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Supplementary Methods. 

Coarse-grained model of PLLA-b-PEG at the curved interface 

Experimentally, the molecular weight (𝑀𝑤) of PLLA-b-PEG corresponds to 6000-5000 g 

mol-1. The repeat unit of PEG is -[O-CH2-CH2]n-, with a 𝑀𝑤 of 44 𝑔 𝑚𝑜𝑙−1. This gives rise to 

the monomer size of 0.35 𝑛𝑚 and the degree of polymerization (DP) of 113. Similarly, the 

PLLA has repeat unit of -[O-CH(CH3)-CO]n-, with the 𝑀𝑤 = 72 𝑔 𝑚𝑜𝑙−1 and DP=83. The 

monomer size of PLLA is similar to that of PEG due to the same number of atoms along the 

backbone of molecule.  

In our simulation, we choose 3 repeat units as a monomer, which generates the monomer 

size of 1.05 𝑛𝑚, closing to that of the Kuhn segment. With this coarse-grained procedure, the 

experimental PLLA-b-PEG is modelled as a diblock copolymer𝐴38𝐵28, with 𝐴 and 𝐵 correspond 

to the PEG and PLLA monomers. The total monomer number is  𝑁 = 38 + 28 = 66. Here we 

ignore the slight volume difference between the PEG and PLLA monomers, and set each 

monomer size as 𝑏0 = 1.0 𝑛𝑚. 

We use the lattice mode 1 to study the crystallization of PLLA-b-PEG molecule on the 

curved liquid-liquid interface. In experiment, the diameter of the formed droplet is around 200 

nm. To fully model this droplet and also the phase separation of PLLA-b-PEG on the droplet 

surface, the length of required system box can be estimated as (200 + 38 × 2) 𝑛𝑚 = 276𝑛𝑚, 

giving rise to a system size of  276 × 276 × 276 = 21024576, about 21 million grid sites. This 

is too large to be captured by our simulation.   

Here we choose a smaller system of 101 × 101 × 100 sites, with the periodic conditions 

in x, y, and z axis. As each monomer of PLLA-b-PEG chain is located on one lattice site, the 

lattice spacing is naturally equal to the bond length of b0=1.0 nm. Thus the system size 

corresponds to the real system of  100 × 100 × 99 𝑛𝑚3. We set the center of the droplet sphere 

at 𝑟𝑑𝑟𝑜𝑝𝑙𝑒𝑡 = (51, 51, −45) (note: this point is not in the simulation box, only used to define the 

curved interface), and the maximum point along z axis of the curved interface is 𝐴 =

(51, 51,55). We define the curved surface as 𝑆(𝑥, 𝑦), other points on the spherical droplet 

surface can be calculated according to the 𝑟𝑑𝑟𝑜𝑝𝑙𝑒𝑡, 𝐴 and also the droplet radius 𝑅𝑑𝑟𝑜𝑝𝑙𝑒𝑡 =

100𝑛𝑚. We also choose a plane at 𝑧(𝑥, 𝑦) = 44, where the droplet surface is lower than 



the 𝑧(𝑥, 𝑦) = 44, the curved surface is replaced by this plane. This avoids the defects at 

boundaries in 𝑥 and 𝑦 directions when the periodic boundary conditions are employed.  

As in our lattice model, the curved plane has a total area of 100 × 100 𝑛𝑚2 (here it 

should be noted that the real curved surface always holds a larger surface area. However, in our 

cubic lattice, the total lattice sites crossing the curved and planar interfaces are the same, thus we 

still use the planar area to calculate the total number of chains). The grafting density of chain 

molecules in experiment is 0.3chains nm−2, then we obtain the total chain number on the curved 

interface as 𝑛 = 3000.  

The motion of polymer chains is generated through a micro-relaxation model,1 which 

allows each segment to change positions with its neighboring solvent sites, accompanied by the 

sliding diffusion2 along the chain direction if necessary. Conventional metropolis sampling was 

employed in each micro-relaxation step with the potential energy change: 
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Here 𝐸𝑐 is the bending energy for two adjacent bonds connected along the chain and 𝑐 is 

the total number of non-collinear connected bond pairs along the chain. 𝐸𝑝 represents an excess 

energy between the nonparallel and parallel packing bonds within the nearest neighboring sites. 

