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WEB MATERIAL 

Web Appendix 1. G-formula details 

Overview 

We estimate the cumulative mortality risk under the observed treatment history (i.e., “no intervention”) 
and each of the dynamic treatment plans using a Monte Carlo simulation of 50,000 patients sampled 
from the study sample randomly with replacement at baseline. The densities of covariates measured at 
baseline were estimated using their empirical distributions in the sampled data, and the densities of 
time-varying covariates were modeled using parametric regression models in the observed data. The 
values of these covariates under each dynamic treatment plan were imputed using a draw from a 
density estimated by the regression models after assigning treatment according to the designated 
treatment plan in the Monte Carlo sample. The probability of cause-specific mortality was estimated for 
each patient in each person-month using a parametric regression model with treatment assignment and 
covariate history set to what it would have been under the given dynamic treatment plan. 

Details 

Let patients be indexed from 𝑖𝑖 = 1, … 3882,  𝐴𝐴 represent treatment, 𝒁𝒁 represent a vector of covariates 
including CD4 cell count, viral load, and baseline covariates, 𝐶𝐶 represent censoring, and 𝑌𝑌 represent 
death.  

1. Write the formula for the cumulative incidence under no intervention on exposure. Under the 
assumption that censoring was not informative on later outcome, exposure, or time varying 
covariates, the cumulative incidence of death due to cause 𝑗𝑗 at time 𝑡𝑡 can be written as 
Equation 1: 

𝐹𝐹(𝑡𝑡, 𝑗𝑗) = ���𝑃𝑃[𝐽𝐽 = 𝑗𝑗|𝑌𝑌(𝑘𝑘) = 1, �̅�𝐴(𝑘𝑘) = 𝑎𝑎�(𝑘𝑘), �̅�𝑍(𝑘𝑘) = 𝑧𝑧̅(𝑘𝑘),𝑌𝑌(𝑘𝑘 − 1) = 𝐶𝐶(𝑘𝑘) = 0]
𝑡𝑡

𝑘𝑘=0𝑧𝑧𝑡𝑡�𝑎𝑎�𝑡𝑡

  

× 𝑃𝑃[𝑌𝑌(𝑘𝑘) = 1|�̅�𝐴(𝑘𝑘) = 𝑎𝑎�(𝑘𝑘), �̅�𝑍(𝑘𝑘) = 𝑧𝑧̅(𝑘𝑘),𝑌𝑌(𝑘𝑘 − 1) = 𝐶𝐶(𝑘𝑘) = 0]

× �
× 𝑓𝑓[𝑎𝑎(𝑠𝑠)|𝑧𝑧̅(𝑠𝑠),𝑎𝑎�(𝑠𝑠 − 1),𝑌𝑌(𝑠𝑠 − 1) = 𝐶𝐶(𝑠𝑠) = 0]

× 𝑓𝑓[𝑧𝑧(𝑠𝑠)| 𝑧𝑧(𝑠𝑠 − 1),𝑎𝑎�(𝑠𝑠 − 1),𝑌𝑌(𝑠𝑠 − 1) = 𝐶𝐶(𝑠𝑠) = 0]
𝑃𝑃[𝑌𝑌(𝑠𝑠 − 1) = 0|�̅�𝐴(𝑠𝑠 − 1) = 𝑎𝑎�(𝑠𝑠 − 1), �̅�𝑍(𝑠𝑠 − 1) = 𝑧𝑧̅(𝑠𝑠 − 1),𝑌𝑌(𝑠𝑠 − 2) = 𝐶𝐶(𝑠𝑠 − 1) = 0]

𝑘𝑘

𝑠𝑠=0

 

2. Fit parametric models. We first fit parametric models (described below) to each component of 
this joint density of the observed data as specified below. The notation 𝑔𝑔(𝑥𝑥) indicates that 𝑥𝑥 
was modeled flexibly using restricted quadratic splines. 

a. Fit a logistic model to estimate whether patient i has a detectable viral load at time s. 
𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖𝑡𝑡[𝑃𝑃�𝑑𝑑𝑑𝑑𝑙𝑙𝑖𝑖,𝑠𝑠 = 1�] =

