change in absolute value from 0.1 to 1.2, the ψ̃α
reliabilities for what concerns the predictors and the log-likelihood test ratios
between models approximated by a χ2(3) distribution with a specific p-value.

χ2(3) χ2 p-value ±fc ψ̃α
1 32.48 0.0000004151 0.1 0.699
2 32.48 0.0000004151 0.2 0.699
3 36.55 0.0000000572 0.3 0.691
4 16.77 0.0007890304 0.4 0.693
5 10.11 0.0176285375 0.5 0.687
6 5.65 0.1297964597 0.6 0.614
7 19.53 0.0002128110 0.7 0.529
8 11.38 0.0098197577 0.8 0.508
9 10.58 0.0142292459 0.9 0.486

10 8.74 0.0330070982 1 0.432
11 11.55 0.0090732111 1.1 0.417
12 10.42 0.0153329823 1.2 0.414

As showed in table 2 the optimal log fold change threshold is of 0.7 and
it could be individuated at the seventh row of the table. At this thresh-
old the random effect model says that mRNA control replicates (predictors)
affect protein abundances (dependent variable) with a (χ2(3) = 19.53, p =
0.00002), increasing it by about 2.4e+ 24 molecules/cell ±9.17e+ 23 (stan-
dard errors). Each θi will present its own slope and intercept then, it is
possible to obtain a list of slopes and intercepts. Then, from this model, it
is estimated a median intercept of ĉ = −1.15e + 22 and a median slope of
mt = 2.98e + 24. The latter, as said before, is corrected with its associated
reliability (Ψ̃α = 0.529) and become of m̂ = 1.25e + 24. Thus taking the
parameters m̂ and ĉ we can have an estimation of the protein variation index
pvj that dimensionally is coherent with molecules/cell and is a function of
the mRNA amounts xt molecules/cell:

pvj = m̂ · xtj + ĉ (12)
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PaxDB’s steady state protein abundance represented part per million
(ppm) is transformed molecules/cell as described in the supplementary ma-
terial S2.

5.0.4 Metabolomic layer: a novel integrated network

In this work the whole metabolic network is represented as a protein-centric
network topology [38]. We have integrated in R the most updated E.coli
metabolic network (furnished in supplementary material) from multiple sources:
EcoCyc and KEGG. The network extracted from the Ecocyc smart tables
is of V= 1321 proteins and E= 366778 reactions. Moreover, are inte-
grated the KEGG pathways obtaining a network of V= 1005 proteins and
E= 3394 edges. Ecocyc and KEGG networks are merged forming a network
of V= 1644 proteins and E= 369863 edges. Each protein complex in the ta-
ble of reactions is considered as a monomer by its individual reaction. Since
we are interested on the relations of multi-omics projected on this structure
we prove that this novel integrated network responds to the most well known
topology properties present in literature.

It is studied the scale-free property of this network and we could asses, ac-
cording to other studies [39, 40], that the integrated protein-centric metabolic
network presents features of a power law degree (d) distribution Figure 3
with its typical parameter α = 2.7. After that, the network topology is in-
vestigated across the features that characterise this metabolic network as a
small world network: the clustering coefficient (CC) and the average path
length (APL). In particular EcoCyc integrated network presents a CC = 0.95
and APL = 2.26, for what concern the novel metabolic network integrated
( KEGG + EcoCyc) the CC = 0.84 and have an average path length of
2.71 proteins for shortest path. In both cases are presented some typical
features of small-world networks: an high CC and a low APL [41]. Erdós-
Rényi [42] models could be considered as a yardstick for deciding if we are
dealing with a small-world network. In fact, it has been proven that real
networks are small world networks, once compared to random networks, if
presents the same number of edges and nodes, a similar ALP and a higher
CC [43]. 100 Erdós-Rényi random networks of the same dimension of the
integrated network are generated thus computing the CC median values and
error (0.5103229± 0.0002) and the ALPs (1.86± 0.000005) with the conclu-
sion that enjoys the small-world properties. If in one hand random networks
are useful to describe the property of small-world between multi-omics pro-
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jected on metabolic structures, on the other hand they not describe perfectly
the real network under examination. In a certain sense, Poisson and expo-
nential degree distribution could explain the evolution theory of proteins and
compounds [38] because they randomly add on each epoch t new nodes to
networks. Thus, some studies on E.coli based on these distributions account
an average of 9.76 links per node [44]. In this setting, proteins are considered
to accomplish the same charge of work not clearly explaining the complexity
of the metabolic structures, because, for example, it is not well modeled the
presence of hubs [45, 46]. Alternatively in scale-free networks is accounted a
preferential attachment [43] that, in turn, show the high specificity of the en-
zyme and reactions and where it is possible to recognize hubs. It is important
to underline that topology networks are helpful in describing the interaction
between nodes but they do not describe the internal node characteristics.