This driving force for polymer crystallization is only valid for PLLA blocks in our model. 𝑘𝐵 is 

the Boltzmann constant and 𝑇 is the temperature. Here 𝐵0and 𝐵3 correspond to the repulsion 

between PEG-PLLA and toluene-water, and 𝐵1and 𝐵2 refers to the repulsion between PEG-

toluene and PLLA-water. We consider the interactions between PEG-water and PLLA-toluene as 

0, indicating the athermal solvent condition. The factors 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏𝑝 are the total number 

of corresponding contact pairs. In our simulation, we choose 𝐵0 𝐸𝑐 = 𝐵1 𝐸𝑐 =⁄ 𝐵2 𝐸𝑐 =⁄ 3.0⁄  to 

show the strong repulsion between the hydrophobic and hydrophilic components. A higher 

magnitude of the repulsion between two solvents (toluene-water) is chosen as 𝐵3 𝐸𝑐⁄ = 5.0. The 

driving force of polymer crystallization is set as 𝐸𝑝 𝐸𝑐 = 1.0⁄ ,  which is only valid for the PLLA 

block. The reduced temperature is set as 𝑘𝐵𝑇 𝐸𝑐⁄ = 3.6 in the simulation.    

In our simulation, these chains are randomly generated on the curved interface, with the 

PLLA in the inner and PEG at the outer region. Then the chains are relaxed at 𝑘𝐵𝑇 𝐸𝑐⁄ = 3.6 for 



40000 MCS to obtain the initial state of PLLA-b-PEG, see snapshot in Figure 4a in the main 

text.  

 

Additional BCC Permeability tests  

5-Carboxyfluorescein was purchased from Sigma Aldrich. Succinimidyl 6-(N-(7-

nitrobenz-2- oxa-1,3-diazol-4-yl)amino)hexanoate (NBD-X, NHS ester, or NBD-X, SE) was 

purchased from AnaSpec . 1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocy amine perchlorate 

(DiD oil) was purchased from Life Technologies. All materials were used as received. 

We further investigated the release of dye through BCC using a NBD-based system. We 

chose the organic soluble dye N-hydroxysuccinimide (NHS) ester form NBD-X, SE which can 

readily hydrolyze to water soluble NBD-X.3, 4 In our experiment, we prepared NBD-X SE-

encapsulated BCCs following our crystallization method.  After crystallization for 5-7 days, the 

BCC solution was washed with Amicon ultra centrifugal filter units (MWCO 100kDa). The 

encapsulated NBD-dye can be dissolved in water due to hydrolysis, which was confirmed by 

breaking the BCCs using sonication, and measuring the NBD fluorescence intensity of water 

after removing broken BCC crystals using centrifugation.   

To test NBD dye release from BCCs to water, one ml of the above mentioned BCC solution 

was incubated in water for 1 day, and then filtered with the Amicon tube. Filtered solution was 

collected in a vial. Concentrated NBD-containing BCC solution was recovered to 1 ml by adding 

DI water. This process was repeated for 5 times (one day for each incubation) to study NBD release 

from BCC to water. At every time point, NBD fluorescent intensity at 535 nm was measured with 

an excitation at 465 nm and was used to quantify the release of NBD from BCCs. Blank BCC 

aqueous solution was used as the background signal. After finishing the release experiment, the 

BCC solution was sonicated by a probe sonicator (Fisher Sonic Dismembrator; 40% amplitude, 5 

mins, pulse: 1 s on and 1 s off) to break BCCs. The NBD-X fluorescent intensity of the water after 

removing broken BCC crystals using centrifugation was used as the 100% control.  Three samples 

were performed for each time point and the average results and standard deviation are reported. 

To quantify hydrophilic dye intake, 2mg PLLA-b-PEG BCCs were incubated with aqueous 

solution of a hydrophilic dye 5-carboxyfluorescein at a concentration of 0.5 mg/ml for 24 h. The 

fluorescence emission spectrum of the BCC solution was then measured with an excitation 

wavelength of 480 nm, to determine the BCC dye intake. 



Gas chromatography measurements.  

