Supporting Information for:

Designing Well-Structured Cyclic Pentapeptides Based on Sequence–Structure Relationships

Diana P. Slough,^{‡1} Sean M. McHugh,^{‡1} Ashleigh E. Cummings,¹ Peng Dai,² Bradley L. Pentelute,² Joshua A. Kritzer,¹ Yu-Shan Lin^{*1}

¹Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA

²Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

[‡]These authors contributed equally.

Figure S1. Populations of 16 turn combinations from simulations of cyclo- (X_1X_2AAA) of the S1 simulations. Results use cut-off turn analysis (see Materials and Methods for analysis details). Type I, I', II and II' β -turns are shown in red, orange, green and blue, respectively. Tight turns γ , γ' , α_R , and α_L are shown in cyan, magenta, purple and brown, respectively.

Figure S2. ¹H NMR spectrum of cyclo-(GNSRV) in H₂O:D₂O (90:10) at 288 K.

Figure S3. Fingerprint region of the 2D spectra for cyclo-(GNSRV). TOCSY peaks are shown in blue and ROESY peaks shown in red. 1D spectra correspond to the H_N region (**top**) and the H_α region (**left side**). The peptide was dissolved in $H_2O:D_2O$ (90:10) at a concentration of 3.5 mM at 288 K.

Figure S4. Full ${}^{1}\text{H}-{}^{1}\text{H}$ TOCSY spectrum of cyclo-(GNSRV) in H₂O:D₂O (90:10) at 288 K.

Figure S5. Full ¹H–¹H ROESY spectrum of cyclo-(GNSRV) in H₂O:D₂O (90:10) at 288 K.

Figure S6. Correlations between predicted structure and experimental data. Shown are a representative structure and Ramachandran plots for the most populated cluster from simulations of cyclo-(GNSRV). Type II' β -turns and α_R tight turns are shown in blue and purple, respectively. (**left**) Strong NOEs were observed between Asn²(H_N) and Ser³(H_N) and Arg⁴(H_N) and Val⁵(H_N). These are shown as black lines on the structure of cyclo-(GNSRV). (**right**) ϕ angles were estimated from *J*-values for Ser³, Arg⁴ and Val⁵. These are shown as solid vertical lines on the Ramachandran plot and are in agreement with the predicted structure.

Figure S7. ¹H NMR spectrum of cyclo-(GFDNV) in $H_2O:D_2O$ (90:10) at 288 K.

Figure S8. Fingerprint region of the 2D spectra for cyclo-(GFDNV). TOCSY peaks are shown in blue and ROESY peaks shown in red. 1D spectra correspond to the H_N region (**top**) and the H_α region (**left side**). The peptide was dissolved in $H_2O:D_2O$ (90:10) at a concentration of 3.5 mM at 288 K.

Figure S9. Full ¹H–¹H TOCSY spectrum of cyclo-(GFDNV) in H2O:D2O (90:10) at 288 K.

Figure S10. Full ¹H–¹H ROESY spectrum of cyclo-(GFDNV) in H₂O:D₂O (90:10) at 288 K.

cyclo-(GNSRV)

Figure S11. ¹H NMR spectra of H_N region for cyclo-(GNSRV) (**top**) and cyclo-(GFDNV) (**bottom**) in $H_2O:D_2O$ (90:10) at 288 K after NMR samples were incubated at room temperature for 6 weeks or longer. The spectrum for cyclo-(GFDNV) exhibits additional H_N peaks, which are highlighted in red boxes. These increased in volume over time before saturating at the peak volumes shown. The total volume of the highlighted peaks represents roughly 33% of the total peak volume in the amide region.

SUPPLEMENTARY TABLES

Table S1. Thermodynamics decomposition for cyclo-(GGGGG). Results use cut-off turn analysis (see Materials and Methods for analysis details). Type I, I', II and II' β -turns are shown in red, orange, green and blue, respectively. Tight turns γ , γ' , α_R , and α_L are shown in cyan, magenta, purple and brown, respectively. All thermodynamic terms are defined in the Materials and Methods. Populations and standard error of mean were calculated from the five neutral replicas of the S1 simulation.

		ΔG	ΔH	$-T\Delta S$	$\Delta H_{\mathrm{P}}^{\mathrm{vac}}$	$\Delta H_{\rm rest}$	$-T\Delta S_{\mathrm{P}}^{\mathrm{conf}}$	$-T\Delta S_{\rm W}$	50
GGGGGG	14.7 ± 0.6%	- 0.00	0.00	0.00 -	- 0.00	0.00 -	- 0.00	0.00	00
GGGGG	14.3 ± 0.4%	-0.09±0.04	-0.26±0.53	0.35±0.53-	-0.07±0.11	-0.20±0.62 -	0.35±0.29	-0.00±0.73	
GG GGG	6.4 ± 0.4%	-2.11±0.09	$1.69{\pm}1.03$	0.42±1.04	- 18.82±0.06	-17.13±1.07-	- 15.35±1.13	-14.92±1.32-	
GGGGG	6.2 ± 0.5%	-2.20±0.12	0.10±1.02	2.10±0.92-	- 19.01±0.28	-18.90±0.82-	- 16.28±1.29	-14.18±2.07-	25
GGGGGG	5.4 ± 0.2%	-2.51±0.07	2.94±1.71	-0.43±1.72	9.88±0.20	-6.94±1.66 -	- 23.36±0.76	-23.79±1.57-	20
GGG <mark>G</mark> G	4.9 ± 0.3%	-2.78±0.06	5.71±0.76	-2.93±0.80	9.88±0.12	-4.17±0.75 -	- 28.41±1.31	-31.34±1.04-	
GGGG G	2.6 ± 0.2%	-4.33±0.12	4.41±2.25	-0.09±2.24	4.43±0.27	-0.02±2.38 -	70.18±3.03	-70.27±3.39	mol
GG GGG	2.4 ± 0.2%	-4.51±0.14	$2.04{\pm}0.64$	2.46±0.68-	5.03±0.33	-2.98±0.78 -	77.00±4.44	-74.53±4.39	کر ک
GGGGGG	1.3 ± 0.2%	6.02±0.20	9.08±3.24	-3.06±3.18	0.09±0.28	8.99±3.20 -	160.30±13.72	-163.36±15.40	0
<mark>GG</mark> G <mark>G</mark> G	1.3 ± 0.2%	-6.20±0.21	9.65±3.80	-3.46±3.66	-0.11±0.52	9.76±3.46 -	171.59±14.29	-175.05±15.71	
GGGGGG	1.1 ± 0.1%	6.55±0.13	7.78±1.76	-1.23±1.82	1.71±0.43	6.07±1.90 -	194.34±8.78	-195.58±7.54	
GGGG G	1.0 ± 0.1%	-6.70±0.11	13.07±4.46	-6.36±4.41-	- 1.39±0.50	11.68±4.11 -	205.33±6.30	-211.69±9.53	25
GGGGGG	0.73 ± 0.03%	-7.53±0.09	20.55±5.21	-13.02±5.13	- 1.20±0.84	19.36±5.72 -	269.75±5.15	-282.78±9.71	-20
GGG GG	0.65 ± 0.1%	-7.85±0.23	18.07±1.98	-10.22±1.98	-4.25±0.30	22.32±2.03 -	308.90±18.94	-319.13±19.10	
GG GGG	0.65 ± 0.1%	-7.83±0.18	9.53±3.94	-1.69±3.83	- 1.46±0.46	8.07±3.88 -	299.28±11.92	-300.98±14.81	
GGG <mark>G</mark> G	0.56 ± 0.1%	8.18±0.19	13.89±2.58	-5.71±2.63	-4.05±0.50	17.94±2.42 -	336.85±16.93	-342.56±16.65	-50