= 𝛼𝛼0 + 𝜶𝜶𝟏𝟏𝑳𝑳𝑖𝑖𝑇𝑇 + 𝛼𝛼2𝑑𝑑𝑑𝑑𝑙𝑙𝑖𝑖,𝑠𝑠−1 + 𝛼𝛼3𝑔𝑔�𝑑𝑑𝑙𝑙𝑖𝑖,𝑠𝑠−1� + 𝛼𝛼4𝑔𝑔�𝑐𝑐𝑑𝑑4𝑖𝑖,𝑠𝑠−1�
+ 𝛼𝛼5𝐴𝐴 + 𝛼𝛼7𝑔𝑔(𝑠𝑠) 
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Where L is a vector of time-fixed covariates, including sex, race, ethnicity, injection drug 
use, MSM status, age at baseline, year of study entry, CD4 at study entry, viral load at 
study entry, the product of year and age at study entry. 

b. Fit linear regression models to estimate viral load at time 𝑠𝑠 among patients who had a 
detectable viral load at time 𝑠𝑠. 

𝑉𝑉𝐿𝐿𝑖𝑖,𝑠𝑠
= 𝛼𝛼0 + 𝜶𝜶𝟏𝟏𝑳𝑳𝒊𝒊𝑻𝑻 + 𝛼𝛼2𝑑𝑑𝑑𝑑𝑙𝑙𝑖𝑖,𝑠𝑠−1 + 𝛼𝛼3𝑔𝑔�𝑑𝑑𝑙𝑙𝑖𝑖,𝑠𝑠−1�+ 𝛼𝛼4𝑔𝑔�𝑐𝑐𝑑𝑑4𝑖𝑖,𝑠𝑠−1�
+ 𝛼𝛼5𝐴𝐴 + 𝛼𝛼7𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑖𝑖,𝑠𝑠−1 + 𝛼𝛼8𝑔𝑔(𝑠𝑠) + 𝜖𝜖𝑖𝑖 , 𝜖𝜖~𝑁𝑁(0,𝜎𝜎) 

c. Fit linear regression models to estimate CD4 cell count at time 𝑠𝑠 stratified by treatment 
at time 𝑠𝑠 − 1: 
𝐶𝐶𝐴𝐴4𝑖𝑖,𝑠𝑠

= 𝛼𝛼0 + 𝜶𝜶𝟏𝟏𝐿𝐿𝑖𝑖𝑇𝑇 + 𝛼𝛼2𝑑𝑑𝑑𝑑𝑙𝑙𝑖𝑖,𝑠𝑠−1 + 𝛼𝛼3𝑑𝑑𝑑𝑑𝑙𝑙𝑖𝑖,𝑠𝑠 + 𝛼𝛼4𝑔𝑔�𝑑𝑑𝑙𝑙𝑖𝑖,𝑠𝑠� + 𝛼𝛼5𝑔𝑔�𝑑𝑑𝑙𝑙𝑖𝑖,𝑠𝑠−1�
+ 𝛼𝛼6𝑔𝑔�𝑐𝑐𝑑𝑑4𝑖𝑖,𝑠𝑠−1� + 𝛼𝛼7𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑖𝑖,𝑠𝑠−1 + 𝛼𝛼8𝑔𝑔(𝑠𝑠) +  𝜖𝜖𝑖𝑖, 𝜖𝜖~𝑁𝑁(0,𝜎𝜎) 

d. Fit a logistic regression model to estimate the probability of being treated at time s.  
𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖𝑡𝑡�𝑃𝑃[𝐴𝐴(𝑠𝑠) = 1|�̅�𝑍(𝑠𝑠) = 𝑧𝑧̅(𝑠𝑠),𝑎𝑎�(𝑠𝑠 − 1),𝑌𝑌(𝑠𝑠 − 1) = 𝐶𝐶(𝑠𝑠) = 0]�

