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Results	are	organized	by	DAG	(refer	to	figures).	DAG‐specific	assumptions	are	listed	at	the	
beginning	of	each	section.	Results	are	given	for	expected	values	of	the	regression	
coefficients	bi	(for	exposure	Xi)	under	the	usual	assumptions	for	linear	regression.	Some	
results	are	elementary.		
	 For	simplicity,	assume	variables	are	standardized	(centered	and	variance=1).	For	
DAG	1,	we	provide	results	relaxing	this	assumption.	A	similar	procedure	can	be	followed	to	
generalize	results	for	other	cases.	
	 The	results	for	inequalities	can	depend	on	the	signs	of	coefficients	as	multiplying	or	
dividing	by	negative	numbers	reverses	the	direction	of	inequalities.	
	
	
DAG	in	Figure	1	

	 Y  0  c1X1  	
	
General	case	allowing	for	exposure	variables	with	variance	not	equal	to	one	(i.e.	not	
standardized)	
	
Single	exposure	analyses:	
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Mutually	adjusted	analysis:	
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When	exposure	variances	equal	one	(i.e.	standardized),	the	above	equations	simplify	with	
cov[X

1
, X

2
] r

12
	

	
Single	exposure	analyses:	
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Mutually	adjusted	analysis:	

	

b1 
var[X2 ]cov[X1,Y ] cov[X1, X2 ]cov[X2,Y ]

var[X1]var[X2 ] cov2[X1, X2 ]


c1  r12 c1r12 
1 r12

2
 c1

b2 
var[X1]cov[X2,Y ] cov[X1, X2 ]cov[X1,Y ]

var[X1]var[X2 ] cov2[X1, X2 ]


c1r12  r12 c1 
1 r12

2
 0

	

	
	
	
	
DAG	in	Figure	2a	

	
Y  0  c1X1  c3U '
cov[X1,U '] c2,   cov[X2,U '] 0  since X1 is a collider on X2  U  X1  U'

	

	
Single	exposure	analyses:	

	
b1  cov[X1,Y ] cov[X1,0  c1X1  c3U '] c1  c3 cov[X1,U '] c1  c3c2

b2  cov[X2,Y ] cov[X2,0  c1X1  c3U '] c1 cov[X1, X2 ] c3 cov[X2,U '] c1r12

		
Mutually	adjusted	analysis:	
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The	sign	of	b2	will	flip	when	adjusting	for	X1	if	c1	and	c2c3	have	the	same	sign.	
The	absolute	value	of	the	adjusted	b2	exceeds	the	crude	estimate	when:	
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Other	cases	can	be	derived	when	r12,	c1,	or	c2c3<0,	recalling	that	inequalities	reverse	
direction	when	multiplying	or	dividing	by	negative	numbers.	
	
	
	
DAG	in	Figure	2b	
The	derivation	is	identical	to	2a	with	Z	replacing	X2,	c4	replacing	r12.	
	
	
	
DAG	in	Figure	3a	
This	is	a	special	case	of	2a	with	c1=0.	
	
	
	



	
DAG	in	Figure	3b	

	
Y  0  c1X1  c4X2  c3U '
cov[X1,U '] c2,   cov[X2,U '] 0

	

	
Single	exposure	analyses:	
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Mutually	adjusted	analysis:	
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b1:	the	bias	of	the	crude	estimate	exceeds	bias	of	the	adjusted	estimate	when:	
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The	same	condition	implies	that	the	adjusted	b2	will	be	positive	but	biased	toward	zero.	
Other	cases	can	be	derived	when	r12<0,	c4<0	or	c2c3<0.	
	