		$\Delta H_{ m P}^{ m LJ}$ Δ	$H_{\rm P}^{{\rm EE}({ m SR}+1,4)}$	$^{4)}\Delta H_{ m P}^{ m bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dih.}$	$\Delta H_{\rm P}^{\rm imp.}$	$\Delta H_{\rm rest}^{\rm LJ}$	$\Delta H_{\rm rest}^{\rm EE(SR)}$	$\Delta H_{\rm rest}^{\rm EE(LR)}$
GGG <mark>G</mark> G	14.7 ± 0.6%	- 0.00	0.00	0.00	0.00	0.00	0.00 -	- 0.00	0.00	0.00
<mark>GG</mark> GGG	14.3 ± 0.4%	0.05±0.06	-0.01±0.06	0.00±0.06	0.08±0.09	-0.04±0.06	-0.05±0.01	-0.36±1.08	-0.62±0.96	0.07±0.06
<mark>GG</mark> GGG	6.4 ± 0.4%	3.65±0.07	12.60±0.05	-0.09±0.08	2.98±0.07	7.18±0.02	-0.20±0.05 -	-0.46±1.21	-14.77±1.95	-1.90±0.10
GGGGGG	6.2 ± 0.5%	3.68±0.07	12.78±0.17	0.00±0.10	2.96±0.13	7.17±0.05	-0.23±0.04 -	-3.82±1.17	-13.29±1.68	-1.80±0.14
<mark>GG</mark> GGG	5.4 ± 0.2%	0.82±0.10	6.76±0.13	-0.11±0.10	0.13±0.09	4.28±0.06	-0.36±0.03 -	-2.35±2.19	-2.86±3.53	-1.73±0.18
GGGGGG	4.9 ± 0.3%	0.80±0.02	6.84±0.19	-0.28±0.08	0.04±0.06	4.42±0.08	-0.36±0.02 -	-3.19±1.18	$0.65{\pm}1.58$	-1.62±0.04
GGGGG	2.6 ± 0.2%	0.16±0.07	-2.40±0.16	0.23±0.14	2.46±0.16	3.31±0.09	0.67±0.08	-1.26±2.09	-0.60±2.78	-0.68±0.13
GG GGG	2.4 ± 0.2%	0.16±0.12	-2.31±0.18	0.48±0.10	2.54±0.23	3.33±0.09	0.82±0.03	-2.98±2.34	$0.53{\pm}3.08$	-0.53±0.08-
GGGGGG	1.3 ± 0.2%	- 1.26±0.17	-8.81±0.58	-0.41±0.13	0.96±0.37	7.00±0.14	0.08±0.09	-1.26±3.17	10.23±5.12	-2.50±0.10
<mark>GG</mark> GGG	1.3 ± 0.2%	- 1.31±0.14	-8.96±0.36	-0.09±0.27	0.43±0.25	7.09±0.17	0.11±0.05	-3.33±3.92	8.33±7.11	-1.90±0.20
GGGGGG	1.1 ± 0.1%	1.15±0.18	-10.09±0.32	0.49±0.25	2.69±0.27	6.96±0.17	0.52±0.07	-0.53±4.28	8.70±4.01	-2.10±0.12
GGGGG	1.0 ± 0.1%	- 1.32±0.16	-10.45±0.28	0.12±0.23	2.90±0.37	6.90±0.16	0.59±0.10	-8.27±1.82	5.47±5.55	-2.06±0.39
GGGGGG	0.73 ± 0.03%	0.62±0.11	-13.59±0.64	0.31±0.26	3.72±0.13	10.45±0.24	0.93±0.09	-16.20±2.52	37.02±4.10	-1.47±0.42
<mark>GG</mark> GGG	0.65 ± 0.1%	0.77±0.14	-17.99±0.27	-0.22±0.20	1.17±0.20	11.77±0.12	0.26±0.02	-0.41±6.60	23.18±8.03	-0.45±0.27
GGGGG	0.65 ± 0.1%	0.06±0.16	-14.01±0.40	0.04±0.19	4.11±0.22	10.64±0.10	0.74±0.06	-4.23±5.02	13.68±7.28	-1.37±0.18-
GGG <mark>G</mark> G	0.56 ± 0.1%	0.86±0.23	-17.96±0.36	-0.04±0.25	1.13±0.46	11.61±0.19	0.35±0.04	2.27±5.96	16.27±7.86	-0.60±0.21-

Table S2. Thermodynamics decomposition for cyclo-(AAAAA). Type I, I', II and II' β -turns are shown in red, orange, green and blue, respectively and distorted β -turns are underlined. The tight turn α_R is shown in purple. All thermodynamic terms are defined in the Materials and Methods. Populations and standard error of mean were calculated from the five neutral replicas of the S1 simulation.

				ΔG	ΔH	$-T\Delta S$	$\Delta H_{\mathrm{P}}^{\mathrm{vac}}$	$\Delta H_{\rm rest}$	$-T\Delta S_{\mathrm{P}}^{\mathrm{cc}}$	$-T\Delta t$	$S_{\rm W}$ 40	
AAAAA	52.9	±	0.7%	- 0.00	0.00	0.00 -	- 0.00	0.00	- 0.00	0.00		
<u>AA</u> AAA	30.6	±	0.8%	- 1.36±0.05	0.18±1.27	1.19±1.28 -	38.66±0.09	-38.49±1.27	73.30±0.1	.2 4.49±1		
AAAAA	2.2	±	0.1%	7.96±0.09	-3.11±2.00	11.07±2.08 -	- 14.19±0.24	-17.31±2.09	9 - 147.64±5.	27 <mark>-136.57±</mark>	-3.88	
<u>AA</u> AAA	1.2	±	0.2%	9.51±0.21	-2.93±3.40	12.44±3.27 -	- 17.95±0.37	-20.88±3.21	279.74±21	.08 <mark>-267.30±</mark>	23.07	
					FF(CD + 1)	1)	1	2.0			ED(((D))	
				$\Delta H_{\rm P}^{\rm LJ} \Delta$	$H_{\rm P}^{\rm EE(SR+1)}$	$^{4)}\Delta H_{\mathrm{P}}^{\mathrm{bond}}$	$\Delta H_{\mathrm{P}}^{\mathrm{angle}}$	$\Delta H_{\rm P}^{\rm dih.}$	$\Delta H_{\rm P}^{\rm imp.}$	$\Delta H_{\rm rest}^{\rm LJ}$	$\Delta H_{\rm rest}^{\rm EE(SR)}$	$\Delta H_{\rm rest}^{\rm EE(LR)}$
AAAAA	52.9	±	0.7%	ΔH ^{LJ} _P Δ	0.00	⁴)∆H ^{bond} 0.00	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dih.}$	$\Delta H_{\rm P}^{\rm imp.}$	$\Delta H_{\rm rest}^{\rm LJ}$	$\Delta H_{\rm rest}^{\rm EE(SR)}$	$\Delta H_{\rm rest}^{\rm EE(LR)}$
AAAAA <u>AA</u> AAA	52.9 30.6	± ±	0.7% 0.8%	△H ^{LJ} _P △ - 0.00 7.14±0.02	0.00 34.66±0.08	⁴⁾ ∆H _P ^{bond} 0.00 -1.09±0.07	$\Delta H_{\rm P}^{\rm angle}$ 0.00 -0.85±0.05	∆H ^{dih.} 0.00 13.67±0.04	∆H ^{imp.} 0.00 - -0.59±0.01 -	△H ^{LJ} _{rest} - 0.00 - 0.48±0.70	$\Delta H_{\rm rest}^{\rm EE(SR)}$ 0.00 -34.97 \pm 1.42	△H ^{EE(LR)} 0.00 - -4.00±0.04 -
AAAAA <u>AA</u> AAA AAAAA	52.9 30.6 2.2	± ± ±	0.7% 0.8% 0.1%	△H ^{LJ} _P △ - 0.00 7.14±0.02 - 2.38±0.10	0.00 34.66±0.08 14.51±0.12	⁴⁾ ∆H ^{bond} 0.00 -1.09±0.07 0.54±0.20	$\Delta H_{\rm P}^{\rm angle}$ 0.00 -0.85±0.05 0.62±0.07	△H ^{dih.} 0.00 13.67±0.04 -3.81±0.04	△H ^{Imp.} 0.00 - -0.59±0.01 - -0.04±0.05 -	△H ^{LJ} _{rest} - 0.00 - 0.48±0.70 - 0.73±0.74	△H ^{EE(SR)} 0.00 -34.97±1.42 -16.20±2.70	△H ^{EE(LR)} 0.00 - -4.00±0.04 - -1.84±0.12 -