= 𝛼𝛼0 + 𝜶𝜶𝟏𝟏𝐿𝐿𝑖𝑖𝑇𝑇 + 𝛼𝛼2𝑑𝑑𝑑𝑑𝑙𝑙𝑖𝑖,𝑠𝑠 + 𝛼𝛼3𝑑𝑑𝑑𝑑𝑙𝑙𝑖𝑖,𝑠𝑠−1 + 𝛼𝛼4𝑔𝑔�𝑑𝑑𝑙𝑙𝑖𝑖,𝑠𝑠�
+ 𝛼𝛼5𝑔𝑔�𝑐𝑐𝑑𝑑4𝑖𝑖,𝑠𝑠�+𝛼𝛼6𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑖𝑖,𝑠𝑠 + 𝛼𝛼7𝑔𝑔(𝑠𝑠) 

e. Fit a logistic regression model to estimate the probability of death at time s.  
𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖𝑡𝑡�𝑃𝑃[𝑌𝑌(𝑘𝑘) = 1|�̅�𝐴(𝑘𝑘) = 𝑎𝑎�(𝑘𝑘), �̅�𝑍(𝑘𝑘) = 𝑧𝑧̅(𝑘𝑘),𝑌𝑌(𝑘𝑘 − 1) = 𝐶𝐶(𝑘𝑘) = 0]�

= 𝛼𝛼0 + 𝜶𝜶𝟏𝟏𝐿𝐿𝑖𝑖𝑇𝑇 + 𝛼𝛼2𝑑𝑑𝑑𝑑𝑙𝑙𝑖𝑖,𝑘𝑘 + 𝛼𝛼3𝑑𝑑𝑑𝑑𝑙𝑙𝑖𝑖,𝑘𝑘−1 + 𝛼𝛼4𝑔𝑔�𝑑𝑑𝑙𝑙𝑖𝑖,𝑘𝑘�
+ 𝛼𝛼5𝑔𝑔�𝑐𝑐𝑑𝑑4𝑖𝑖,𝑠𝑠�+𝛼𝛼6𝐴𝐴 + 𝛼𝛼7𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑖𝑖,𝑠𝑠−1 + 𝛼𝛼8𝑔𝑔(𝑘𝑘) 

f. Fit a logistic regression model to estimate the probability of a death at time k is due to 
cause 𝑗𝑗.  

𝑙𝑙𝑙𝑙𝑔𝑔𝑖𝑖𝑡𝑡[𝑃𝑃[𝐽𝐽 = 𝑗𝑗|𝑌𝑌(𝑘𝑘) = 1, �̅�𝐴(𝑘𝑘) = 𝑎𝑎�(𝑘𝑘), �̅�𝑍(𝑘𝑘) = 𝑧𝑧̅(𝑘𝑘),𝑌𝑌(𝑘𝑘 − 1) = 𝐶𝐶(𝑘𝑘) = 0]]
= 𝛼𝛼0 + 𝜶𝜶𝟏𝟏𝐿𝐿𝑖𝑖𝑇𝑇 + 𝛼𝛼2𝑑𝑑𝑑𝑑𝑙𝑙𝑖𝑖,𝑘𝑘 + 𝛼𝛼3𝑑𝑑𝑑𝑑𝑙𝑙𝑖𝑖,𝑘𝑘−1 + 𝛼𝛼4𝑔𝑔�𝑑𝑑𝑙𝑙𝑖𝑖,𝑘𝑘�
+ 𝛼𝛼5𝑔𝑔�𝑐𝑐𝑑𝑑4𝑖𝑖,𝑘𝑘�+𝛼𝛼6𝐴𝐴 + 𝛼𝛼7𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑖𝑖,𝑠𝑠−1 + 𝛼𝛼8𝑔𝑔(𝑘𝑘) 

In all models, continuous variables were modeled using restricted quadratic splines (36), and 
categorical variables were modeled using indicator variables. Addition of interaction terms 
between treatment status and year did not alter the results. 

