Electronic Supplementary Material (ESI) for MedChemComm. This journal is © The Royal Society of Chemistry 2017

# Supplementary Information

# In depth analysis of kinase cross screening data to identify chemical starting points for inhibition of the Nek family of kinases

Carrow I. Wells<sup>1</sup>, Nirav R. Kapadia<sup>1</sup>, Rafael M. Couñago<sup>2</sup>, and David H. Drewry<sup>1\*</sup>

|       | Above outer lipophilic pocket | Turn in Gly-rich loop | Turn in Gly-rich loop | <b>Conserved Val above purine</b> | <b>Conserved Ala above purine</b> | Conserved Lys | <b>Conserved Glu on C-helix</b> | On C-helix | Back pocket on C-helix | Back pocket | Back pocket | Gatekeeper | Hinge inner H-bond acceptor | Hinge | Hinge donor & outer H-bond a | Outer hinge | Outer hinge | Solvent front | Solvent front & sugar pocket si | Surface helix | Surface helix | Gamma-phosphate region | Sugar pocket carbonyl | Mg binding | Outer hydrophobe below purir | Inner hydrophobe below purin | DFG Asp | DFG Phe |
|-------|-------------------------------|-----------------------|-----------------------|-----------------------------------|-----------------------------------|---------------|---------------------------------|------------|------------------------|-------------|-------------|------------|-----------------------------|-------|------------------------------|-------------|-------------|---------------|---------------------------------|---------------|---------------|------------------------|-----------------------|------------|------------------------------|------------------------------|---------|---------|
| NEK1  | L                             | S                     | F                     | А                                 | V                                 | К             | Е                               | V          | L                      | V           | I           | М          | D                           | Υ     | С                            | Е           | G           | G             | D                               | F             | κ             | Κ                      | Q                     | Ν          | F                            | G                            | D       | F       |
| NEK10 | L                             | А                     | F                     | V                                 | А                                 | К             | L                               | Т          | К                      | V           | I           | М          | Е                           | L     | I.                           | Е           | G           | А             | Ρ                               | G             | Е             | Т                      | Ν                     | Ν          | М                            | Т                            | D       | F       |
| NEK11 | L                             | S                     | F                     | V                                 | V                                 | К             | Е                               | А          | L                      | V           | I           | Т          | Е                           | Υ     | С                            | Е           | G           | R             | D                               | D             | D             | Κ                      | Κ                     | Ν          | F                            | G                            | D       | F       |
| NEK2  | L                             | S                     | Y                     | С                                 | V                                 | К             | Е                               | V          | L                      | V           | I           | М          | Е                           | Υ     | С                            | Е           | G           | G             | D                               | А             | S             | Κ                      | А                     | Ν          | F                            | G                            | D       | F       |
| NEK3  | L                             | S                     | F                     | А                                 | А                                 | К             | Е                               | А          | L                      | V           | I           | М          | Е                           | Υ     | С                            | D           | G           | G             | D                               | М             | Q             | Κ                      | Κ                     | Ν          | F                            | G                            | D       | F       |
| NEK4  | V                             | S                     | Y                     | V                                 | V                                 | К             | Е                               | А          | L                      | V           | I           | М          | G                           | F     | С                            | Е           | G           | G             | D                               | Υ             | R             | Κ                      | Q                     | Ν          | F                            | G                            | D       | L       |
| NEK5  | L                             | А                     | F                     | А                                 | V                                 | К             | Е                               | V          | L                      | V           | I           | М          | Е                           | Υ     | С                            | D           | G           | G             | D                               | М             | Κ             | Κ                      | Q                     | Ν          | F                            | G                            | D       | F       |
| NEK6  | L                             | Q                     | F                     | V                                 | А                                 | К             | Е                               | L          | L                      | L           | I           | L          | Е                           | L     | А                            | D           | А           | G             | D                               | S             | Q             | Κ                      | А                     | Ν          | F                            | G                            | D       | L       |
| NEK7  | L                             | Q                     | F                     | V                                 | А                                 | К             | Е                               | L          | L                      | L           | I           | L          | Е                           | L     | А                            | D           | А           | G             | D                               | S             | R             | Κ                      | А                     | Ν          | F                            | G                            | D       | L       |
| NEK8  | V                             | А                     | F                     | V                                 | I                                 | К             | Е                               | С          | L                      | L           | I           | Μ          | Е                           | Υ     | А                            | Ρ           | G           | G             | Т                               | А             | Е             | к                      | Q                     | Ν          | L                            | G                            | D       | F       |
| NEK9  | L                             | А                     | F                     | А                                 | V                                 | К             | Е                               | L          | L                      | I           | I           | L          | Е                           | Υ     | С                            | Ν           | G           | G             | Ν                               | Υ             | D             | Κ                      | L                     | Ν          | F                            | G                            | D       | Υ       |

**Supplementary Table 1**. Sequence alignment of 28 active site residues for Nek1-11. Residues named in the style of Bamborough et al., 2008. Sequence obtained from Kinase SARfari (<u>https://www.ebi.ac.uk/chembl/sarfari/kinasesarfari/</u>)



Supplementary Figure 2. Kinase selectivity.