Table S3. Population and turn combination for the top three most populated clusters of cyclo- (X_1AAAA) of the S1 simulations. Type I, I', II and II' β -turns are shown in red, orange, green and blue, respectively and distorted β -turns are underlined. The tight turn α_R is shown in purple.

		С	AAAA	Ľ	AAAA	E	АААА	F	'AAAA
53%	AAAAA	18% CAAAA		20%	DAA <mark>AA</mark>	14%	EAAAA	18%	FAAAA
31%	<u>AA</u> AAA	13%	CAAAA	11%	DAAAA	11%	<u>E</u> AAA <u>A</u>	15%	FAAAA
2%	AAAAA	10%	CAAAA	9%	D <u>AA</u> AA	10%	EAAAA	10%	FAAAA

6	GAAAA	н	AAAA	I	AAAA	К	AAAA	I	AAAA
30%	GAAAA	23%	<u>H</u> AAA <u>A</u>	30%	IAAAA	13%	<u>k</u> aaa <u>a</u>	12%	<u>L</u> AAA <u>A</u>
11%	GAAAA	21%	HAAAA	16%	<u>I</u> AAA <u>A</u>	13%	KAAAA	10%	LAAAA
5%	G <mark>AA</mark> AA	16%	HAAAA	10%	IAAAA	10%	KAAAA	9%	LAAAA

м	ІАААА	N	IAAAA	P	AAAA	Q	AAAA	F	RAAAA
20%	MAAAA	17% NAAAA		32%	PAAAA	23%	QAAAA	17%	RAAAA
15%	MAAAA	13%	NAAAA	18%	PA <mark>AA</mark> A	15%	QAAAA	10%	RAAAA
11%	MAAAA	8%	NAAAA	9%	PAAAA	7%	QAAAA	9%	<u>r</u> aaa <mark>a</mark>

S	SAAAA	Т	AAAA	V	YAAAA	W	AAAA	У	AAAA
19%	SAAAA	12%	TAAAA	36%	VAAAA	19%	WAAAA	23%	YAAAA
13%	SAAAA	10%	TAAAA	11%	<u>V</u> AAA <u>A</u>	10%	WAAAA	10%	YAAAA
12%	SAAAA	10%	<u>T</u> AAA <u>A</u>	8%	VAAAA	9%	W <mark>AA</mark> AA	10%	<u>y</u> aaa <u>a</u>

Table S4. Population and turn combination for the top three most populated clusters of cyclo- (X_1X_2AAA) of the S1 simulations. Type I, I', II and II' β -turns are shown in red, orange, green and blue, respectively and distorted β -turns are underlined. The tight turns γ and α_R are shown in cyan and purple, respectively.

GXAAA

G	GAAA	G	AAAA	G	VAAA	G	FAAA	G	RAAA	G	DAAA	G	NAAA	G	SAAA
24%	GGAAA	30%	GAAAA	23%	GVAAA	26%	GFAAA	41%	GRAAA	32%	GDAAA	40%	GNAAA	31%	GSAAA
11%	GGAAA	11%	GAAAA	7%	GVAAA	10%	GFAAA	8%	GRAAA	6%	GDAAA	11%	GNAAA	20%	GSAAA
8%	GGAAA	5%	G <u>AA</u> AA	6%	GVAAA	6%	GFAAA	6%	GRAAA	6%	G <mark>DA</mark> AA	2%	GN <u>AA</u> A	4%	GSAAA
							VX	AAA							
v	GAAA	v	AAAA	v	VAAA	v	FAAA	v	RAAA	v	DAAA	v	'NAAA	v	SAAA
58%	VGAAA	36%	VAAAA	21%	VVAAA	18%	VFAAA	18%	VRAAA	49%	VDAAA	38%	VNAAA	53%	V <mark>SA</mark> AA
4%	VGAAA	11%	<u>V</u> AAA <u>A</u>	13%	<u>VV</u> AAA	18%	VFAAA	13%	VRAAA	21%	<u>V</u> DAA <u>A</u>	8%	<u>V</u> NAA <u>A</u>	7%	<u>V</u> SAA <u>A</u>
3%	VGAAA	8%	VAAAA	9%	V <u>VA</u> AA	14%	<u>V</u> FAA <u>A</u>	8%	<u>V</u> RAA <u>A</u>	2%	VDAAA	5%	VNAAA	6%	VSAAA
							FX <i>I</i>	AAA							
ГСЛЛЛ ГЛЛЛЛ ГVЛЛЛ			F	ΓΛΛΛ	F	RЛЛЛ	F	DΛΛΛ	F	'NAAA	F	SAAA			
37%	FGAAA	18%	FAAAA	20%	FVAAA	23%	FFAAA	17%	FRAAA	31%	<u>F</u> DAA <u>A</u>	24%	FNAAA	31%	F <mark>SA</mark> AA
10%	FGAAA	15%	FAAAA	11%	F <u>VA</u> AA	14%	FFAAA	9%	FRAAA	20%	FDAAA	17%	FNAAA	12%	FSAAA
6%	<u>F</u> GAA <u>A</u>	10%	FAAAA	9%	FVA <mark>AA</mark>	12%	FFAAA	9%	FRAAA	7%	FDAAA	7%	FNAAA	11%	FSAAA
							RX <i>I</i>	AAA							
R	GAAA	R	AAAA	R	VAAA	R	FAAA	R	RAAA	R	DAAA	R	NAAA	R	SAAA
33%	RGAAA	17%	RAAAA	26%	RVAAA	15%	RFAAA	11%	RRAAA	22%	<u>R</u> DAA <u>A</u>	25%	RNAAA	35%	R <mark>SA</mark> AA
6%	RGAAA	10%	RAAAA	11%	RVAAA	11%	<u>R</u> FAA <u>A</u>	10%	RRAAA	21%	RDAAA	12%	RNAAA	14%	RSAAA
5%	RGAAA	9%	<u>R</u> AAA <mark>A</mark>	7%	<u>RV</u> AAA	11%	R <mark>FA</mark> AA	9%	RRAAA	6%	RDAAA	7%	RNAAA	7%	<u>r</u> saa <u>a</u>
							DX	AAA	L						
D	GAAA	D	АААА	D	VAAA	D	FAAA	D	RAAA	D	DAAA	E	NAAA	D	SAAA
12%	DGAAA	20%	DAA <mark>AA</mark>	19%	DVAAA	24%	DFAAA	21%	DRAAA	19%	DDA <mark>AA</mark>	31%	DNAAA	15%	DSAAA
12%	DGAAA	11%	DAAAA	14%	DVA <mark>AA</mark>	11%	DFAAA	20%	DRA <mark>AA</mark>	15%	DDAAA	6%	DNA <mark>AA</mark>	13%	DSAAA
11%	DGAAAA	9%	D <u>AA</u> AA	11%	D <u>VA</u> AA	9%	DFA <mark>AA</mark>	7%	<u>DR</u> AAA	14%	D <mark>DA</mark> AA	5%	DNAAA	13%	DSA <u>AA</u>
							NX	AAA							