A Perkin Elmer Clarus 500 Gas Chromatograph/Mass Spectrometer (GC-MS) was 

utilized with a Phenomenex Zebron ZB-5MSi (5% methyl phenyl silicone, 30 m x 0.25 mm) 

column. The column oven temperature was held at 70 oC for 2 min, then increased to 230 oC at a 

rate of 20 oC min-1 and held for 2 min. The injector port temperature was set to 250oC. The 

carrier gas was helium with a flow rate of 1 mL min-1. The ionization energy was set to 70 eV. 

The mass spectra were recorded from 40 to 100 m/z at 0.2s scan intervals. GC-MS conditions 

were adapted from reference.5 The total run time was 12 min, with the first 5 minutes being 

analyzed once the toluene elution time (~2.4 minutes) was determined. To prepare standards and 

samples, toluene standards were prepared in methanol (HPLC grade) by preparing a 1000 ppm 

stock standard (57.7 L toluene in 50 mL methanol). Dilutions were prepared directly into GC 

vials to obtain standards with toluene concentrations of 0, 10, 50, 100, and 500 ppm. The total 

volume in the GC vials was 1 mL. The vials were vortexed before analysis to ensure 

homogenous mixing. The two samples analyzed were the final BCP crystalsome solutions (2 mg 

mL-1 in water) as described with and without the dye added.  



Supplementary Figures.  

 

Supplementary Figure 1. PLLA-b-PEG BCC size distribution in water and in NaCl 0.09 wt. % 

aqueous solution as measured by dynamic light scattering (DLS). 

 

  



 

 

Supplementary Figure 2. AFM height images of PLLA-b-PEG BCC. (a) Before and (b) After 

the nano-indentation test. Scale bars are 100 nm. 

  



 

 

 

Supplementary Figure 3. An AFM height image with corresponding height profile of a PLLA-

b-PEG polymer single crystal grown from its 0.05 wt% toluene solution. Scale bar is 2 um. The 

thickness is 11.1 ± 0.2 nm (mean ± s.d., n=10). 

  



 

Supplementary Note 1 

Calculation of PLLA chain folding number and PEG grafting density 

 

Supplementary Figure 4. ab and ac projection of crystal structure of 103 conformation α-form 

PLLA.6 Reprinted with permission from (Sasaki, S. & Asakura, T. Helix distortion and crystal 

structure of the α-form of poly (l-lactide). Macromolecules 36, 8385-8390, (2003)). Copyright 

(2003) American Chemical Society. 

PLLA segment has a Mn = 6000 g mol-1 and degree of polymerization (DP) = 83. For a 

2.5 nm thick PLLA, the folding number can be calculated based on: 

𝑁 =
𝐷𝑃

10
×𝑐

𝑡
     (2) 

Where DP is the degree of polymerization, 10 corresponds to the polymer chain 103 

helical conformation (Supplementary Figure 4), c is the unit cell parameter and t is the crystal 

thickness. Therefore, 𝑁 =
83

10
×2.888

2.5
− 1 = 9, indicating each PLLA chain folds 9 times and has 10 

stems, indicating that there is a PEG chain every 10 stems of PLLA. According to the ab 

projection of PLLA crystal, there are 2 stems in one unit cell. So each stem occupies an area 𝑆 =

1.066×0.616

2
 = 0.328 nm2 and each PEG occupies SPEG=10× 𝑆= 3.28 nm2. Therefore, the PEG 

neighboring chain distance D can be estimated to be D = (SPEG) 0.5 = 1.81 nm and PEG grafting 

density 𝜎 =
1

0.328𝑛𝑚2×10
= 0.3 nm-2. 

 



Supplementary Note 2 

Monte-Carlo simulation 

Time scale 

 

Supplementary Figure 5. Time evolution of mean-square displacements of monomers, g1(t), 

and center of mass for polymers,  g3(t) as a function of time t (in unit of Monte Carlo steps) at 

monomer concentration c=0.6 and  𝑘𝐵𝑇 𝐸𝑐⁄ = 3.0. Inset equations show the self-diffusion 

coefficient D, the square of end-to-end distance R2
e, and the longest single-chain relaxation 

time,τ, obtained from the simulation results. 