A ranked bar chart of selectivity scores S(50%) at 1 µM for all tested kinases for PKIS2 compounds. All Nek family members are found in the right hand half of the X-axis which indicates that, at least for this compound set, the Nek family is in the bottom half of the kinome in terms of promiscuity. Nek5 has the highest hit rate in the family, and Nek4 has the lowest.

Currently, there are crystal structures available for three NEK family members - NEK1, NEK2 and NEK7. The PDB codes and references for deposited Nek structures are listed in this table (Supplemental Table 2).

| Table . Crystal structures available with references |        |                           |                                 |     |     |        |  |  |  |  |
|------------------------------------------------------|--------|---------------------------|---------------------------------|-----|-----|--------|--|--|--|--|
| Kinase                                               | PDB ID | Ligand                    | Reference                       | DFG | a-C | T-loop |  |  |  |  |
| NEK1                                                 | 4B9D   | CK7                       |                                 | out | out | n/a    |  |  |  |  |
| NEK1                                                 | 4APC   | none                      |                                 | out | out | n/a    |  |  |  |  |
| NEK2                                                 | 5M57   | Arylaminopurine 6         | (2016) Oncotarget 8 19089-19124 |     | out |        |  |  |  |  |
| NEK2                                                 | 5M51   | Arylaminopurine 8         | (2016) Oncotarget 8 19089-19124 |     |     |        |  |  |  |  |
| NEK2                                                 | 5M53   | Arylaminopurine 11        | (2016) Oncotarget 8 19089-19124 |     |     |        |  |  |  |  |
| NEK2                                                 | 5M55   | Arylaminopurine 71        | (2016) Oncotarget 8 19089-19124 |     |     |        |  |  |  |  |
| NEK2                                                 | 4A4X   | CCT248662                 | (2012) J Med Chem 55 3228       |     |     |        |  |  |  |  |
| NEK2                                                 | 4AFE   | Compound 21               | (2012) J Med Chem 55 3228       |     |     |        |  |  |  |  |
| NEK2                                                 | 2XNM   | CCT                       | (2011) J Med Chem 54 1626-1639  |     |     |        |  |  |  |  |
| NEK2                                                 | 2XNN   | CCT242430                 | (2011) J Med Chem 54 1626-1639  |     |     |        |  |  |  |  |
| NEK2                                                 | 2XNO   | CCT243779                 | (2011) J Med Chem 54 1626-1639  |     |     |        |  |  |  |  |
| NEK2                                                 | 2XNP   | Aminopyrazine compound 5  | (2010) J Med Chem 53 7682-7698  |     |     |        |  |  |  |  |
| NEK2                                                 | 2XKE   | Aminopyrazine compound 35 | (2010) J Med Chem 53 7682-7698  |     |     |        |  |  |  |  |
| NEK2                                                 | 2XK4   | Aminopyrazine compound 17 | (2010) J Med Chem 53 7682-7698  |     |     |        |  |  |  |  |
| NEK2                                                 | 2XK6   | Aminopyrazine compound 36 | (2010) J Med Chem 53 7682-7698  |     |     |        |  |  |  |  |
| NEK2                                                 | 2XK7   | Aminopyrazine compound 23 | (2010) J Med Chem 53 7682-7698  |     |     |        |  |  |  |  |
| NEK2                                                 | 2XK8   | Aminopyrazine compound 15 | (2010) J Med Chem 53 7682-7698  |     |     |        |  |  |  |  |
| NEK2                                                 | 2XKC   | Aminopyrazine compound 14 | (2010) J Med Chem 53 7682-7698  |     |     |        |  |  |  |  |
| NEK2                                                 | 2XKD   | Aminopyrazine compound 12 | (2010) J Med Chem 53 7682-7698  |     |     |        |  |  |  |  |
| NEK2                                                 | 2XKF   | Aminopyrazine compound 2  | (2010) J Med Chem 53 7682-7698  |     |     |        |  |  |  |  |
| NEK2                                                 | 2WQO   | Aminopyridine CCT241950   | (2009) Mol Cell 36 560-570      |     |     |        |  |  |  |  |
| NEK2                                                 | 2W5A   | ADP                       | (2009) J Mol Biol 386 476-485   |     |     |        |  |  |  |  |
| NEK2                                                 | 2W5B   | ATP-gammaS                | (2009) J Mol Biol 386 476-485   |     |     |        |  |  |  |  |
| NEK2                                                 | 2W5H   | None                      | (2009) J Mol Biol 386 476-485   |     |     |        |  |  |  |  |
| NEK2                                                 | 2JAV   | Pyrrole-indolinone        | (2007) J Biol Chem 282 6833     |     |     |        |  |  |  |  |
| NEK7                                                 | 2WQN   | ADP                       | (2009) Mol.Cell 36: 560-570     |     |     |        |  |  |  |  |
| NEK7                                                 | 5DE2   | none                      | (2015) Nat Commun 6: 8771-8771  |     |     |        |  |  |  |  |
| NEK7                                                 | 2WQM   | none                      | (2009) Mol.Cell 36: 560-570     |     |     |        |  |  |  |  |