				-											
N	IGAAA	N	AAAA	N	VAAA	N	FAAA	N	RAAA	N	DAAA	N	NAAA	N	SAAA
22%	NGAAA	17%	NAAAA	15%	NVAAA	18%	NFAAA	21%	NRAAA	18%	<u>N</u> DAA <u>A</u>	20%	NNAAA	20%	NSAAA
16%	NGAAA	13%	NAAAA	12%	NVAAA	9%	NFAAA	8%	NRAAA	17%	NDAAA	13%	NNAAA	18%	NSAAA
7%	<u>N</u> GAA <u>A</u>	8%	NAAAA	8%	N <u>VA</u> AA	8%	NFAAA	8%	NRAAA	12%	NDAAA	7%	NNAAA	12%	NSAAA

SXAAA

s	GAAA	s	AAAA	s	VAAA	s	FAAA	s	RAAA	s	DAAA	s	NAAA	s	SAAA
29%	SGAAA	19%	SAAAA	15%	SVAAA	21%	SF AAA	28%	SR AAA	20%	SDAAA	31%	SN AAA	22%	SSAAA
10%	SGAAA	13%	SAAAA	15%	SVAAA	13%	SFAAA	10%	SRAAA	13%	<u>s</u> daa <u>a</u>	10%	SNAAA	20%	SSAAA
7%	SGAAA	12%	SAAAA	10%	SVAAA	8%	SFAAA	7%	SRAAA	11%	SDAAA	8%	SNAAA	14%	SSAAA

Table S5. Highest scoring sequences from neighbor analysis of simulations of cyclo-(X_1X_2AAA), where $X_1/X_2 = G, V, F, R, D, N$ or S, for the $\beta_{II}+\alpha_R$ turn combination.

Rank	СР	Score	Rank	СР	Score
1	GNSRV	1.287	11	GRSDV	1.191
2	GRSRV	1.265	12	GRSFV	1.188
3	GNSVV	1.235	13	SNSRV	1.184
4	GSSRV	1.226	14	GNRVV	1.178
5	GNRRV	1.220	15	GRRRV	1.177
6	GDSRV	1.215	16	GRNRV	1.175
7	GRSVV	1.213	17	GSSVV	1.174
8	GNSDV	1.213	18	GNFRV	1.165
9	GNNRV	1.211	19	GDSVV	1.163
10	GNSFV	1.210	20	GNGRV	1.162

Table S6. Thermodynamics decomposition for (**A**) cyclo-(GNSRV), (**B**) cyclo-(GNAAA), (**C**) cyclo-(ANSAA), (**D**) cyclo-(AASRA), (**E**) cyclo-(AAARV) and (**F**) cyclo-(GAAAV). Type I, I' and II' β -turns are shown in red, orange and blue, respectively and distorted β -turns are underlined. The tight turns γ and α_R are shown in cyan and purple, respectively. In B–F, arrows indicate the turn combination that is at same location as in cyclo-(GNSRV). For A–B and E–F, boxes indicate factors that stabilize the most populated conformation. In C–D, the factors that stabilize the most populated conformation is larger than the average. All thermodynamic terms are defined in the Materials and Methods. Populations and standard error of mean were calculated from the five neutral replicas of the S1 simulations.