	
	
	
DAG	in	Figure	4a	
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cov[X1, X2 ] r12,  cov[X1, X3] r13,  cov[X2, X3 ] r23
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Single	exposure	analyses:	
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Mutually	adjusted	for	X1	and	Xi	(either	X2	or	X3):	
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Mutually	adjusted	for	all	three	exposures	(ignoring	the	constant	coefficient	b0):	
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Adjusting	for	X3	amplifies	the	bias	for	b1	beyond	adjusting	for	just	X2	when:	
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Note	that	the	determinant	of	the	exposure	correlation	matrix	is	the	denominator	of	the	
amplification	factor	(as	it	also	is	for	2	exposure	variables).	
det[A]>0	because	exposure	variance‐covariance	matrices	are	positive	semidefinite,	positive	
definite	if	non‐singular	(Horn	RA	and	Johnson	CR.	Matrix	Analysis.	Cambridge	University	
Press	1985;	pg	392,	396‐399).	Therefore,	the	amplification	is	always	larger	for	b1	unless	
r12r23=r13	(and	similarly	for	adjusting	for	X2	beyond	adjusting	for	X3).	We	hypothesize	that	
this	will	also	be	true	for	higher	order	systems.	
	
Addition	to	DAG	in	Figure	4a	of	an	arrow	from	X2	to	Y	
We’ll	analyze	the	effect	on	b1	(analyses	for	b2	and	b3	not	shown).		No	new	computations	are	
required	as	the	results	can	be	derived	from	earlier	DAGs,	i.e.,	adding	X3	does	not	change	the	
pathways	between	X1	and	Y	or	X2	and	Y.	The	crude	estimate	of	b1	is	equivalent	to	that	in	
DAG	3b:	
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The	estimate	of	b1	adjusted	for	X2	alone	is	also	equivalent	to	that	in	DAG	3b:	
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The	estimate	of	b1	adjusted	for	X2	and	X3	is	the	same	as	that	given	above	for	DAG	4a:	
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Adding	the	arrow	from	X2	to	Y	does	not	change	this	computation	because	the	new	pathway	
from	X3	to	Y	through	X2	is	blocked.	
	 Compared	to	DAG	3b,	the	confounding	caused	by	U’	may	be	further	amplified	by	
adding	X3	and	certainly	would	be	if	r23=0	(as	in	DAG	4b).	Similar	to	DAG	3b,	the	choice	of	
whether	to	adjust	the	X1‐Y	association	for	both	X2	and	X3	requires	a	balancing	of	
confounding	through	X2	vs.	amplification	of	confounding	through	U’,	but	the	latter	may	now	
be	even	larger.	The	bias	of	the	crude	b1	is	larger	than	fully	adjusted	
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DAG	in	Figure	4b:	
This	is	a	special	case	of	the	previous	derivation	with	r23=0.	The	amplification	factor	for	b1	
then	depends	solely	on	det(A).	
	
DAG	in	Figure	5a	

	

Y  b0  c1X1  c3U '
cov[X1,U '] c2c4

cov[X2,U '] c2c5

cov[X1, X2 ] c4c5  r12  since variables are standardized

	

	
Single	exposure	analyses:	
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b2  cov[X2,Y ] cov[X2,b0  c1X1  c3U '] c1r12  c3 cov[X2,U '] c1r12  c3c2c5

	

	
Mutually	adjusted	analysis:	
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b1:	adjusted	bias	<	crude	bias	when:	
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b2:	adjusted	bias	<	crude	bias	when:	
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Other	cases	can	be	derived	when	c5,	c2c3,	or	c1c4<0.	
	
	
	
	
DAG	in	Figure	5b	

	

Y  b0  c1X1  c3U '
cov[X1,U '] c2

cov[X2,U '] c4

cov[X1, X2 ] c2c4  r12    since variables are standardized

	

	
	
Single	exposure	analyses:	
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Mutually	adjusted	analysis:	
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DAG	in	Figure	5c	

	

Y  b0  c1X1  c3U '
cov[X1,U '] c2     because X2  is a collider on X1  U  X2  U'

cov[X2,U '] c4     because X1 is a collider on X2  U  X1  U'

cov[X1, X2 ] r12     includes components on both X1  U  X2  and  X1  U' X2
	



	
Single	exposure	analyses:	
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Mutually	adjusted	analysis:	
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DAG	in	Figure	5d	
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Single	exposure	analysis:	
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Mutually	adjusted	analysis:	
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Suppose	the	crude	and	adjusted	b1	and	b2	are	greater	than	zero.	
b1:	The	bias	of	the	crude	estimate	exceeds	bias	of	the	mutually	adjusted	estimate	when	
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b2:	The	bias	of	the	crude	estimate	exceeds	bias	of	the	mutually	adjusted	estimate	when
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