Here we set the time unit from a controlled simulation of the homopolymer PLLA with 

chain length 𝑁 = 28 at the monomer concentration 𝑐 = 0.6. The characteristic time of this 

system is a good indicator for studying the time evolution of nucleation of PLLA nuclei/crystals 

near the liquid-liquid interface.  We choose the system size of 30 × 30 × 30, with the periodic 

conditions in x, y, and z axis, and the simulation is performed at reduced temperature of  

𝑘𝐵𝑇 𝐸𝑐⁄ = 3.0. Each monomer sits on one lattice and unoccupied lattices are the athermal 

solvents. Supplementary Figure 5 shows the mean-square displacements of monomers, 𝑔1(𝑡), 

and that of polymer's center of mass, 𝑔3(𝑡).7 We estimate the self-diffusion coefficient, 𝐷 =

lim
𝑡→∞

𝑔3(𝑡) 6𝑡⁄ = 0.01457, in unit of  𝑛𝑚2 𝑀𝐶𝑆⁄ '. The square of end-to-end distance is 

calculated from the equilibrium configurations of all the chains, 𝑅𝑒
2 = 50.437 𝑛𝑚2. Thus we can 

obtain the longest single-chain relaxation time, 𝜏 = 𝑅𝑒
2 𝐷⁄ = 3462𝑀𝐶𝑆. In the following, we 

choose 𝜏 as the time unit for all the discussions.  



 

Time evolution of the average precursor/nucleus/crystal number and size 

 

Supplementary Figure 6. Time evolution of the average number 〈𝑁𝑛𝑢𝑐𝑙𝑒𝑢𝑠〉  (black, left axis) 

and average radius  〈𝑅𝑛𝑢𝑐𝑙𝑒𝑢𝑠〉 (blue, right axis) of the precursors/nuclei/crystals. The average is 

taken from 24 independent simulations. 

 

In this section we study the time evolution of the average number 〈𝑁𝑛𝑢𝑐𝑙𝑒𝑢𝑠〉 and average 

size 〈𝑅𝑛𝑢𝑐𝑙𝑒𝑢𝑠〉 of the crystal nucleus.  Here the nucleus is defined as once 3 PLLA bond vectors 

are parallel to each other in the nearest neighbouring sites. The average is taken from 24 

independent simulations. The size of nucleus 𝑖 can be characterize by the radius of a virtual 

sphere:  𝑅(𝑟𝑖) = √3𝑁𝑖𝑏0
3 4𝜋⁄

3
, here 𝑁𝑖 and 𝑟𝑖are the monomer number and center of mass (CM) 

of nucleus  𝑖, and 𝑏0
3 = 1.0 𝑛𝑚3 is the volume of one monomer. Normally the nucleus is not a 

perfect sphere, and  𝑅(𝑟𝑖) does not correspond to the real radius of nucleus. However, if we could 

consider the nucleus as a virtual sphere, then 𝑅(𝑟𝑖) becomes a good quantity to characterize the 

nucleus growth when a few monomers are adsorbed to the nucleus  𝑖. We also use the volume 

𝑉(𝑟𝑖) = 𝑁𝑖𝑏0
3 to characterize the nucleus size, the results, such as the average size and its radial 

distributions, are qualitatively same.   

Supplementary Figure 6 shows the time evolution of the average number 〈𝑁𝑛𝑢𝑐𝑙𝑒𝑢𝑠〉 

(black curve, left y axis) and the average radius  〈𝑅𝑛𝑢𝑐𝑙𝑒𝑢𝑠〉  (blue curve, right y axis) of the 

formed nucleus. One can find that the average nucleus number experiences difference stages: at 

the very early stage 0 <  𝑡 < 1.0𝜏, the number of nucleus increases rapidly, while the average 

nucleus size increases very slowly. This implies that the nucleus formed in this stage does not 

grow, which can termed as precursors. Subsequently, the nucleus number decreases during 



1.0𝜏 <  𝑡 < 30.0𝜏, while the average nucleus size gradually increases. This behavior is similar to 

an Ostwald rippening process,8, 9 during which the small nucleus dissolves and the materials are 

absorbed by the growing large nucleus. After  𝑡 = 30.0𝜏, the average nucleus number reduces to 

around 1, indicating only one nucleus left in the system. In this stage, the nucleus becomes a 

single crystal. To simplify the discussion, we use the term “nucleus” to characterize the 

crystallized clusters during all the 3 stages. 

