
Substrate-Specific Differential Gene Expression and RNA editing in the Brown Rot 
Fungus Fomitopsis pinicola 
 
Baojun Wua, Jill Gaskellb, Benjamin W. Heldc, Cristina Toapantac, Thu Vuongd, Steven Ahrendte,f, 
Anna Lipzene, Jiwei Zhangg, Jonathan S. Schillingg, Emma Masterd, Igor V. Grigorieve,f, Robert 
A. Blanchettec, Dan Cullenb, David S. Hibbetta# 
 
aBiology Department, Clark University, Worcester MA, USA 
bUSDA Forest Products Laboratory, Madison, WI, USA 
cDepartment of Plant Pathology, University of Minnesota, St. Paul MN, USA 
dDepartment of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto 
ON, Candada 
eDepartment of Energy Joint Genome Institute, Walnut Creek CA, USA 
fDepartment of Plant and Microbial Biology, University of California, Berkeley CA, USA 
gDepartment of Plant and Microbial Biology, University of Minnesota,  
St. Paul MN, USA 
 
SUPPLEMENTAL MATERIAL 
 
Time-of-Flight Secondary Ion Mass Spectometry (ToF-SIMS) 
 
Methods 
Positive ion ToF-SIMS spectra were obtained using a ToF-SIMS V instrument with a bismuth 
liquid metal ion source and a reflectron type mass analyzer (IONTOF GmbH, Münster, 
Germany). At least eight spectra were acquired for each sample, using 50 keV Bi3++ primary 
ions with a pulsed current of approximately 0.3 pA. Each spectrum covers a 500 x 500 μm area 
using 128 x 128 pixels in a random raster pattern. The cycle time is 100 μs and ion doses were 
kept below 1 x 1012 ions/cm2 to limit sample damage. Low-energy electron flooding (20 eV) was 
used to charge compensation. Ion spectra were calibrated to CH3

+, C2H3
+ and C3H5

+ ions using 
SurfaceLab v.6 software.  

Principal component analysis (PCA) was performed using Matlab R2014a (The 
Mathworks Inc., Massachusetts, USA) with PLS Toolbox v.7 (Eigenvector Research Inc., 
Washington, USA). ToF-SIMS spectra were preprocessed by first normalizing peak intensities 
to the total ion intensity to eliminate the influence of overall intensity changes that might arise 
from topography or variations in instrumental setup, and then by mean centering so that all 
principal components described variations from the data set mean.   
 
Results 
To directly investigate fungal action on pine and spruce, residual wood wafers after F. pinicola 
treatments were recovered at day 10 and day 30, and analyzed by ToF-SIMS. Peaks 
corresponding to protein, extractives, lignin and polysaccharides (1, 2) were extracted from 
spectra, and their intensities between wood treatments were compared using principal 
component analysis (PCA). The fungal treated wood samples, both day 10 and day 30, were 
separated from the corresponding controls by protein-specific peaks (Fig. S3), revealing the 
presence of proteins and enzymes on the surface of treated wood samples. Another major 
difference between the treated samples and the controls was the depletion of extractive peaks 
in the treated samples (Fig. S3). A closer look at PCA loadings also indicated the removal of 
generic aromatic peaks at 65 Da and 77 Da (Fig. S3). These modifications are in agreement 
with one of the functional roles of P450s in the degradation of complex wood extractives (3-5). 



Some levels of polysaccharide degradation, particularly in pine, were observed: The extractive 
peak of 43 Da, which was also ascribed to acetyl groups, probably from hemicellulose 
degradation (6), was depleted much more in treated pine. Two polysaccharide peaks, at 99 and 
113 Da, were slightly depleted in treated pine, supporting polysaccharide modifications in pine.  
 
Supplemental figures 
 
Figure S1. Hierarchical clustering of RNA-seq samples from three different substrates in 
submerged culture at day 5. Gene expression profiles were clustered using normalized counts 
of gene expression (FPKM). 
 
Figure S2. Comparison of RNAseq and qRTPCR for two differentially regulated genes. Primers 
for peptidase (Protein ID Fompi_1113467) and thaumatin (Fompi_110401) amplification flanked 
introns yielding cDNA/gDNA amplicons of 461/627nt and 214/320nt, respectively. Poly(A) RNA 
was reverse transcribed with GoScript (Promega, Madison, WI) and qRT-PCR performed as 
described [(7-11) reviewed in (12)]. Poly(A) RNA was isolated by magnetic capture using oligo 
(dT)25 Dynabeads (Oslo, Norway) as recommended by the manufacturer, and equivalency 
between the genomic and cDNA amplicons were estimated using Syngene software 
(Cambridge, UK). Peptidase primers were 5’-GGCGAAGAGCGACGGGAACAAACT and 5’-
CCATCACCCGAGGCGAATAGAACA, and thaumatin primers were 5’ 
CACGGCCCCGCTGGACACCTA and 5’-CGCCGCAGCCATTACCCTCGTTA. 
 
Figure S3. PCA analysis of ToF-SIMS spectra obtained from residual spruce wafers (A, B) and 
pine wafers (C, D) after F. pinicola incubation. PCA scores (A, C) and loadings (B, D) show that 
the separation of treatment groups was explained by differences in protein and extractives ions. 
Score plots: D10 - day 10; D30 - day 30; blue - treated samples, red - control samples. Loadings 
plots: green circles - protein peaks; white diamonds - extractives peaks; red squares - 
polysaccharide peaks, and blue stars - lignin peaks. At least eight spectra were acquired for 
each sample. 
 
Figure S4. Distribution of RNA-editing loci and RNA-editing types at two time points (day 10 
and day 30) on two substrates (pine and spruce). 
 
Figure S5. Hierarchical clustering of RNA-seq samples from different substrates, time points 
and culture methods. The 5-day samples were from submerged culture, while the 10-day and 
30-day samples were from wood wafers. Gene expression profiles were clustered using the 
normalized counts of gene expression (FPKM). 
 
Supplemental tables 
 
Table S1. Transcriptome expression levels of all Fomitopsis pinicola genes after 5-day. 
submerged culture. 
 
Table S2. Position and type of all RNA editing events.  
 
Table S3.	Transcriptome expression levels of all Fomitopsis pinicola genes after 10-day and 30-
day wood wafer culture. 
 



Table S4. Distribution in relative proportion of wood-decay CAZymes, Redox enzyme and 
Cytochrome_P450. 
 
Table S5. Summary of mapping reads from each sample.  
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