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Results are organized by DAG (refer to figures). DAG-specific assumptions are listed at the
beginning of each section. Results are given for expected values of the regression
coefficients b; (for exposure X;) under the usual assumptions for linear regression. Some
results are elementary.

For simplicity, assume variables are standardized (centered and variance=1). For
DAG 1, we provide results relaxing this assumption. A similar procedure can be followed to
generalize results for other cases.

The results for inequalities can depend on the signs of coefficients as multiplying or
dividing by negative numbers reverses the direction of inequalities.

DAG in Figure 1
Y=4,+CcX +¢&

General case allowing for exposure variables with variance not equal to one (i.e. not
standardized)

Single exposure analyses:
b — cov[X, Y] _cov[X, B +c X +&] _cvar[X,] c

tovar[X,] var[X ] var[X,]
_cov[X,,Y] cov[X, B +c X +¢&] ccov[X,X,]
2 var[X,] var[X,] var[X,]

Mutually adjusted analysis:
5 VarX,1covIX, Y]-covX,, X Jeov[X, Y] _ VarX, (e, var[X,) ~covIX,, X;](c, covIX;, X, ])

' var[ X, ]var[X,]-cov’[ X, X,] var[ X, Jvar[X,]-cov’[ X, X,] !
- var[X,Jcov[X,,Y]-cov[X,, X,Jcov[ X Y] var[Xl](clcov[Xl, Xz])—COV[Xl, Xz](clvar[xl]) .
2 var[ X Jvar[X,]-cov’[ X, X,] - var[ X Jvar[X,]-cov’[ X, X,] -

When exposure variances equal one (i.e. standardized), the above equations simplify with
cov[X,,X,]=r,

Single exposure analyses:

cov[X,,Y
b= ﬁ =cov[X, B, +c X, +¢]=¢;
1

b, — cov[X,,Y]

, =CoV[X,, B, +C X, +¢&]=c,cov[X, X,]=c,r,
var[X,]



Mutually adjusted analysis:
b, = VarDX,JeovTX, Y- covTX,, X, JoovIX,, Y] _ &= (G)

var[X,]var[X,]-cov’[X,, X,] 1-r '
o = Var[X,Jcov[X,, Y]-cov[X,, X,]cov[X, Y] _ Gifis ;s (¢) 0
2 var[X,]var[X,]-cov’[X,, X,] 1-r}

DAG in Figure 2a
Y =4 +c X +cU+¢

cov[X,,UT=c,, cov[X,,UT=0 since X, isacollideron X, <~ U — X, < U’
Single exposure analyses:
b, =cov[X,,Y]=cov[X,, B, +¢, X, +cU'+¢g]=c +c;cov[X,U"]=c +cCcC,

b, =cov[X,,Y]=cov[X,, 5, +¢, X, +cU+¢&]=c cov[X,, X,]+c;cov[X,,U=cr,

Mutually adjusted analysis:

bl _ COV[Xl,Y]— I’12 COV[XZ,Y] _ (Cl+C3CZ)_ r12 (Clrlz) —C + C3CZ
- - - ™
1-r; 1-r; 1-r;
b, — COV[X, Y]-r, COVIX, Y] _ (Cuhz) —ha (G +CSCy) __h,C6,
2 1-1; 1-r; 1-1;

The sign of bz will flip when adjusting for X if c; and czc3 have the same sign.
The absolute value of the adjusted b exceeds the crude estimate when:
Lz% >1,C, <> 02—032 >c, provided r,,>0, ¢,>0, ¢,c,>0

1- o 1- o

_ 1,C,Cy
2
1- I,

Other cases can be derived when r12, c1, or c2c3<0, recalling that inequalities reverse
direction when multiplying or dividing by negative numbers.

DAG in Figure 2b
The derivation is identical to 2a with Z replacing Xz, c4 replacing ri».

DAG in Figure 3a
This is a special case of 2a with ¢;1=0.