The whole process is a typical nucleation process. To understand whether the nucleus 

grow from the liquid-liquid interface or from other positions, we study the radial distributions of 

the average nucleus size, nucleus number, and average orientations in the following sections. 

Definition of radial distribution of average nucleus size 

We calculate the radial distribution of average nucleus size as:  

〈𝑅𝑛𝑢𝑐𝑙𝑒𝑢𝑠(𝑑)〉 =
∑ 𝑅(𝑟𝑖)𝛿(|𝑟𝑖−𝑟𝑑𝑟𝑜𝑝𝑙𝑜𝑒𝑡|−𝑑)

𝑁𝑛𝑢𝑐𝑙𝑒𝑢𝑠
𝑖

∑ 𝛿(|𝑟𝑖−𝑟𝑑𝑟𝑜𝑝𝑙𝑜𝑒𝑡|−𝑑)
𝑁𝑛𝑢𝑐𝑙𝑒𝑢𝑠
𝑖

          (3) 

Here  𝑟𝑑𝑟𝑜𝑝𝑙𝑜𝑒𝑡 is the position of the droplet center, 𝑑 is the distance between the CM of nucleus 𝑖 

(see next subsection) and droplet center.  The radial distributions of 〈𝑅𝑛𝑢𝑐𝑙𝑒𝑢𝑠(𝑑)〉 at different 

time 𝑡 are shown in Figure 4b in the main text.  

  



Radial distributions of the nucleus number 

 

Supplementary Figure 7. Radial distribution of nucleus number at different time  𝑡 =
0.1𝜏, 1.0𝜏, 2.0𝜏, 3.0𝜏, 4.0𝜏 and 5.0𝜏. Dashed blue line indicates the radial PLLA monomer 

density before crystallization.  

Here we calculate the radial distribution of the nucleus number at difference time. The 

position of nucleus 𝑖 is defined by its center of mass: 𝑟𝑖 = ∑ 𝑟𝑗 𝑁𝑖⁄𝑁𝑖
𝑖 , here 𝑁𝑖 is the total number 

of monomers in nucleus 𝑖 and 𝑟𝑗 is the position of monomer  𝑗 belonging to nucleus 𝑖. The radial 

distribution of nucleus number is calculated by:   

𝑃(𝑑) =
∑ 𝛿(|𝑟𝑖−𝑟𝑑𝑟𝑜𝑝𝑙𝑜𝑒𝑡|−𝑑)

𝑁𝑛𝑢𝑐𝑙𝑒𝑢𝑠
𝑖

𝑁𝑛𝑢𝑐𝑙𝑒𝑢𝑠
       (4) 

here 𝑁𝑛𝑢𝑐𝑙𝑒𝑢𝑠 is the total nucleus number in the system. Supplementary Figure 7 shows the radial 

distribution of 𝑃(𝑑) at different time 𝑡. As the droplet radius is 100 nm, and the block junctions 

of PEG-PLLA are located at the droplet surface, thus 𝑑 = 100𝑛𝑚 indicate the interface between 

PEG and PLLA. One can find that the nuclei are accumulated near the interface and its radial 

distributions are insensitive to time 𝑡. This is mainly attributed to the average radial density of 

PLLA monomers, see the dashed line in Supplementary Figure 7.  

Radial distributions of the average nucleus orientations 

To understand why the nuclei do not grow from the interface, we study the radial 

distribution of average nucleus orientations. To do so, we first need to quantitatively characterize 

the orientation of one single nucleus 𝑖, which can be obtained by defining the following 

orientation order parameter  



𝛼(𝑟𝑖) = 〈
3 cos2 𝜃𝑖−1

2
〉    (5) 

Where 𝜃 is the angle between the vector of crystallized bonds 𝑟𝑖+1 − 𝑟𝑖 and that of z axis. 

