Environ Health Perspect

DOI: 10.1289/EHP2395

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Identification of Smoking-Associated Differentially Methylated Regions Using Reduced Representation Bisulfite Sequencing and Cell type–Specific Enhancer Activation and Gene Expression

Ma Wan, Brian D. Bennett, Gary S. Pittman, Michelle R. Campbell, Lindsay M. Reynolds, Devin K. Porter, Christopher L. Crowl, Xuting Wang, Dan Su, Neal A. Englert, Isabel J. Thompson, Yongmei Liu, and Douglas A. Bell

Table of Contents

Figure S1. (A–J) Differential methylation tracks (Δ Methylation) and SM-DMRs displayed across sample groups and across CRU-RRBS-Cell types with CD14+ histone modifications and transcription factor clusters (TFs) for (A) *HOXA5* region, (B) *AHRR*, (C) *AHRR-C5orf55-EXOC-AS*, (D) *ALPPL2*, (E) *PPP1R15A* (*GADD34*), (F) *F2RL3*, *F2RL3-CPAMD8*, (G) *SLC24A3*, (H) *RDX*, (I) *SASH1*, and (J) *LRP5*. Boxed areas in each panel show the region of interest. UCSC genome browser views display RRBS results and additional Roadmap Project histone modifications and ENCODE project Chipseq data.

Figure S2. The correspondence between RRBS and pyrosequencing measurements of DNA methylation at SM-DMRs for overlapping CRU subjects. (A-G) Plots show RRBS and pyrosequencing determined measurements of DNA methylation at SM-DMRs. Individual regions (A-F) and overall (G) with their corresponding Pearson correlations are denoted in different color and plotted separately as indicated. LRP5 is not shown.

Figure S3. Pyrosequencing measurements on HOXA5 and RDX SM-DMRs. (A, B) Upper panels show genome browser tracks for (top) Roadmap whole genome bisulfite sequencing (WGBS) in monocytes shows location of all CpGs in region, reference gene, differentially methylated CpGs by RRBS (red downward bar = loss of methylation, blue upward bar, gain of methylation), and RRBS DMR (black bar).

Figure S4. The correlation between AHRR SM-DMR, mRNA, eRNA, and cotinine levels among a subset of eight smokers and eight nonsmokers from the CRU-RRBS, CRU-mRNA and CRU-eRNA subgroups. (A) The correlation between AHRR mRNA, and eRNA expression (R2=0.98, p <0.0001). (B) eRNA was significantly correlated with serum cotinine levels (R2=0.65, p=0.0007). (C) The correlation between average AHRR SM-DMR methylation from RRBS and mRNA expression (R2=0.45, p=0.0042). Squares represent nonsmokers, while circles indicate smokers.

Table S1. Pyrosequencing and BSAS assay primers.

Table S2. mRNA Real-time Polymerase Chain Reaction Assays.

 Table S3. Enhancer RNA RT-PCR Primers.

References

Additional File- Excel Document

Figure S1. (A–J) Differential methylation tracks (Δ Methylation) and SM-DMRs displayed across sample groups and across CRU-RRBS-Cell types with CD14+ histone modifications and transcription factor clusters (TFs) for (A) *HOXA5* region, (B) *AHRR*, (C) *AHRR*-*C5orf55-EXOC-AS*, (D) *ALPPL2*, (E) *PPP1R15A* (*GADD34*), (F) *F2RL3*, *F2RL3-CPAMD8*, (G) *SLC24A3*, (H) *RDX*, (I) *SASH1*, and (J) *LRP5*. Boxed areas in each panel show the region of interest. UCSC genome browser views display RRBS results and additional Roadmap Project histone modifications and ENCODE project Chipseq data. Each panel includes the following browser tracks (from top to bottom):

1. Roadmap Epigenome Whole Genome Bisulfite Sequencing CD14+ cells (nonsmoker)

2. Refseq genes

3. CpG islands

4. 450K Smoking-associated CpGs (from Joehanes et al. 2016)

5-10: CD14+ monocytes RRBS methylation difference relative to nonsmokers (ΔMeth%, red, negative change = loss of methylation, blue, positive change =gain of methylation) and SM-DMR location (RRBS-Combined, MESA-RRBS and CRU-RRBS analyses)

11-15: Differential methylation tracks for five CRU-RRBS-Celltypes (CD15+ ΔMeth%, CD19+ ΔMeth%, CD4+ ΔMeth%, CD8+ ΔMeth%, CD56+ ΔMeth%)

16-19: Roadmap Histone modifications, CD14+ monocytes (nonsmoker)

20. ENCODE transcription factor ChIPseq clusters (compressed view).

(K) HOXA region showing nominally significant differentially methylated CpGs at previously unknown smoking-associated locations in or near HOXA5-A6. 450K Smoking-associated CpGs are CpG locations identified as smoking associated by Joehanes et al (2016.)