(A)			ΔG	ΔH	$-T\Delta S$	$\Delta H_{\mathrm{P}}^{\mathrm{vac}}$	$\Delta H_{\rm rest}$	$-T\Delta S_{\rm P}^{\rm conf}$	$-T\Delta S_{\rm W}$	$\Delta H_{\mathrm{P}}^{\mathrm{LJ}}$ Z	$H_{\mathrm{P}}^{\mathrm{EE}(\mathrm{SR}+1,4)}$	$^{(4)}\Delta H_{\rm P}^{\rm bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\rm P}^{\rm dih.}$	$\Delta H_{\mathrm{P}}^{\mathrm{imp.}}$	$\Delta H_{\rm rest}^{\rm LJ}$	$\Delta H_{\rm rest}^{\rm EE(SR)}$	$\Delta H_{\text{rest}}^{\text{EE(LR)}}$	20
()	GNSRV	67.4%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10 P
	GNS RV	7.6%	5.43±0.08	3.36±1.33	2.07±1.29	-29.34±0.65	32.70±1.26	51.15±1.58	-49.08±2.44	-5.40±0.19	-39.91±0.76	0.98±0.08	3.59±0.10	11.43±0.17	-0.03±0.04	7.19±2.37	19.37±3.11	6.14±0.65	-0 r
	GNSRV	4.9%	6.57±0.13	5.21±2.57	1.36±2.56	11.91±1.04	-6.71±2.87	82.00±4.92	-80.64±5.76	0.66±0.19	-6.71±0.83	-0.23±0.10	2.77±0.10	15.16±0.19	0.26±0.07	3.97±2.51	-1.69±3.96	-8.99±0.87	-10 -20
(B)			ΔG	ΔH	$-T\Delta S$	$\Delta H_{\mathrm{P}}^{\mathrm{vac}}$	$\Delta H_{\rm rest}$	$-T\Delta S_{\rm P}^{\rm conf}$	$-T\Delta S_{\rm W}$	$\Delta H_{\mathrm{P}}^{\mathrm{LJ}}$ 2	$\Delta H_{\mathrm{P}}^{\mathrm{EE}(\mathrm{SR}+1,4)}$	$^{4)}\Delta H_{\mathrm{P}}^{\mathrm{bond}}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\mathrm{P}}^{\mathrm{dih.}}$	$\Delta H_{\mathrm{P}}^{\mathrm{imp.}}$	$\Delta H_{\rm rest}^{\rm LJ}$	$\Delta H_{\rm rest}^{\rm EE(SR)}$	$\Delta H_{\text{rest}}^{\text{EE(LR)}}$	20
$\stackrel{(-)}{\rightarrow}$	GNAAA	40.4%	- 0.00	0.00	0.00	0.00	0.00	0.00	0.00 -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10 P
	GNAAA	11.0%	3.25±0.10	3.95±1.78	-0.69±1.75 -	-1.43±0.42	5.38±2.06	16.68±0.74	-17.38±2.01	0.07±0.06	-7.01±0.41	0.73±0.07	5.67±0.12	-1.12±0.04	0.22±0.03	0.14±1.15	2.98±2.69	2.25±0.33	-0 K
	GN <mark>AA</mark> A	2.3%	7.11±0.09	11.36±1.63	-4.25±1.66	-55.41±1.34	66.77±2.41	131.08±5.37	-135.33±4.82	-5.84±0.27	-60.92±1.23	0.67±0.13	$1.07{\pm}0.14$	8.98±0.27	0.63±0.07	5.02±2.61	26.71±3.28	35.04±0.65	-10 -20
(C)			ΔG	ΔH	$-T\Delta S$	$\Delta H_{\rm P}^{\rm vac}$	$\Delta H_{\rm rest}$	$-T\Delta S_{\rm P}^{\rm conf}$	$-T\Delta S_{\rm W}$	$\Delta H_{\mathrm{P}}^{\mathrm{LJ}}$ Z	$\Delta H_{\mathrm{P}}^{\mathrm{EE}(\mathrm{SR}+1,4)}$	$^{4)}\Delta H_{\mathrm{P}}^{\mathrm{bond}}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\mathrm{P}}^{\mathrm{dih.}}$	$\Delta H_{\mathrm{P}}^{\mathrm{imp.}}$	$\Delta H_{\mathrm{rest}}^{\mathrm{LJ}}$	$\Delta H_{\rm rest}^{\rm EE(SR)}$	$\Delta H_{\rm rest}^{\Xi {\rm E} ({\rm LR})}$	20
(-)	ANSAA	19.9%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	C.00	10 P
	ANSAA	18.1%	0.23±0.03	$0.86{\pm}0.85$	-0.63±0.87	-12.28±0.54	13.14±0.81	-1.37±0.29	0.74±0.73	-0.26±0.07	-9.35±0.67	-0.28±0.07	$0.62{\pm}0.14$	-2.91±0.15	-0.10±0.04	-3.33±0.86	6.88±0.92	9.59±0.75	ν F
\rightarrow	ANSAA	12.1%	1.25±0.06	0.34±1.28	0.91±1.27	-16.29±0.94	16.63±1.88	7.79±0.66	-6.88±1.52	1.22±0.08	-15.77±0.86	0.07±0.05	1.91±0.07	-3.75±0.06	0.04±0.03	0.05±0.95	6.77±1.96	9.80±0.83	-10 -20
(D)			ΔG	ΔH	$-T\Delta S$	$\Delta H_{\mathrm{P}}^{\mathrm{vac}}$	$\Delta H_{\rm rest}$	$-T\Delta S_{\rm P}^{\rm conf}$	$-T\Delta S_{\rm W}$	$\Delta H_{\mathrm{P}}^{\mathrm{LJ}}$ Z	$\Delta H_{\mathrm{P}}^{\mathrm{EE}(\mathrm{SR}+1,4)}$	$^{(4)}\Delta H_{\rm P}^{\rm bond}$	$\Delta H_{\rm P}^{\rm angle}$	$\Delta H_{\mathrm{P}}^{\mathrm{dih.}}$	$\Delta H_{\mathrm{P}}^{\mathrm{imp.}}$	$\Delta H_{\mathrm{rest}}^{\mathrm{LJ}}$	$\Delta H_{\rm rest}^{\rm EE(SR)}$	$\Delta H_{\text{rest}}^{\Xi \mathrm{E(LR)}}$	20
(-)	AASRA	28.1%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	C.00	10 20
\rightarrow	AASRA	10.3%	2.50±0.07	0.48±2.15	2.03±2.15	3.11±0.40	-2.63±2.15	21.63±0.66	-19.60±2.30	0.03±0.08	1.14±0.41	0.10±0.16	0.85±0.17	0.80±0.08	0 18+0 (3	2.80+1.51	-4.19±3.44	-1.24±0.38	-0 r
	AASRA	6.7%	3 60 +0 08												0.1401L0.140				
(E)			5.0010.00	1.09±1.42	2.50±1.47	17.10±0.61	-16.01±1.12	44.10±1.95	-41.59±1.54	-1.36±0.12	15.66±0.23	-0.41±0.15	-1.61±0.21	4.81±0.21	-0.00±0.04	0.65±1.69	-8.41±2.18	-8.24±0.27	-10 -20
• •			ΔG	1.09±1.42 ∆H	2.50±1.47 -T∆S	$\Delta H_{\mathrm{P}}^{\mathrm{vac}}$	-16.01±1.12 ΔH _{rest}	$\begin{array}{c} \textbf{44.10} \pm \textbf{1.95} \\ -T \Delta S_{\mathrm{P}}^{\mathrm{conf}} \end{array}$	-41.59 ± 1.54 $-T\Delta S_{\rm W}$	-1.36 ± 0.12 $\Delta H_{\rm P}^{\rm LJ}$ Δ	15.66 ± 0.23 $H_{ m P}^{ m EE(SR+1,4)}$	-0.41 ± 0.15	-1.61 ± 0.21 $\Delta H_{\rm P}^{\rm angle}$	4.81 ± 0.21 $\Delta H_{\rm P}^{\rm dih.}$	-0.00±0.04 -	$\Delta H_{\rm rest}^{\rm LJ}$	-8.41 \pm 2.18 $\Delta H_{\rm rest}^{\rm EE(SR)}$	$\Delta H_{\text{rest}}^{\Xi \text{E(LR)}}$	$-10 \\ -20$
\rightarrow	AAARV	25.8%	ΔG 0.00	<u>1.09±1.42</u> ∆ <i>H</i> 0.00	2.50±1.47 -T∆S 0.00	17.10±0.61 ΔH ^{vac} 0.00	-16.01±1.12 - ΔH _{rest}	44.10 ± 1.95 $-T\Delta S_{\rm P}^{\rm conf}$ 0.00	-41.59±1.54 -TΔS _W 0.00	1.36±0.12 ΔH ^{LJ} _P Δ	15.66±0.23 $\Delta H_{ m P}^{ m EE}(m SR+1,4)$ 0.00	-0.41±0.15 ⁴⁾ ∆H ^{bond} _P	-1.61 ± 0.21 $\Delta H_{\rm P}^{\rm angle}$ 0.00	4.81±0.21 ΔH ^{dih.} 0.00	-0.00±0.04 - ΔH ^{imp.} 0.00 -	0.65±1.69 ∆H ^{LJ} _{rest} 0.00	-8.41 ± 2.18 $\Delta H_{\rm rest}^{\rm EE(SR)}$ 0.00	-8.24±0.27 △H ^{2E(LR)} 0.00	-10 -20 10 20
\rightarrow	AAARV AAARV	25.8% 11.1%	Δ <i>G</i> 0.00 2.11±0.07	1.09±1.42 △H 0.00 9.65±1.39	2.50±1.47 - -T∆S 0.00 - -7.54±1.46 -	17.10±0.61 ΔH ^{vac} 0.00 -5.78±0.20	-16.01±1.12 ∆H _{rest} 0.00 15.43±1.44	44.10 \pm 1.95 $-T\Delta S_{\rm P}^{\rm conf}$ 0.00 18.46 \pm 0.81	-41.59±1.54 -T∆S _W 0.00 - -26.01±0.78	-1.36±0.12 ∆H ^{LJ} ∠ -0.00 -2.61±0.10	15.66±0.23 ∆H ^{EE} (SR+1.4 0.00 -17.01±0.22	-0.41±0.15 ⁴⁾ ∆H ^{bond} 0.00 0.35±0.14	-1.61±0.21 ΔH ^{angle} 0.00 4.14±0.11	4.81±0.21 ∆H ^{dih} _P 0.00 3.77±0.06	-0.00±0.04 ΔH ^{imp.} 0.00 0.36±0.04	0.65±1.69 ∆H ^{LJ} _{rest} 0.00 3.92±0.99	-8.41±2.18 ΔH ^{EE(SR)} 0.00 12.66±2.31	-8.24 ± 0.27 - $\Delta H_{\text{rest}}^{3\text{E}(\text{LR})}$ 0.00 - -1.15±0.18 -	-10 -20 10 @ 0 /7
\rightarrow	AAARV AAARV AAA <mark>RV</mark>	25.8% 11.1% 6.9%	△G 0.00 2.11±0.07 3.29±0.06	1.09±1.42 △H 0.00 9.65±1.39 2.12±0.65	2.50±1.47 -T∆S 0.00 -7.54±1.46 1.16±0.65	17.10±0.61 ∆H ^{vac} 0.00 5.78±0.20 41.94±0.29	-16.01±1.12 → △H _{rest} → 0.00 → 15.43±1.44 → -39.81±0.72	44.10 ± 1.95 $-T\Delta S_{\rm P}^{\rm conf}$ 0.00 18.46±0.81 35.14±1.14	-41.59±1.54 -T∆S _W -0.00 -26.01±0.78 -33.97±1.62	-1.36±0.12 △H _P ^{LJ} ∠ 0.00 -2.61±0.10 -6.05±0.15	15.66±0.23 AH ^{EE} (SR+1.4 0.00 -17.01±0.22 34.55±0.33	-0.41±0.15 ⁴⁾ ∆H ^{bond} 0.00 0.35±0.14 -0.31±0.12	-1.61±0.21 △H ^{angle} 0.00 4.14±0.11 -0.76±0.11	4.81±0.21 △H ^{dih.} 0.00 3.77±0.06 15.29±0.07	-0.00±0.44 - △H ^{imp.} 0.00 - 0.36±0.04 - -0.79±0.03 -	$\begin{array}{c} \textbf{0.65\pm1.69} \\ \Delta H_{\rm rest}^{\rm LJ} \\ \hline \textbf{0.00} \\ \textbf{3.92\pm0.99} \\ \textbf{3.93\pm0.85} \end{array}$	$\begin{array}{c} \textbf{-8.41} \pm \textbf{2.18} \\ \Delta H_{\mathrm{rest}}^{\mathrm{EE}(\mathrm{SR})} \\ \textbf{0.00} \\ \textbf{12.66} \pm \textbf{2.31} \\ \textbf{-41.76} \pm \textbf{1.30} \end{array}$	-8.24±0.27 - △H ^{2E(LR)} 0.00 -1.15±0.18 - -1.93±0.36	-10 -20 10 ₪ -10 -10 -20