 
3. Draw Monte Carlo Sample: Draw a large (N = 50,000) Monte Carlo sample from the observed 

patients at baseline with replacement. 
4. Check form of parametric models: In the Monte Carlo sample, estimate the cumulative 

incidence under no intervention on treatment or censoring using the conditional probabilities 
defined by parameters estimated from the parametric models above and Equation 1. See the 
figure below, comparing the observed cumulative incidence function to the cumulative 
incidence function predicted using Equation 1. 
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5. Write the formula for the cumulative incidence under each exposure plan. Write the 
cumulative incidence of death due to cause 𝑗𝑗 at time 𝑡𝑡 under dynamic treatment regime 𝑔𝑔 as 
Equation 2: 

𝐹𝐹𝑔𝑔(𝑡𝑡, 𝑗𝑗) = ���𝑃𝑃[𝐽𝐽 = 𝑗𝑗|𝑌𝑌(𝑘𝑘) = 1, �̅�𝐴(𝑘𝑘) = 𝑎𝑎�(𝑘𝑘), �̅�𝑍(𝑘𝑘) = 𝑧𝑧̅(𝑘𝑘),𝑌𝑌(𝑘𝑘 − 1) = 𝐶𝐶(𝑘𝑘) = 0]
𝑡𝑡

𝑘𝑘=0𝑧𝑧𝑡𝑡�𝑎𝑎�𝑡𝑡

  

× 𝑃𝑃[𝑌𝑌(𝑘𝑘) = 1|�̅�𝐴(𝑘𝑘) = 𝑎𝑎�(𝑘𝑘), �̅�𝑍(𝑘𝑘) = 𝑧𝑧̅(𝑘𝑘),𝑌𝑌(𝑘𝑘 − 1) = 𝐶𝐶(𝑘𝑘) = 0]

× �
𝑓𝑓𝑔𝑔[𝑎𝑎(𝑠𝑠)|𝑧𝑧̅(𝑠𝑠),𝑎𝑎�(𝑠𝑠 − 1),𝑌𝑌(𝑠𝑠 − 1) = 𝐶𝐶(𝑠𝑠) = 0]

× 𝑓𝑓[𝑧𝑧(𝑠𝑠)| 𝑧𝑧(𝑠𝑠 − 1),𝑎𝑎�(𝑠𝑠 − 1),𝑌𝑌(𝑠𝑠 − 1) = 𝐶𝐶(𝑠𝑠) = 0]
𝑃𝑃[𝑌𝑌(𝑠𝑠 − 1) = 0|�̅�𝐴(𝑠𝑠 − 1) = 𝑎𝑎�(𝑠𝑠 − 1), �̅�𝑍(𝑠𝑠 − 1) = 𝑧𝑧̅(𝑠𝑠 − 1),𝑌𝑌(𝑠𝑠 − 2) = 𝐶𝐶(𝑠𝑠 − 1) = 0]

𝑘𝑘

𝑠𝑠=0

 

 

6. Estimate cumulative incidence under each exposure plan: In the Monte Carlo sample, estimate 
the cumulative incidence each dynamic treatment plan using the g-formula provided in equation 
2. 

a. The distribution of L in the large Monte Carlo sample approximates the distribution of L 
in the observed data. 

b. Estimate CD4 cell count, whether or not viral load is detectable, and viral load for 
participant 𝑖𝑖 at time 𝑠𝑠 using the coefficients from models a through c above. 

c. Set treatment according to the treatment regime of interest. The value of 𝐴𝐴𝑖𝑖,𝑠𝑠 drawn 
from a Bernoulli distribution with probability given below. Specifically, if x represents 
the CD4 cell count threshold for treatment initiation, and m is the number of months 
that CD4 cell count has been below x, 
 

For the immediate treatment arm,  
𝑓𝑓𝑔𝑔[𝑎𝑎(𝑠𝑠)|𝑧𝑧̅(𝑠𝑠),𝑎𝑎�(𝑠𝑠 − 1),𝑌𝑌(𝑠𝑠 − 1) = 𝐶𝐶(𝑠𝑠) = 0] = 1  
 

For the delayed treatment arm,  
 
𝑓𝑓𝑔𝑔[𝑎𝑎(𝑠𝑠)|𝑧𝑧̅(𝑠𝑠),𝑎𝑎�(𝑠𝑠 − 1),𝑌𝑌(𝑠𝑠 − 1) = 𝐶𝐶(𝑠𝑠) = 0]