6 S6 - MORA: toy example

Adjacency influences are considered on a toy model (figure 4 (a)). A network
of nodes, named with a number from 1 to 13, is showed. The nodes are
ordered following their relative positions forming this sequence: 3-1-2-4-5-
6-7-8-10-11-13-9-12 (in pathways the positions are taken considering the
distance by the origin of replication). According to the algorithm MORA, in
the figure the nodes are showed with a more/less influence on the sequence
(reciprocal influence) and their relative adjacency weights (more/less a node
is influent, more/less its diameter increases on the network). For example,
nodes 3-1-2 are adjacent and linked in the network showing relevant adjacent
weights. Node 7 is the most influencing node on the sequence, due to the
effect of its direct adjacency with nodes 6 and 8 on the sequence and its direct
links to 6 and 8 on the network (ψ = 2). Furthermore, node 7 is involved in
2 specific shortest paths: in fact, the algorithm increases its weight, counting
the influence effects of adjacent nodes 5-6 and 8-10 in the sequence, that on
the network represent the shortest paths of three nodes (5-7-6) and (8-7-10)
(ψ = 3) (node 7 is present in both). Influences are considered on undirected
networks. Nodes with more/less influence are linked with their associated
structural/reciprocal influence colour. Structural/reciprocal influence (value
of infl ) are divided and coloured forming the group of the most adjacent
nodes (those with a weight ≥ median( infl )) and that of the less adjacent
nodes.(figure 4 (b) (c)). In these plots 2 extreme structural conditions are
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tested with a sequence equal to 1-2-3-4-5, where the first plot is a clique and
the second a broken clique (snaked).

7 S7 - A concrete example for multi-omic

metabolic network motifs: E.coli Glycoly-

sis

In Figure 5 part (a) is shown an example of multi-omic oscillations on the
pathway for the E.coli Glycolysis. Blue and red nodes show oscillating multi-
omic values. Orange edges link nodes with the anti-dyadic effect (i.e. those
with oscillating multi-omics), instead red and blue edges show the dyadic
effect. In this case the anti-dyadic effect magnitude is of m̂01 = 1.99 and
the dyadic effect magnitude of m̂1100 = 2.14. The different node sizes depict
a less or more adjacent influences (computed with MORA). The reciprocal
influence RI of Glycolysis with respect its sequence pattern is equal to 1.
Then more adjacent nodes are those with adjacency weights greater than 1
and less adjacent nodes are those ≤ 1. Figure 5 part (b) shows multi-omic
oscillations on patterns. The values are shown on a normalised scale and
not yet binary discretized. The dots of several colours show a variation in
oscillation due to the effect of the 69 considered treatments. The groups of
operons and protein complexes that take part to the pathway are shown in the
blue and red bands. The Glycolysis multi-omic pattern similarity to an ideal
oscillating sequence is of σobs = 0.62. In Figure 6 part (a) are shown the multi-
omic oscillations on the E.coli Glycolysis with path extensions. In this case,
new reactions are added, and consequently also new nodes to the pathway
and new multi-omics on the pattern. In this case, the anti-dyadic effect
magnitude is m̂01 = 1.35 and the dyadic effect magnitude m̂00−11 = 1.46.
With respect to figure 5 both the effects are lowered, but the network still
maintains a significant amount of oscillating multi-omics ( m̂01 > 1 ). In this
case, the RI is = 2 showing that there are more adjacent influences with
respect to the Glycolysis pathway without path extensions. In Figure 6 part
(b) are shown multi-omic oscillations on patterns with the insertion of path
extensions. With respect the standard conditions without modifications,
where σobs was = 0.6, while now σobs is increased to 0.7413793. For analyzing
the effect of treatments please refer to the tables of Additional File 1.

13



References
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Figure 1: In figure 1 are reported the tables of control mRNA replicates (tran-
scriptomic layer) in blue rectangles, while perturbed by treatments mRNA
replicates in in red rectangles. Ci and Cj represent two distinct controls of
the same k-th compendium. Ti and Tj represent two distinct treatments.
Pearson’s correlations and Spearman’s corrected correlations are computed
between-studies (blue, orange and red arrows) and within-studies (black ar-
rows). Suzuki et al. experiments (k = 1) and Faith et al. (k = 2) experiments
correlations are shown in the Table 1. Correlations are studied to show some
characteristics of the microarray experiment design and to test the robustness
of the dataset before executing other types of analysis.
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Figure 2: In this figure it is represented the pipeline that leads to a robust
protein variation index (pv). The selected groups of differentially expressed
genes are selected from each one of the 69 treatments (Ti - red rectangles).
Then this set of predictors are utilized in the random effect model for the
estimation of the slopes and the intercepts. The set of predictors (red and
blue arrows) are extracted across all the groups of control mRNA amounts
(∀Ci) (blue rectangle A) and steady state protein abundances (grey rectangle
B). This set is individuated above all the genes that presents an effective
mRNA variation (volcano plot blue dots). Note that the set of predictors is
computed between-studies ( Suzuki et al. and Faith et al.) (∀Ti) and leads
to the estimation protein abundance variation for all the genes involved (see
also 12).
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Figure 3: The plot shows the number of nodes and their degree (log-log
scale) for the novel E.coli integrated metabolic network. The fitted power
law degree with α = 2.7. Average path length (APL) of 2.71 and an clus-
ter coefficient (CC) of 0.84. The network shows typical characteristics of a
metabolic network, where enzyme are strictly related each other (low APL)
and in short circuits (high CC). Thus,the latter share substrate in input and
output, transforming compounds, with high specificity.
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Figure 4: MORA: toy example. Please refer to section S6 of this file.
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Figure 5: E.coli Glycolysis: multi-omic network motifs and patterns. Please
refer to Section S7 of this file.
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Figure 6: E.coli Glycolysis: multi-omic network motifs and patterns with
extensions. Please refer to Section S7 of this file.
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