(F)	AAARV AAARV AAA <mark>RV</mark>	25.8% 11.1% 6.9%	ΔG 0.00 2.11±0.07 3.29±0.06 ΔG	1.09±1.42 △H 0.00 9.65±1.39 2.12±0.65 △H	2.50±1.47 -TΔS 0.00 -7.54±1.46 1.16±0.65 -TΔS	17.10±0.61 △H ^{yac} - 0.00 5.78±0.20 41.94±0.29 △H ^{yac}	-16.01±1.12 ΔH _{rest} 0.00 15.43±1.44 -39.81±0.72 ΔH _{rest}	$\begin{array}{c} {\bf 44.10{\pm}1.95} \\ -T \Delta S_{\rm P}^{\rm conf} \\ \hline {\bf 0.00} \\ {\bf 18.46{\pm}0.81} \\ {\bf 35.14{\pm}1.14} \\ -T \Delta S_{\rm P}^{\rm conf} \end{array}$	-41.59 ± 1.54 $-T\Delta S_W$ -0.00 -26.01 ± 0.78 -33.97 ± 1.62 $-T\Delta S_W$	-1.36 ± 0.12 $\Delta H_{\rm P}^{\rm LJ}$ / 0.00 2.61±0.10 -6.05±0.15 $\Delta H_{\rm P}^{\rm LJ}$ /	$15.66\pm0.23 \\ M_{\rm P}^{\rm EE(SR+1,4)} \\ 0.00 \\ -17.01\pm0.22 \\ 34.55\pm0.33 \\ M_{\rm P}^{\rm EE(SR+1,4)} \\ H_{\rm P}^{\rm EE(SR+1,4)}$	-0.41±0.15 ⁴⁾ △H ^{bond} 0.00 0.35±0.14 -0.31±0.12 ⁴⁾ △H ^{bond}	-1.61±0.21 ΔH ^{angle} 0.00 4.14±0.11 -0.76±0.11 ΔH ^{angle} _P	4.81±0.21 ΔH ^{dih.} 0.00 3.77±0.06 15.29±0.07 ΔH ^{dih.}	-0.00±0.04 ΔH ^{imp.} 0.00 0.36±0.04 -0.79±0.03 ΔH ^{imp.}	$\begin{array}{c} \textbf{0.65 \pm 1.69} \\ \Delta H_{\mathrm{rest}}^{\mathrm{LJ}} \\ \hline \textbf{0.00} \\ \textbf{3.92 \pm 0.99} \\ \textbf{3.93 \pm 0.85} \\ \Delta H_{\mathrm{rest}}^{\mathrm{LJ}} \end{array}$	$\begin{array}{c} \textbf{-8.41\pm2.18} \\ \Delta H_{\mathrm{rest}}^{\mathrm{EE}(\mathrm{SR})} \\ \hline \textbf{0.00} \\ \textbf{12.66\pm2.31} \\ \textbf{41.76\pm1.30} \\ \Delta H_{\mathrm{rest}}^{\mathrm{EE}(\mathrm{SR})} \end{array}$	$\begin{array}{c} \textbf{-8.24\pm0.27}\\ \Delta H_{\text{rest}}^{2\text{E}(\text{LR})}\\ \hline \textbf{0.00}\\ \textbf{-1.15\pm0.18}\\ \textbf{-1.93\pm0.36}\\ \Delta H_{\text{rest}}^{\text{EE}(\text{LR})} \end{array}$	-10 -20 10 m 0 x -10 -20
(F) (F)	AAARV AAARV AAA <mark>RV</mark> GAAAV	25.8% 11.1% 6.9% 58.0%	∠G 0.00 2.11±0.07 3.29±0.06 ∠G 0.00	1.09±1.42 △H 0.00 9.65±1.39 2.12±0.65 △H 0.00	$\begin{array}{c} \textbf{2.50\pm1.47} \\ -T \triangle S \\ \textbf{0.00} \\ \textbf{-7.54\pm1.46} \\ \textbf{1.16\pm0.65} \\ -T \triangle S \\ \textbf{0.00} \\ \textbf{-} \end{array}$	17.10±0.61 ΔH _P ^{vac} 0.00 -5.78±0.20 41.94±0.29 ΔH _P ^{vac} 0.00	-16.01±1.12 ΔH _{rest} 0.00 15.43±1.44 -39.81±0.72 ΔH _{rest}	44.10±1.95 −T∆S ^{conf} 0.00 18.46±0.81 35.14±1.14 −T∆S ^{conf} _P	$\begin{array}{c} -41.59 \pm 1.54 \\ -T \Delta S_{\rm W} \\ \hline 0.00 \\ -26.01 \pm 0.78 \\ -33.97 \pm 1.62 \\ -T \Delta S_{\rm W} \\ \hline 0.00 \\ \end{array}$	-1.36 ± 0.12 $\Delta H_{\rm P}^{\rm LJ}$ 2 -0.00 -2.61 ± 0.10 -6.05 ± 0.15 $\Delta H_{\rm P}^{\rm LJ}$ 2 -0.00	$15.66\pm0.23 \\ AH_{P}^{EE(SR+1,4)} \\ 0.00 \\ -17.01\pm0.22 \\ 34.55\pm0.33 \\ AH_{P}^{EE(SR+1,4)} \\ 0.00 \\ $	-0.41±0.15 ⁴⁾ ∆H ^{bond} 0.00 0.35±0.14 -0.31±0.12 ⁴⁾ ∆H ^{bond} 0.00	$\begin{array}{c} \textbf{-1.61} \pm \textbf{0.21} \\ \Delta H_{\rm P}^{\rm angle} \\ \textbf{0.00} \\ \textbf{4.14} \pm \textbf{0.11} \\ \textbf{-0.76} \pm \textbf{0.11} \\ \Delta H_{\rm P}^{\rm angle} \\ \textbf{0.00} \end{array}$	4.81±0.21 △H ^d P 0.00 3.77±0.06 15.29±0.07 △H ^d h. 0.00	-0.00±0.04 ΔH ^{imp.} 0.00 0.36±0.04 -0.79±0.03 ΔH ^{imp.} 0.00	$ \begin{array}{c} \textbf{0.65 \pm 1.69} \\ \Delta H_{\mathrm{rest}}^{\mathrm{LJ}} \\ \hline \textbf{0.00} \\ \textbf{3.92 \pm 0.99} \\ \textbf{3.93 \pm 0.85} \\ \Delta H_{\mathrm{rest}}^{\mathrm{LJ}} \\ \hline \textbf{0.00} \end{array} $	$\begin{array}{c} \textbf{-8.41\pm2.18} \\ \Delta H_{\rm rest}^{\rm EE(SR)} \\ \textbf{0.00} \\ \hline \textbf{12.66\pm2.31} \\ \textbf{41.76\pm1.30} \\ \Delta H_{\rm rest}^{\rm EE(SR)} \\ \textbf{0.00} \end{array}$	$\begin{array}{c} \textbf{-8.24 \pm 0.27} \\ \Delta H_{\text{test}}^{\text{3}\text{E}(\text{LR})} \\ \hline \textbf{0.00} \\ \textbf{-1.15 \pm 0.18} \\ \textbf{-1.93 \pm 0.36} \\ \Delta H_{\text{test}}^{\text{EE}(\text{LR})} \\ \hline \textbf{C.00} \end{array}$	-10 -20 10 ee -20 -10 -20 20 10 ee
(F) →	AAARV AAARV AAA <u>RV</u> GAAAV GAAAV	25.8% 11.1% 6.9% 58.0% 4.1%	$\begin{array}{c} \Delta G \\ \hline 0.00 \\ \hline 2.11 \pm 0.07 \\ \hline 3.29 \pm 0.06 \\ \hline \Delta G \\ \hline 0.00 \\ \hline 6.63 \pm 0.08 \end{array}$	1.09±1.42 △ <i>H</i> 0.00 9.65±1.39 2.12±0.65 △ <i>H</i> 0.00 12.37±2.50	$\begin{array}{c} \textbf{2.50\pm1.47} \\ -T \triangle S \\ \textbf{0.00} \\ \textbf{-7.54\pm1.46} \\ \textbf{1.16\pm0.65} \\ -T \triangle S \\ \textbf{0.00} \\ \textbf{-5.74\pm2.53} \\ \textbf{-5.74\pm2.53} \end{array}$	$\begin{array}{c} {\bf 17.10 \pm 0.61} \\ & \Delta H_{\rm P}^{\rm vac} \\ \hline {\bf 0.00} \\ {\bf -5.78 \pm 0.20} \\ {\bf 41.94 \pm 0.29} \\ \hline \Delta H_{\rm P}^{\rm vac} \\ \hline {\bf 0.00} \\ {\bf -0.09 \pm 0.30} \end{array}$	-16.01±1.12 △H _{rest} 0.00 15.43±1.44 -39.81±0.72 △H _{rest} 0.00 12.27±2.74	44.10±1.95 $-T \Delta S_P^{conf}$ 0.00 18.46±0.81 35.14±1.14 $-T \Delta S_P^{conf}$ 0.00 68.30±3.09	$\begin{array}{c} -41.59 \pm 1.54 \\ -T \triangle S_W \\ \hline 0.00 \\ -26.01 \pm 0.78 \\ -33.97 \pm 1.62 \\ -T \triangle S_W \\ \hline 0.00 \\ -74.04 \pm 3.21 \\ \end{array}$	-1.36 ± 0.12 $\Delta H_{\rm P}^{\rm LJ} \ 2$ -0.00 -2.61 ± 0.10 -6.05 ± 0.15 $\Delta H_{\rm P}^{\rm LJ} \ 2$ -0.00 -2.59 ± 0.16	15.66±0.23 ΔH ^{EE} (SR+1,4 0.00 -17.01±0.22 34.55±0.33 ΔH ^{EE} (SR+1,4 0.00 -11.34±0.32	$\begin{array}{c} \textbf{-0.41 \pm 0.15} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \textbf{-1.61\pm0.21}\\ \Delta H_{\rm P}^{\rm angle}\\ \textbf{0.00}\\ \textbf{4.14\pm0.11}\\ \textbf{-0.76\pm0.11}\\ \Delta H_{\rm P}^{\rm angle}\\ \textbf{0.00}\\ \textbf{2.91\pm0.21} \end{array}$	4.81+0.21 $\Delta H_{\rm P}^{\rm dih}$. 0.00 3.77±0.06 15.29+0.07 $\Delta H_{\rm P}^{\rm dih}$. 0.00 5.63±0.12	$\begin{array}{c} \textbf{-0.00\pm0.04} \\ \textbf{-0.00\pm0.04} \\ \textbf{-0.79\pm0.03} \\ \textbf{-0.79\pm0.03} \\ \textbf{-0.79\pm0.03} \\ \textbf{-0.79\pm0.03} \\ \textbf{-0.50\pm0.07} \\ -0.50$	$\begin{array}{c} \textbf{0.65 \pm 1.69} \\ \hline \Delta H_{\rm rest}^{\rm LJ} \\ \hline \textbf{0.00} \\ \textbf{3.92 \pm 0.99} \\ \textbf{3.93 \pm 0.85} \\ \hline \Delta H_{\rm rest}^{\rm LJ} \\ \hline \textbf{0.00} \\ \hline \textbf{-0.94 \pm 2.10} \end{array}$	$\begin{array}{c} \textbf{8.41\pm2.18} \\ \Delta H_{\rm rest}^{\rm EE(SR)} \\ \textbf{0.00} \\ \textbf{12.66\pm2.31} \\ \textbf{41.76\pm1.30} \\ \Delta H_{\rm rest}^{\rm EE(SR)} \\ \textbf{0.00} \\ \textbf{12.13\pm3.18} \end{array}$	$\begin{array}{c} \textbf{-8.24\pm0.27} \\ & \bigtriangleup H_{\text{rest}}^{3\text{E}(\text{LR})} \\ \hline \textbf{0.00} \\ \textbf{-1.15\pm0.18} \\ \textbf{-1.93\pm0.36} \\ & \bigtriangleup H_{\text{rest}}^{\text{EE}(\text{LR})} \\ & \bigtriangleup H_{\text{rest}}^{\text{EE}(\text{LR})} \\ \hline \textbf{C.00} \\ \hline \textbf{1.07\pm0.20} \end{array}$	-10 -20 10 Pm / Y -10 -20 20 Pm / Y -10 -20 20 Pm / Y