= �
0                                                                        𝐶𝐶𝐴𝐴4𝑖𝑖,𝑠𝑠 > 𝑥𝑥                                             

𝑓𝑓𝑜𝑜𝑜𝑜𝑠𝑠[𝑎𝑎(𝑠𝑠)|𝑧𝑧̅(𝑠𝑠),𝑎𝑎�(𝑠𝑠 − 1),𝑌𝑌(𝑠𝑠 − 1) = 𝐶𝐶(𝑠𝑠) = 0]  𝐶𝐶𝐴𝐴4𝑖𝑖,𝑠𝑠 < 𝑥𝑥,𝑚𝑚 < 6                                  
  1                                                                          �𝐶𝐶𝐴𝐴4𝑖𝑖,𝑠𝑠 < 𝑥𝑥 ,𝑚𝑚 ≥ 6� or 𝐴𝐴𝑖𝑖,𝑠𝑠−1 = 1

 

d. Prevent censoring; set 𝑃𝑃(𝐶𝐶 = 0) = 1 ∀ 𝑖𝑖, 𝑠𝑠 

7. Perform steps 1 through 4 in 500 bootstrap samples. We use the standard deviation of the 500 
estimates as the standard error of the point estimate. 
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Appendix 1 Figure: Observed cumulative incidence of mortality (solid line) and cumulative incidence of 
mortality estimated under no intervention (dashed line) among 3882 patients who entered care with a 
CD4 cell count over 500 cells/mm3  between January 1, 1998 and December 31, 2014 at 8 US clinical 
sites, followed for death up to 10 years 
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Web Appendix 2. Accounting for missing cause of death data 

 Under the assumption that cause of death data is missing at random, conditional on the 

covariates included in the cause of death model described above, the parametric g-formula will provide 

consistent estimates of the cumulative incidence of death due to cause 𝑗𝑗 even in the presence of missing 

cause of death data. To account for the missing data, one simply fits the cause of death model among 

those who have cause of death information in Step 1. This regression model should contain the union of 

the sets of covariates needed for exchangeability between participants following each exposure plan at 

time 𝑡𝑡 and for exchangeability between participants with and without cause of death information. Then, 

in Step 4, the regression coefficients estimated using the procedure outlined above are used to estimate 

each individual’s probability of dying due to cause 𝑗𝑗 by time 𝑡𝑡, even among individuals missing cause of 

death in the study. This approach provides a consistent estimator because we appropriately assume that 

the conditional probabilities of dying due to cause 𝑗𝑗 (conditional on all of the covariates in the model) 

are the same for individuals with and without cause of death information. This procedure can be used to 

reconstruct the cumulative incidence of death due to cause 𝑗𝑗 under no intervention on exposure plan or 

under the exposure plans of interest. 

 Simulations indicated that this approach to account for missing data yielded very little bias in 

estimates of the cumulative incidence of death due to cause 𝑗𝑗 under the natural course or under the 

exposure plans of interest when the model for cause of death fit in Step 1 included all joint predictors of 

cause of death and missingness. Estimates became more imprecise as the amount of missing data 

increased. A second set of simulations shows that bias will occur when missingness of cause of death 

information is affected by a predictor of cause of death that is not included in the cause of death model 

in Step 1.  

 To understand why this procedure provides consistent estimates of the risk function for cause of 

death 𝑗𝑗, it is useful to view the g-formula as an algorithm that imputes the potential outcomes. The 
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models fit in Step 1 act as the imputation models that are used to predict the missing potential 

outcomes for the same group of subjects under alternative exposure plans. For more details on the 

parallels between multiple imputation and the g-formula for causal inference, see (13). 