Figure S2. The correspondence between RRBS and pyrosequencing measurements of DNA methylation at SM-DMRs for overlapping CRU subjects. (A-G) Plots show RRBS and pyrosequencing determined measurements of DNA methylation at SM-DMRs. Individual regions (A-F) and overall (G) with their corresponding Pearson correlations are denoted in different color and plotted separately as indicated. LRP5 is not shown.

Figure S3. Pyrosequencing measurements on HOXA5 and RDX SM-DMRs. (A, B) Upper panels show genome browser tracks for (top) Roadmap whole genome bisulfite sequencing (WGBS) in monocytes shows location of all CpGs in region, reference gene, differentially methylated CpGs by RRBS (red downward bar = loss of methylation, blue upward bar, gain of methylation), and RRBS DMR (black bar).

Insert shows the RRBS CpGs that were tested. Lower panels show the differential methylated CpGs from HOXA5 and RDX DMRs examined by pyrosequencing in the CRU-Pyro group. At each CpG the difference between smokers and nonsmokers was similar to the RRBS result but this difference was not significant. Subject numbers for successful pyrosequencing assays are indicated for nonsmokers and smokers. Blue open squares represent nonsmokers, red circles indicate smokers.

Figure S4. The correlation between AHRR SM-DMR, mRNA, eRNA, and cotinine levels among a subset of eight smokers and eight nonsmokers from the CRU-RRBS, CRU-mRNA and CRU-eRNA subgroups. (A) The correlation between AHRR mRNA, and eRNA expression (R2=0.98, p <0.0001). (B) eRNA was significantly correlated with serum cotinine levels (R2=0.65, p=0.0007). (C) The correlation between average AHRR SM-DMR methylation from RRBS and mRNA expression (R2=0.45, p=0.0042). Squares represent nonsmokers, while circles indicate smokers.

Supplemental Table S1. Pyrosequencing and BSAS assay primers

GenelD	Forward Primer	Reverse Primer	Sequencing Primer	CpGs
ALPPL2	TTGGTGGAGTTGTTTTTTGAGAGAAGT	САТСССАТААСССАААТААССС	ACCTCCATACCATAAAACCC	chr2:233284491, 233284494, 233284501, 233284504, 233284510, 233284517
AHRR- C5orf55- EXOC-AS	TGGGAGGGGGGATAAAGAAGG	CCCCACTCCCCTCCTCAA	AGGTAAATTAGGAGGTAGAAA	chr5:403298, 403307, 403312
F2RL3 DMR1	TTGTAGAGGTAGGGGTTGATTGAG	ΑΑΑCACCCAACCCAAAAACAATA	GATAGTGATATTTTGGAGTTT	chr19:17000465, 17000476
F2RL3 DMR2	AGTTGTTTATAGGTTGGATGTTTTGTTAAT	CCCACAACCTAACATTCTATTC	GTTTGTTTAGAAAGAGGTT	chr19:17004845, 17004874
HOXA5	TTTTGGTAAGTTTGGAAGTTAGGATTT	CCCAACAAAACCCAATCTCT	GGGTTTTTAGTTGGGTTTTGAA	chr7:27184521, 27184532, 27184535, 27184538, 27184540, 27184544, 27184550
LRP5	GGTTTAGGTAGTTTGTTTGTTTGGTATA	BIO-CCTAAAATTAAACCTTTAACATATCTCC	ATTTGTTTTGTTTTTTATTGAAG	chr11:68148333, 68148355, 68148365
PPP1R15A	GTTAGGGTTTTTGGGAGTAGT	ΑΑΤΤΟΟΤΑΑΑΑΟΟΤΑΟΟΟΑΑΑΟΤΟΤΑΑΟΟΟ	TTTTGGGAGTAGTTTGT	chr19:49378964, 49378970, 49378976, 49378981, 49378985, 49378988
RDX	AGTGGGTATAGGTTAGTGGA	BIO-AACTCCCTAACCTCTTAAACTT	GGGTATAGGTTAGTGGAT	chr11:110079853, 110079855, 110079860, 110079864, 110079866,110079881
SLC24A3	TGAAGGATTTAAGGGGATTGTTTAATATA	СССАТААСТААААААССААСАСТТТТТСТС	TTTTTTAATTTTTTTTAGAATAGG	chr20:19194143
AHRR- BSAS	TTTTTTGGTTGTAGTGAATTTTG	AAAAACCAACCTATCCCCTAC	NA	chr5:373193, 373199, 373203, 373248, 373250, 373315, 373353, 373355, 373378, 373398, 373423, 373476, 373490, 373494