DAG in Figure 3b
Y =4, +c X, +Cc, X, +cU'+¢e

cov[X,U"l=c,, cov[X,,U1=0

Single exposure analyses:
b, =cov[X,,Y]=cov[X,, B, +C X, +¢, X, +cU '+ &]=c¢ +C,I, +C;cov[X,UT=c, +C,K, +C.C,

b, =cov[X,,Y]=cov[X,, 5, +¢,X,+¢, X, +cU'+&]=cr, +C, +C,cov[X,,UT=cr, +C,

Mutually adjusted analysis:
_ cov[X,Y]-r,cov[X, Y] _ (Cl +Cylp + Cscz) —h (C1r12 + C4) —c 4+ C5C,

b1
2 2 1 2
1_r12 1- h, 1_r12
b, = COVIX,, Y]-r, cov[X, Y] _ (Cilip +Ca) =M (G +Calip +CoCp) _ o _ GGl
2 2 - 2 v 2
1_'12 1_r12 1—I’12

b1: the bias of the crude estimate exceeds bias of the adjusted estimate when:

2
CZC3 r;I.2 rZ.I.Z 1
oo €,y > 725 € 0,0, > Oy 07 |43 €y > Gy ifr,c,C,C>0

2
12

12 12

The same condition implies that the adjusted b2 will be positive but biased toward zero.
Other cases can be derived when r12<0, c4<0 or c2c3<0.

DAG in Figure 4a
Y =4,+c X +cU'+¢
cov[X;, X,]=1,, Cov[X,, X;]=1,, cov[X, X;]=1y
cov[X,U'l=c,
cov[X,,U"1=cov[X,;,U']=0

Single exposure analyses:
b, =cov[X,,Y]=cov[X,, B, +¢c,X, +cU'+e]=c, +c,cov[X,,U"l=c, +C,C,

b, =cov[X,,Y]=cov[X,, £, + ¢ X, +cU'+¢]=cy,+C,cov[X,,UT=cr,
b, =cov[X,,Y]=cov[X,, B, +¢, X, +cU'+g]=c,+c,cov[ X, U"l=cr,

Mutually adjusted for X; and X; (either X, or X3):
p, = COVIXu V1=t CoVIX, Y _ (G a) 0 (Gh) _ o | 6,
1-r 1-r

_cov[X, Y]-rcovX, Y] (Cifi)—i(C+CC) _ nicsc,

b
' 1-r? 1-r 1-r?




Mutually adjusted for all three exposures (ignoring the constant coefficient bo):

b=(X'X)" XY

cov[X,,Y] C, +CyC,
XY =| cov[X, Y] |=| ¢,
COV[X,,Y] Cifs

2 2 2
det[A]=1-1; — 15—+ 21,040,

2
1 1-r; lalz—hy ol — Mg €, +C5C,

= fals — 1y
det[A] ,
ol =l Tl — T 1- P Cihis

2
1- r13 [P r13 - r23 Gh,

(1_ I’ZZS)(Cl + Cscz) +(r13r23 - 'lz)clrlz + (r12r23 - '13)01'13 e+ (1_ I’223)C3C2

B det[A] 2 det[A]
b — (r13r23 - r12)(01 + Cscz) +(1_ '123)C1'12 +(I’12I’13 - rzs) C.hs _ (r13r23 - r]_z)cgcz
2 det[A] det[A]
b= (r12r23 - '13)(01 + C3CZ)+(r12r13 - rz3)01r12 +(1_ r122)01"13 _ (|’12r23 - |’13)C3CZ
3 det[A] det[A]

Adjusting for X3 amplifies the bias for b1 beyond adjusting for just Xz when:

1_r223 C,Cq c,C
2 ( 2 )2 : 32 <—>(1—r223)(1—r122)>1—r1§—ré—r223+2r12r13r23,
1-r,—r =, +2r,, L, 1-—rt
12 13 23 12713%23 12
if det[A]>0, c,c,>0
2

2 2 2,2 2 2 2 2 2 2
©l- f, =l + 1,0 >1- f, —l3— Ty +2I’12'-13'-23 I+ 1 _2r12r13r23 :(rurza - r13) >0

Note that the determinant of the exposure correlation matrix is the denominator of the
amplification factor (as it also is for 2 exposure variables).

det[A]>0 because exposure variance-covariance matrices are positive semidefinite, positive
definite if non-singular (Horn RA and Johnson CR. Matrix Analysis. Cambridge University
Press 1985; pg 392, 396-399). Therefore, the amplification is always larger for b; unless
ri2r23=r13 (and similarly for adjusting for X, beyond adjusting for X3). We hypothesize that
this will also be true for higher order systems.