Simulations for missing data 

 Simulations to examine the performance of our method for handling missing data were built off 

the same data generating mechanism as simulations to assess the performance of the proposed 

approach for handling outcome misclassification. Additionally, an indicator of observing the cause of 

death, 𝑅𝑅𝑖𝑖, was generated based on covariates. In the first set of simulations (Web Table 1), 𝑅𝑅𝑖𝑖 was 

determined by  𝑋𝑋𝑖𝑖  and 𝑍𝑍𝑖𝑖. In the second set of simulations (Web Table 2), 𝑅𝑅𝑖𝑖 was determined by 

𝑋𝑋𝑖𝑖 ,𝑍𝑍𝑖𝑖 , and hypothetically unobserved variable 𝑈𝑈𝑖𝑖. Specifically, individuals with 𝑈𝑈 = 1 were 3 times as 

likely to have their cause of death observed than participants with 𝑈𝑈 = 0. In the second set of 

simulations, 𝑈𝑈𝑖𝑖  was also a predictor of dying due to cause 𝑗𝑗 (individuals with 𝑈𝑈𝑖𝑖 = 1 had 20% higher 

probability of dying due to cause 𝑗𝑗 as individuals with 𝑈𝑈𝑖𝑖 = 0). If 𝑅𝑅𝑖𝑖 = 1 then the observed cause of 

death 𝐽𝐽𝑙𝑙𝑖𝑖 = 𝐽𝐽𝑖𝑖. If 𝑅𝑅𝑖𝑖 = 0 then 𝐽𝐽𝑙𝑙𝑖𝑖 was missing.  

  

  



7 
 

Web Table 1. Simulation results illustrating the performance of the parametric g-formula to estimate the 
effect of intervention 𝑋𝑋 in a cohort of 3000 patients with varying amounts of missing cause of death 
data, where missingness depends on measured covariates included in the cause of death model in 1000 
simulation experiments 

 

 Proportion of deaths missing cause 

 0 5 25 50 75 

Cumulative incidence of death due 
to cause 𝑗𝑗 (natural course) 

26.2 26.2 26.2 26.2 26.2 

Cumulative incidence  

(set 𝑋𝑋 = 1) 
32.6 32.6 32.6 32.6 32.6 

Cumulative incidence  

(set 𝑋𝑋 = 0) 
23.8 23.8 23.8 23.8 23.7 

Difference 8.8 8.8 8.8 8.8 8.9 

Bias 0.00 0.00 0.00 0.00 0.02 

Standard deviation of bias 0 0.16 0.45 0.63 0.98 

Mean Squared error 0 0.03 0.20 0.39 0.95 
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Web Table 2. Simulation results illustrating the performance of the parametric g-formula to estimate the 
effect of intervention 𝑋𝑋 in a cohort of 3000 patients with varying amounts of missing cause of death 
data, where missingness depends on an unmeasured predictor of the outcome in addition to measured 
covariates included in the cause of death model in 1000 simulation experiments 

 
 Proportion of deaths missing cause 

 0 5 25 50 75 

Cumulative incidence of death 
due to cause 𝑗𝑗 (natural course) 

17.5 17.5 18.0 18.5 19.3 

Cumulative incidence  
(set 𝑋𝑋 = 1) 

21.5 21.6 21.5 21.8 22.4 

Cumulative incidence  
(set 𝑋𝑋 = 0) 

14.5 14.8 15.4 15.9 16.8 

Difference 6.9 6.8 6.1 5.8 5.6 

Bias 0 -0.10 -0.83 -1.04 -1.28 

Standard deviation of bias 0 0.48 0.73 0.82 0.97 

Mean Squared error 0 0.28 1.23 1.77 2.58 
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Web Appendix 3. Penalized maximum likelihood methods to handle sparse data in cause of death 

model 

Parametric models for each component of the joint likelihood are often high dimensional. For 

the parametric g-formula to provide consistent estimates of the counterfactual risk functions, we must 

assume exchangeability between participants receiving each treatment plan at time 𝑡𝑡 conditional on a 

set of measured variables. Exposure, covariates, and outcomes must be predicted under each treatment 

plan conditional on the variables required for conditional exchangeability, meaning that parametric 

models for each component of the joint likelihood must include these variables as covariates. In 

addition, all parametric models used to model exposure, covariates, and outcomes must be correctly 

specified. To reduce the probability of misspecifying one of these models, we let these models be as 

flexible as possible by, for example, modeling continuous variables using restricted quadratic splines. In 

some cases, the number of covariates may be large relative to the number of end points in a particular 

model. 