Gene	Assay ID	
ACTB	HS99999903_m1	
ALPPL2	HS00741068_g1	
AHRR	HS01005075_m1	
AHRR-	HS00744706_s1	
C5orf55-		
EXOC-AS		
F2RL3-	HS00610855_m1	
CPAMD8		
F2RL3	HS01006385_g1	
HOXA5	HS00430330_m1	
LRP5	HS00182031_m1	
PPP1R15A	HS00169585_m1	
RDX	NT	
SASH1	HS00323932_m1	
SLC24A3	HS00915003_m1	

Supplemental Table S2. mRNA Real-time Polymerase Chain Reaction Assays

Supplemental Table 3. Enhancer RNA RT-PCR Primers

SM-DMR enhancer regions	Locus	Primers-Forward	Primers-Reverse
AHRR - Region 2	chr5:371604-371689	TGTCCTAGACCCACCTGTCC	GCCTGGAAGGACAGTCAGAG
AHRR - Region 3	chr5:371947-372028	TTCCTCTCATCTGGCTGCTT	AGGTCCCTATTGGCAGGACT
AHRR - Region 4	chr5:372157-372267	CTCAGTGCCTTCCCTCCTC	ACAGTCCCCTCTGTGCAGTC
AHRR - Region 5	chr5:372483-372586	CATCTCGCCTTCTTTTCAGC	GGCTGAAGTTTCCTGCTCTG
AHRR - Region 6	chr5:372694-372825	CTACCAGGGAATTGGCTTCA	ACTCGGTCTGACCCACAGTC
AHRR - Region 7	chr5:373202-373306	TGGGGACTGTTCACCTCTG	GCAATGAGAGGCTGGAAGG
AHRR - Region 8	chr5:373630-374020	GACTGGGGCTGGAGAGGT	GCCTTTTCCCCGAGAAGC
AHRR - Region 9	chr5:374334-374463	GGTCTGCACTTGGGAGAAAG	GAAACCCCAGCATCCTAGC
AHRR - Region 10	chr5:374798-375014	CTGAATCAATGGCTCCCAGT	TGCTCTGAGCTCTCCTCACC
AHRR - Region 11	chr5:376293-376403	AGGAGGGGACAGAGAGCAGT	CTCAGATCAGCCAGGAGAGG
AHRR - Region 12	chr5:375746-375863	CCCTCAGTCCTCTCAGAAGC	GACTGACCAAGGGCTGAGTT
AHRR - Region 14	chr5:369226-369349	CCATGTGTCAAGAGCAGCAC	CCTCAGGTGTCCCAGAAAAC
AHRR - Control Region 1 (Locus	chr5:349510-349652	GTGAAACCCCGTCTCCACTA	GTGATCTTGGCTCACTGCAA
A)			
AHRR - Control Region 21	chr6:2613040-	GCAGCCATAAAAAGGGTGAG	GCGGTGTTTGGTTTTCTGTT
	2613144		
ALPPL2-6eRNA	chr2:232421401- 232421482		GAGACAACCAGAAGCCCAGA
C5orf55-EXOC-AS-1eRNA	chr5:402729-402817	GCATTTACCCAAAGGAGCTG	CTGTGCATTCACTGGTGGAC
F2RL3-1eRNA	chr19:16889457- 16889569	TGTCATGTCCAGCTGTTTCC	GGAGAGAGAGGGGGACCTCAG
F2RL3-CPAMD8-1eRNA	chr19:16893971- 16894052	CGGCTGGATGTTTTGCTAAT	CATTCCCAGAAAGCACTCGT
HOXA5-1eRNA	chr7:27143756- 27143844	CGAATCACGTGCTTTTGTTG	CTCCACCCAACTCCCCTATT
LRP5-2eRNA	chr11:68380478- 68380570	CCGACAGCTAGAAGGAAGGA	TGCCACTCTCACACAAAAGC
SASH1-1eRNA	chr6:148363394- 148363485	GGCCTCCCAACACTTCTTT	AGGTTGCAGTGAGCGAAGAT

References

Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, et al. 2016. Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet 9:436-447.