Addition to DAG in Figure 4a of an arrow from X; to Y

We'll analyze the effect on by (analyses for b2 and bz not shown). No new computations are
required as the results can be derived from earlier DAGs, i.e., adding X3 does not change the
pathways between X; and Y or Xz and Y. The crude estimate of b, is equivalent to that in
DAG 3b:




b =c +r,c,+C_C,

1274
The estimate of b1 adjusted for X; alone is also equivalent to that in DAG 3b:
b =c+ C2C32
1- P

The estimate of b1 adjusted for X; and X3 is the same as that given above for DAG 4a:
(1— r223)c2c3
L et Al
Adding the arrow from X2 to Y does not change this computation because the new pathway
from X3 to Y through X is blocked.

Compared to DAG 3b, the confounding caused by U’ may be further amplified by
adding X3 and certainly would be if r23=0 (as in DAG 4b). Similar to DAG 3b, the choice of
whether to adjust the X1-Y association for both X; and X3 requires a balancing of
confounding through Xz vs. amplification of confounding through U’, but the latter may now
be even larger. The bias of the crude b; is larger than fully adjusted

¢,C,(L-13) ¢, (L~ 1, —det[A]) ,C, (L~ 1, —det[A])
————— 0,0, > <C, > ifr,,
det[A] det[A] I, det[A]

when r,C, +C,C,>

C,,C,C,>0

DAG in Figure 4b:
This is a special case of the previous derivation with r23=0. The amplification factor for by

then depends solely on det(A).

DAG in Figure 5a
Y =b,+c X, +cU'+¢

cov[X,,U"T=c,c,
cov[X,,U"l=c,C,
cov[X,, X,]=c,c, =1, since variables are standardized

Single exposure analyses:
b, =cov[X,,Y]=cov[X, b, +¢, X, +cUT=c, +c,cov[X,U"]=c, +c,C,C,

b, =cov[X,,Y]=cov[X,,b, +¢,X; +cUT=c,K, +cscov[X,,U"T=c,K, +C,C,Cc

Mutually adjusted analysis:
b = COV[X,, Y]-r, cov[X, Y] _ (CL+C5C,C, ) — Mip (Culiz +CCoCs )
1-1; 1-1;

2
Cy —1,Cs 1- Cs
= Cl + CSCZ [7 = Cl + C3CZC4 ﬁ

V)

_ CoV[X,,Y]-r,cov[X, Y] (Cihp +CCyC5 ) — 1y (€, +C5C,C,)
1- r;l.i 1- rli

2
. [ﬂj e [1—_(:}
1-r, 1-CiG

b1: adjusted bias < crude bias when:

b2



2
—Cg 2 2.2 22 2 2 .
C,C,C, [T% C,C,C, <>1—c; <l-c;c <> cCiC; <Ci«>C; <1 ifc,c,c,>0

2.2
4¥s5

b2: adjusted bias < crude bias when:
2

2 2 2.2
C,C.C 1_—C“<ccc +C,C.C. <> C,C -G <CC, >C,C,| et Gl | o
2351 10405 T LyLslg 2U3 — o 104 2U3 202 104
4¥5

2.2
—C,Cg T vabs

2

c;—-1 . .
< C,C.C (%] <0<cc, sinceci-1<0andl-cic?>0, ifc,c,Cyc,C,>0
45

Other cases can be derived when cs, c2c3, or c1c4<0.

