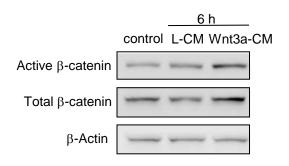
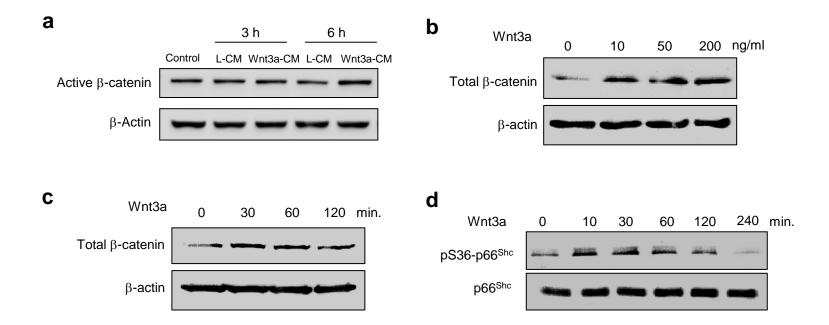
Supplemental Material

Supplemental Figure Legends

Supplemental Fig I. Wnt3a conditioned medium (Wnt3a-CM) increases total as well as active (dephosphorylated) β -catenin in BAEC. Data is representative of 3 experiments.


Supplemental Fig II. (a) Wnt3a-CM increases active β -catenin in HUVEC. (b & c) Recombinant Wnt3a increases β -catenin in HUVEC in a dose and time-dependent manner. (d) Wnt3a (200 ng/ml) stimulates rapid phosphorylation of p66shc in HUVEC. Data is representative of 3 experiments.


Supplemental Fig III. Wnt3a or non-phsophorylatable active β -catenin (S37A) do not inhibit sodium-nitroprusside (SNP)-stimulated endothelium-independent vasorelaxation of mouse aortas. There was no significant difference between the groups. n = 3-5. (a) Ref # Fig. 4a (b) Ref # Fig. 4c (c) Ref # Fig. 4e. All values are shown as Mean ± SEM.

Supplemental Fig IV. High-fat diet (HFD)-feeding leads to (a) impaired endotheliumdependent vasorelaxation, and (b) decreased NO bioavailability. (c) HFD-feeding has no effect on SNP-stimulated endothelium-independent vasorelaxation ND = normal diet. All values are shown as Mean \pm SEM. * *P* < 0.05, *** *P* < 0.001 *vs*. ND. N=3-12.

Supplemental Fig V. Decreased HFD-induced aortic fatty streak formation (Oil-Red-O staining) in mice transgenic for $p66^{Shc}$ shRNA ($p66^{Shc}$ RNAi). N = 3-4. All values are shown as Mean \pm SEM. * P < 0.05 vs. WT-ND.

Supplemental Fig VI. Schematic showing proposed model of canonical Wnt signaling in the endothelium and vasculature, and the role of p66shc and ROS in this model. LRP: low-density lipoprotein receptor-related protein; Fz: Frizzled receptor. In addition to TNF α , other target genes of β -catenin in the endothelium that could potentially contribute to vascular oxidative stress and endothelial dysfunction are not shown.

Figure II

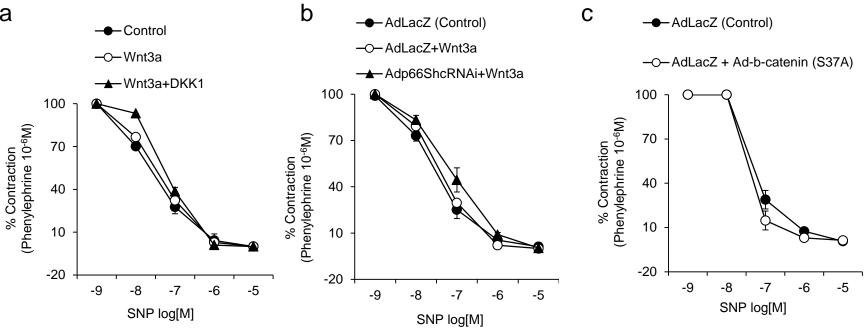
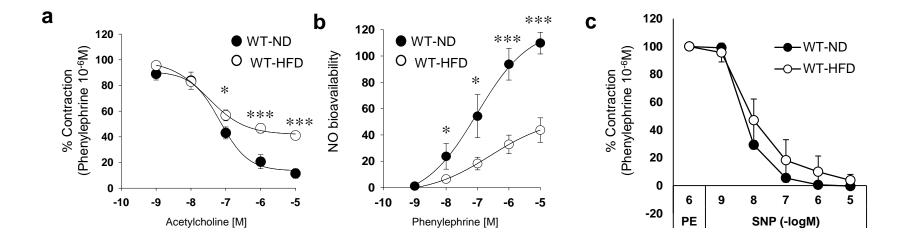
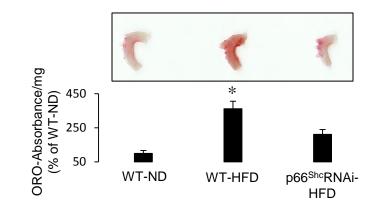
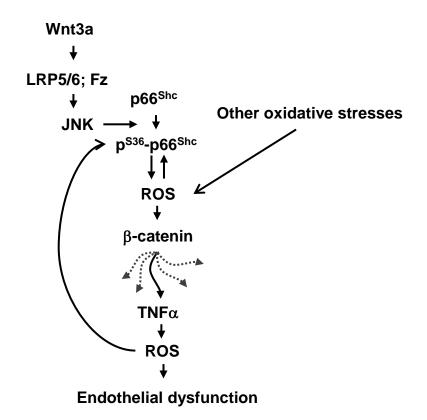





Figure III

Figure IV