If the crystallized bond becomes parallel to the z axis, 𝜃 = 0 gives rise to 𝛼(𝑟𝑖) = 1. However, if 

the crystallized bond is vertical to the z axis, 𝜃 = 𝜋 2⁄  and  𝛼(𝑟𝑖) = −0.5. In our lattice model, 

the angle 𝜃 between the crystallized nuclei and z axis could be 0, 𝜋 4⁄ , 𝜋 2⁄  , 3𝜋 4⁄ , 𝜋, thus the 

𝛼(𝑟𝑖) takes the values of −0.5, 0.25, 1.0. Statistically, the nuclei has no preferred orientations 

means that the probability of 𝛼(𝑟𝑖) = −0.5, 0.25, and 1.0 is equal, thus 〈𝛼(𝑟𝑖)〉 = (−0.5 +

0.25 + 1.0)/3 = 0.25, see the dashed cyan line in inset of Figure 4b in the main text. 

The radial distribution of average nucleus orientation can be calculated as:  

〈𝛼𝑛𝑢𝑐𝑙𝑒𝑢𝑠(𝑑)〉 =
∑ 𝛼(𝑟𝑖)𝛿(|𝑟𝑖−𝑟𝑑𝑟𝑜𝑝𝑙𝑜𝑒𝑡|−𝑑)

𝑁𝑛𝑢𝑐𝑙𝑒𝑢𝑠
𝑖

∑ 𝛿(|𝑟𝑖−𝑟𝑑𝑟𝑜𝑝𝑙𝑜𝑒𝑡|−𝑑)
𝑁𝑛𝑢𝑐𝑙𝑒𝑢𝑠
𝑖

       (6) 

Inset of Figure 4b in the main text shows the radial distribution of 〈𝛼𝑛𝑢𝑐𝑙𝑒𝑢𝑠(𝑑)〉 at different time 

𝑡. One can see that near the interface 𝑑 ≅ 98𝑛𝑚, the 〈𝛼𝑛𝑢𝑐𝑙𝑒𝑢𝑠(𝑑)〉 ≅ 0.25, indicating that the 

there are no preferred orientations for the nuclei. However, at 𝑑 ≅ 95 𝑛𝑚, the 〈𝛼𝑛𝑢𝑐𝑙𝑒𝑢𝑠(𝑑)〉 ≅

0.5, implying that the nuclei are preferred to be parallel to the z axis. When 𝑑 < 95𝑛𝑚, the 

〈𝛼𝑛𝑢𝑐𝑙𝑒𝑢𝑠(𝑑)〉 decreases again, which can be attributed to the random coil trend of the PLLA 

chains due to the lower monomer densities (see Supplementary Figure 7).  

 

Supplementary Note 3 

Calculation of bending modulus of PLLA-b-PEG BCCs. 

By linear fitting the deformation portion of the AFM curve (Figure 3c in the main text), 

the slope of the fitted line corresponds to the shell stiffness kshell.  

The equation relating the stiffness kshell with Young’s modulus E has been derived in the 

classical shell theory:10, 11 

       (7) 
)1(3

4

2

2

−
=

R

Eh
kshell



Where h is the shell thickness, ν is the Poisson ratio and R is the curvature radius of the 

crystalsome’s spherical cap which can be calculated from the AFM measurements of its 

width W and height H, 

       (8) 

The corresponding membrane-bending modulus Kbend can be further calculated: 

    (9) 

For the calculation of dry state BCCs, the shell thickness h was measured from broken 

shell pieces, which is 4.5 nm. A Poisson ratio a value of ν = 0.33 was used,12 and the curvature 

radius was calculated to be 325 nm (eq. 8). The calculated stiffness obtained is 1.75 N/m (std. 

0.08N/m, n = 14). The Young’s modulus of the PLLA-b-PEG shell is approximately 11.5 GPa 

(eq. 7), which represents the materials’ crystalline nature in such a bilayer composites structure. 

The membrane bending modulus of the BCC shown in Supplementary Figure 3 in dry state can 

therefore be determined to be 9.80 × 10-17 J  (eq. 9).  