Coordinate 1	Assignment1	Coordinate 2	Assignment 2	Strength
9.05	1Gly-NH	3.63	1Gly-Haa	strong
9.05	1Gly-NH	3.97	1Gly-Hab	strong
8.91	2Asn-NH	4.70	2Asn-Ha	strong
8.26	4Arg-NH	4.03	4Arg-Ha	strong
7.84	3Ser-NH	4.61	3Ser-Ha	strong
7.84	3Ser-NH	3.90	3Ser-Hb	strong
7.76	5Val-NH	4.18	5Val-Ha	strong
9.05	1Gly-NH	4.17	5Val-Ha	strong
8.91	2Asn-NH	3.98	1Gly-Hab	strong
8.26	4Arg-NH	3.91	3Ser-Hb	weak
8.26	4Arg-NH	4.61	3Ser-Ha	strong
7.28	4Arg-NHe	4.02	4Arg-Ha	weak
7.27	4Arg-NHe	3.25	4Arg-Hd	strong
8.90	2Asn-NH	2.88	2Asn-Hb	strong
8.27	4Arg-NH	1.95	4Arg-Hba	strong
8.27	4Arg-NH	1.71	4Arg-Hbb	weak
8.27	4Arg-NH	1.64	4Arg-Hg	weak
7.76	5Val-NH	1.96	5Val-Hb	strong
7.76	5Val-NH	0.93	5Val-Hga	strong
7.76	5Val-NH	0.86	5Val-Hgb	strong
7.28	4Arg-NHe	1.96	4Arg-Hba	weak
7.27	4Arg-NHe	1.73	4Arg-Hbb	strong
7.27	4Arg-NHe	1.65	4Arg-Hg	strong
8.90	2Asn-NH	7.83	3Ser-NH	strong
8.27	4Arg-NH	7.75	5Val-NH	strong
4.60	3Ser-Ha	3.91	3Ser-Hb	strong
4.70	2Asn-Ha	2.86	2Asn-Hb	strong
3.98	1Gly-Hab	3.63	1Gly-Haa	strong
4.03	4Arg-Ha	3.25	4Arg-Hd	strong
4.18	5Val-Ha	1.95	5Val-Hb	strong
4.03	4Arg-Ha	1.95	4Arg-Hba	strong
4.03	4Arg-Ha	1.17	4Arg-Hbb	strong
4.03	4Arg-Ha	1.66	4Arg-Hg	strong
4.18	5Val-Ha	0.92	5Val-Hga	strong
4.18	5Val-Ha	0.88	5Val-Hgb	strong
3.25	4Arg-Hd	1.95	4Arg-Hbb	strong
3.25	4Arg-Hd	1.69	4Arg-Hg	strong
1.95	4Arg-Hba	1.71	4Arg-Hbb	strong
1.94	4Arg-Hba	1.65	4Arg-Hg	strong

