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Fig. S1. Summary of LFP and multiple single-neuron recording sites in BF. Colored circles 

depict different animals. Black rings depict recordings made in left hemisphere. 
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Table S1. Phase-locking strengths do not correlate with burstiness or firing rate. For each 

frequency band, a correlation (Pearson’s) is taken between the phase-locking resultant vectors 

and burstiness (top row) or firing rates (bottom row) for all neurons (N=780). R and P values are 

shown for each frequency band.  

Theta Beta	 Gamma Hi-gamma

Burstiness	

(ISI1-50/ISI51-
250)
Mean	
Rate R=-.04,	p=.23 R=-.01,	p=	.89 *	R=-.08,	p=.02 R=-.06,	p=.08

R=.04,	p=.29 R=-.05,	p	=.18 R=-.06,	p=.12 R=-.05,	p=.16

Supplementary Table 1 



 
 

 
Table S2. Phase-locking resultants do not correlate with task phase–specific firing or 

power/rate correlations. (A) Three groups of neurons when clustering (K-means) was 

performed on power/rate correlations (Fig. 3F right column). No group of neurons had a 

distribution of phase-locking resultant vectors that was significantly different from a randomly 

selected equal number of neurons (B) Three groups of neurons when clustering (K-means) was 

performed on task-phase specific firing patterns (Fig. 3F left column). No group of neurons had 

a distribution of phase-locking resultant vectors that was significantly different from a randomly 

selected equal number of neurons.  
A

Theta Beta Gamma Hi-gamma
Cluster	1	
(N=388) P=.54 P=.84 P=.98 P=.72

Cluster	2	
(N=138) P=.12 P=.70 P=.28 P=.27

Cluster	3	
(N=254) P=.69 P=.56 P=.18 P=.80

B
Theta Beta Gamma Hi-gamma

Cluster	1	
(N=263) P=.80 P=.38 P=.80 P=.68

Cluster	2	
(N=262) P=.99 P=.98 P=.52 P=.92

Cluster	3	
(N=255) P=.73 P=.95 P=.12 P=.20

Categorized	by	rate/power	correlation

Categorized	by	mean	rate	over	task	phases

Supplementary Table 2 
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