For the calculation of BCC bending modulus in water, the shell thickness h of 2.5 nm was 

used since PEG layer is solvated. There is also approximately 1% water absorbed by PLLA,13 

however water uptake of PLLA will not significantly change the Young’s modulus according to a 

previously report.14 Correspondingly, the Young’s modulus of PLLA can be estimated using:  

EPLLA=Ecrystal *Xc+ Eamorphous*(1-Xc)                  (10) 

Where Ecrystal the theoretical Young’s modulus of pure PLLA crystal along its chain 

direction, Xc is the crystallinity and Eamorphous is the Young’s modulus of amorphous PLLA. 

Respectively, using 0.67, 36 Gpa and 4 Gpa for Xc, Ecrystal and Eamouphous.
15 the EPLLA = 25.4 Gpa 

is calculated. Moreover, based on equation 3 the bending modulus in water can be estimated to 

be Kbend,wet = 3.63×10-17 J. Another method of estimation is using the previous obtained dry 

modulus of PLLA-b-PEG shell (11.5 GPa) as the PLLA shell modulus in the aqueous state, 

leading to Kbend,wet = 1.64×10-17 J. Bending moduli obtained from both methods are consistent 

with each other. 
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Supplementary Discussion. 

Additional BCC Permeability tests. 

 

 

Supplementary Figure 8. DiD release test. In vitro fluorescence decay of DiD dye 

encapsulated in BCCs over 5 days. Error bars represent standard deviation, n=3. 

  



 

 

Supplementary Figure 9. Release profile of NBD dye from BCCs. Error bars represent standard 

deviation, n=3. 

 

Supplementary Figure 9 showed that 1.7 % of NBD was released from the BCCs after 1 

day. Each day, similarly small amount of NBD was slowly released. After 5 days, the cumulative 

release is 8.3 %. Based on this result, we can conclude that the BCCs have relatively low 

permeability to hydrophilic NBD-X. 

 

  



 

 

 

Supplementary Figure 10. Hydrophilic dye intake. Fluorescent emission of BCC after 24 h 

incubation with 5-carboxyfluorescein and after further wash.  

A fluorescent emission peak at ~ 530 nm can be assigned to 5-carboxyfluorescein 

(Supplementary Figure S10). Subsequently, BCCs were collected using Amicon ultra centrifugal 

filter units (MWCO 100kDa), and re-suspended in DI water. The BCC sample after 

incubation/washing showed little fluorescent emission (Supplementary Figure S10, blue line), 

indicating that the hydrophilic 5-carboxyfluorescein was not able to diffuse into BCC.  

 

 

 

 

 

 

 

 

 



Crystallization time effect on BCC structure  

 

 

Supplementary Figure 11. (a) PLLA-b-PEG crystalsome size distribution in 0.09 wt. % NaCl 

aqueous solution after different time of crystallization, as measured by DLS. (b) Differential 

scanning calorimetry thermogram of PLLA-b-PEG BCCs of different crystallization times 

(endotherm down). Scanning electron microscopy images of BCCs (c) after 3 days of 

crystallization and (d) after 5 days of crystallization. Scale bars in (c) and (d) are 1 um. 

 

  



Gas chromatography results  

 

Supplementary Figure 12. Mass spectra recorded during toluene elution interval. Inset shows 

calibration curve from toluene standard series prepared. 

  



 

 

Supplementary Figure 13. Chromatographs of toluene standard series, methanol blank, and 

BCP crystalsome samples. 

Proper column chemistry and GC-MS conditions are confirmed by excellent toluene peak 

shape, no tailing or smearing. The toluene peak was confirmed by matching the mass spectra 

recorded during the elution time of the 2.4min peak to toluene spectra from the Perkin Elmer 

mass spectra library. A representative mass spectra of the 500ppm standard is shown in 

Supplementary Figure 12. The methanol blank identifies that utilizing this solvent does not 

influence the toluene peak due to no peak overlap, Supplementary Figure 13. Accurate 

quantitation of toluene in the samples from 0-500 ppm is achievable with this method as seen by 

the very good linearity (R2=0.99997) of the calibration curve, inset Supplementary Figure 12.  

The chromatographs, Supplementary Figure 13, show no detectable amount of toluene in 

either BCP crystalsome sample. Analysis of the mass spectra from the toluene elution interval in 

the samples showed no detectable toluene mass spectrum. From this it can be concluded that the 

samples contain no quantifiable amount of toluene that would limit their use in vivo. 
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