 Table S7. Observed NOEs for cyclo-(GNSRV).

1.97	5Val-Hb	0.93	5Val-Hga	strong
1.97	5Val-Hb	0.88	5Val-Hgb	strong

Table S8. J-coupling values and associated torsional restraints for cyclo-(GNSRV).

Residue	$^{3}J_{\mathrm{NH-CH}lpha}\left(\mathrm{Hz}\right)$	ϕ restraints
G ₁	5.3	—
N ₂	7.7	_
S ₃	9.1	$-120 \pm 30^{\circ}$
R ₄	4.8	$-60 \pm 30^{\circ}$
V ₅	9.3	$-120 \pm 30^{\circ}$

 Table S9. Observed NOEs for cyclo-(GFDNV).

Coordinate1	Assignment1	Coordinate 2	Assignment 2	Strength
8.70	1Gly-NH	7.90	5Val-NH	weak
8.61	4Asn-NH	7.90	5Val-NH	strong
8.64	2Phe-NH	7.99	3Asp-NH	strong
8.61	4Asn-NH	7.99	3Asp-NH	weak
8.61	4Asn-NH	2.75	3Asp-Hba	strong
7.98	3Asp-NH	3.20	2Phe-Hbb	weak
7.98	3Asp-NH	3.03	2Phe-Hba	weak
7.90	5Val-NH	2.93	3Asp-Hbb	strong
8.70	1Gly-NH	2.04	5Val-Hb	weak
8.70	1Gly-NH	0.91	5Val-Hga	strong
7.32	2Phe-Hd	0.92	5Val-Hgb	weak
8.70	1Gly-NH	4.11	5Val-Ha	strong
8.64	2Phe-NH	3.95	1Gly-Hab	strong
7.90	5Val-NH	4.33	4Asn-Ha	weak
7.98	3Asp-NH	4.51	2Phe-Ha	strong
8.61	4Asn-NH	4.77	3Asp-Ha	strong
8.65	2Phe-NH	3.19	2Phe-Hbb	strong
8.64	2Phe-NH	3.03	2Phe-Hba	strong
8.61	4Asn-NH	2.94	4Asn-Hba	strong
7.98	3Asp-NH	2.93	3Asp-Hbb	strong
7.98	3Asp-NH	2.74	3Asp-Hba	strong
8.64	2Phe-NH	7.31	2Phe-Hd	strong
7.31	2Phe-Hd	3.20	2Phe-Hbb	strong
7.30	2Phe-Hd	3.03	2Phe-Hba	strong
7.90	5Val-NH	0.91	5Val-Hga	strong
7.90	5Val-NH	2.04	5Val-Hb	strong
3.96	1Gly-Hab	3.54	1Gly-Haa	strong

4.50	2Phe-Ha	3.21	2Phe-Hbb	strong
4.51	2Phe-Ha	3.03	2Phe-Hba	strong
4.33	4Asn-Ha	2.95	4Asn-Hba	strong
4.11	5Val-Ha	2.04	5Val-Hb	strong
4.10	5Val-Ha	0.92	5Val-Hga	strong
3.20	2Phe-Hbb	3.02	2Phe-Hba	strong
2.04	5Val-Hb	0.91	5Val-Hga	strong
2.94	3Asp-Hbb	2.75	3Asp-Hba	strong

 Table S10. J-coupling values and associated torsional restraints for cyclo-(GFDNV).

Residue	$^{3}J_{\mathrm{NH-CH}lpha}\left(\mathrm{Hz}\right)$	ϕ restraints
G_1	6.1	-
F_2	7.0	_
D_3	8.9	$-120 \pm 30^{\circ}$
N_4	6.5	_
V ₅	9.7	$-120 \pm 30^{\circ}$