#### **Supplemental Table 2**

### **Brief Methods for Nek1 docking**

The originally deposited NEK1 structures (PDB ID 4APC and 4B9D) lacked six residues from the Gly-rich loop - including those at the turn. Before docking, these missing residues were modeled into the NEK1 structure using the coordinates from NEK2 (PDB ID 4AFE) as a template in Modeller. AutoDock Vina was used to dock the compounds onto NEK1 following the procedure published by Forli and colleagues (doi 10.1038/nprot.2016.051). To accommodate the extended conformation of the NEK1 activation segment, a large (35x26x32 Å) search box centered on the 'canonical' ATP-binding pocket was used. Selected side-chains were allowed to rotate freely during docking. An exhaustive search (96 iterations) was performed, and the best (lowest energy) nine poses were visually inspected.

## **Supplemental Table 3**

| Table S3 - Citation count, function, disease association and commercial assay availability of Nek   family kinases |                                |                                                                                                                 |                                                                                               |                                           |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|
| Kinase                                                                                                             | # of<br>Citations <sup>a</sup> | Prominent functions                                                                                             | Possible therapeutic significance                                                             | # of<br>commercial<br>assays <sup>b</sup> |  |  |  |  |  |  |
| Nek1                                                                                                               | 69                             | Formation and regulation of cilia                                                                               | Cilliopathies - Polycystic<br>Kidney Disease, nephronitis                                     | 8                                         |  |  |  |  |  |  |
| Nek2                                                                                                               | 222                            | Centrosome separation,spindle<br>assembly checkpoint,<br>chromosome segregation                                 | Overexpressed in several<br>tumors - breast, colon, lung<br>and gastric                       | 9                                         |  |  |  |  |  |  |
| Nek3                                                                                                               | 17                             | Regulates prolactin mediated motility in breast cancer cells                                                    | Overexpressed in breast cancer                                                                | 5                                         |  |  |  |  |  |  |
| Nek4                                                                                                               | 17                             | Regulates microtuble homeostasis                                                                                | Overexpressed in lung cancer                                                                  | 6                                         |  |  |  |  |  |  |
| Nek5                                                                                                               | 10                             | Regulation of centrosome<br>integrity                                                                           |                                                                                               | 3                                         |  |  |  |  |  |  |
| Nek6                                                                                                               | 75                             | Required for the progression of mitosis                                                                         | Overexpressed in several<br>tumors - breast, colon, lung<br>and gastric                       | 9                                         |  |  |  |  |  |  |
| Nek7                                                                                                               | 50                             | Required for spindle assembly<br>and cytokinesis, mediates<br>NLPR3 mediated inflammation                       | Novel target for inflammatory<br>symptoms of gout,<br>atherosclerosis and Type II<br>diabetes | 8                                         |  |  |  |  |  |  |
| Nek8                                                                                                               | 45                             | Formation and regulation of cilia                                                                               | Cilliopathies - Polycystic<br>Kidney Disease, nephronitis                                     | 2                                         |  |  |  |  |  |  |
| Nek9                                                                                                               | 39                             | Required for microtubule formation                                                                              | Overexpressed in gliomas and kidney carcinoma cells                                           | 8                                         |  |  |  |  |  |  |
| Nek10                                                                                                              | 10                             | Regulates cell cycle checkpoint<br>in response to DNA damage                                                    | Anticancer target by inhibition of cell cycle checkpoint                                      | 1                                         |  |  |  |  |  |  |
| Nek11                                                                                                              | 11                             | Regulates cell cycle checkpoint<br>in response to DNA damage                                                    | Anticancer target by inhibition of cell cycle checkpoint                                      | 5                                         |  |  |  |  |  |  |
| ERBB2°                                                                                                             | 5646                           | Involved in the regulation of a variety of vital functions, such as cell growth, differentiation, and apoptosis | Overexpressed in breast carcinomas and other types of malignancies                            | 7                                         |  |  |  |  |  |  |
| <sup>a</sup> - Based on                                                                                            | keyword search i               | n title/abstract in PubMed                                                                                      | 2017)                                                                                         |                                           |  |  |  |  |  |  |

<sup>b</sup> - Commercial assay availability based on 10 kinase vendors (Drewry et al. 2017) <sup>c</sup> -Yu, D.; Hung, M. C., Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene 2000, 19 (53), 6115-21.