In the model for cause of death, the number of parameters necessary to flexibly model the 

required covariates was large (𝑝𝑝 = 17) relative to the number of AIDS-related deaths (𝑛𝑛 = 36). As a 

result, estimates of parameters from this model were highly variable and unstable. To reduce the 

variability of these estimates, we applied a penalty to each of the parameters estimated using this 

model. This penalty pulled each of the 𝑝𝑝 parameter estimates �̂�𝛽 towards values 𝒎𝒎 = (𝑚𝑚1, …𝑚𝑚𝑝𝑝), 

effectively introducing a small about of bias in exchange for a reduction in the variance of the parameter 

estimates (37,38). We used a quadratic penalty such that the form of the penalized log likelihood was 

ln{𝐿𝐿(𝜷𝜷; 𝒋𝒋)} − 𝑟𝑟 2⁄ × ∑ (𝛽𝛽𝑘𝑘 −𝑚𝑚𝑘𝑘)2𝑝𝑝
𝑘𝑘=1 , where 𝑟𝑟 is a tuning parameter governing the amount of 

shrinkage towards 𝒎𝒎. In the example, we set 𝒎𝒎 = 0 and 𝑟𝑟 = 1/10. SAS code to apply such a penalty to 

a logistic regression model is provided by Cole et al (38).  
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Web Appendix 4. Simulations to evaluate the performance of the modified g-formula to account for 

outcome misclassification 

We illustrate the proposed approaches to handle misclassified cause of death data in the time-

fixed setting. In each scenario, let 𝑖𝑖 index hypothetical patients from 1 to 3,000 in each of 2,000 

simulated cohorts. Measured confounder 𝑍𝑍 = 1 for 30% of patients, and patients with 𝑍𝑍 = 1 had 7 

times the odds of being exposed to the time-fixed exposure (𝑋𝑋 = 1) as patients with 𝑍𝑍 = 0.  An 

indicator of death due to any cause (𝑌𝑌𝑖𝑖) was generated for each patient based on 𝑋𝑋𝑖𝑖  and 𝑍𝑍𝑖𝑖, and the true 

cause of death 𝐽𝐽𝑖𝑖 for simulated subjects with 𝑌𝑌𝑖𝑖 = 1 was generated based on 𝑋𝑋𝑖𝑖 , and 𝑍𝑍𝑖𝑖 .   

A misclassified version of the cause of death, 𝐽𝐽𝑖𝑖′, was generated for each patient based on 𝐽𝐽𝑖𝑖 and 

misclassification probabilities reflecting the misclassification probabilities for cause of death in the 

application described in the main paper. When 𝐽𝐽𝑖𝑖 = 1, 𝐽𝐽𝑖𝑖′ was drawn from a Bernoulli distribution with 

probability equal to the sensitivity. When 𝐽𝐽𝑖𝑖 = 0, 𝐽𝐽𝑖𝑖′ was drawn from a Bernoulli distribution with 

probability 1 − specificity. The parametric g-formula was used to estimate the difference in the risk of 

death due to 𝐽𝐽 = 1 under exposure plans 𝑥𝑥 = 1 and 𝑥𝑥 = 0. We assessed the performance of the 

proposed approach under a range of values for sensitivity and specificity, assuming that sensitivity and 

specificity were known. Specifically, we compared bias in the risk difference, standard deviation of the 

bias, and mean squared error between the standard g-formula approach and the modified g-formula 

approach under a range of scenarios. Bias was defined as 100 times the average of the estimated risk 

difference from simulation 𝑘𝑘 minus the true risk difference, or 100 × 𝐸𝐸[𝑅𝑅𝐴𝐴𝑘𝑘� − 𝑅𝑅𝐴𝐴]. Mean squared 

error was defined as the squared bias plus the squared standard deviation of the bias. 
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Web Figure 1. Full sensitivity analysis graphical results 
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