DAG in Figure 5b
Y =b,+c X, +cU'+¢
cov[X,Ul=c,
cov[X,,U'l=c,
cov[X,, X,]=c,c, =1, since variables are standardized

Single exposure analyses:
b, =cov[X, Y ]=cov[X b +c X +cUT=c +c,cov[X ,U'l=c +cCgC,

b, =cov[X,,Y]=cov[X,,b, +¢ X +cU]=cr,+c,cov[X,UT=cr,+c,C, =CC,C,+CC,

Mutually adjusted analysis:

b 2
' 1-r? 1-r;
Cs (Cz B r1204) - Cj
=C+ 12 =C +CpC, 1o
V) T2
o = COVIX,.Y]-r,cov[X,,Y] _ (Clrlz +CCy) 1y (C1+Cscz)
2 2 N 2
1-r, 1-r,
Ca(c4 B rlZCZ) 1_05
A b
T2 T2y
DAG in Figure 5c

Y =by+c, X, +cU'+e

cov[X,U"l=c, because X, isa collider on X, <~ U — X, « U’

cov[X,,U"l=c, because X, isacollideron X, < U— X, « U’

cov[X,, X,]=r, includes components on both X, < U — X, and X, <~ U'— X,



Single exposure analyses:
b, =cov[X,Y]=cov[X, b, +¢ X +cU'+&]=c +c,cov[X,U]=c, +c,C,

b, =cov[X,,Y]=cov[X,,b, +¢ X, +cU'+¢g]=cr, +C,cov[X,,UT=r,cC +CC,

Mutually adjusted analysis:
_ COVIXy Y15, COVX,, Y] _ (G1#CsC;) ~ T (Cifip +:C,)

b
' 1—I‘122 1—I’1§
C,(C,—I,C c.C c
:c1+—3( 22 4):c1+ 23 (1—r12—4J
1"12 1"12 C,
b, = SOVIX, Y-, cov[X,, Y] _ (Cify +C5Cy ) =1y (€, +C5Cy)
2 2 2
1_'12 1_'12
203(04_'1202): CsCy {1_rzc_2j:_ C,Cs rz_&J:_rlzCzcs{ _ C, j
2 2 1 2| L 2
1- I 1- I C, 1- P C, 1- I I,C,
DAG in Figure 5d

Y =b,+c X, +¢, X, +cU'+&
cov[X,,UT=c, because X, isa collider on X, <~ U — X, « U’
cov[X,,UT=c, because X, isa collideron X, «-U— X « U’

cov[X,, X,]=r, includes components on both X, <~ U — X, and X < U'— X,

2

Single exposure analysis:
b, =cov[X,,Y]=cov[X b +c X +c.X,+cU +¢e]=c +cl,+C,cov[ X ,UT=C +C.I,+CC,

b, =cov[X,,Y]=cov[X,,b +c X +c X, +cU+e]=cr,+Cc +c,cov[X,,U']=r.C +C +CC,

Mutually adjusted analysis:
cov[X,,Y] (Cl +1,0 +C3C2)_ I

(clr12 +C,+C,C 4)

b — cov[X,,Y]-r, )
' 1-r? 1-r?
12 12

c,(C,—r.C c.C c

=, + o(% " 4)=c1+ 23 |11,

1-r] 1-r’ c

12 12 2

b COV[XZ,Y]—GZCOV[XPY]_(Clrlz+C5+C3C4)_'12(C1+'12C5+C3C2)

2 2 - 2
1-r, 1-n

2
c(c—rc) C,C c c,C c r,C,C c
=C +L2122:(;+ 374 ]__['12_2 =Cc ——23 | 24 205_12_23 1—- 24
2

2
1- I, r,C



Suppose the crude and adjusted by and b; are greater than zero.
b1: The bias of the crude estimate exceeds bias of the mutually adjusted estimate when

2 2
(Czcs — 1,6, _<1_ rlz)czcs) (_r12C3C4 +1,6,C )

127273
rC.+CC. >—-" " ¢5rC.> or.C >
1275 273 2 1275 2 1275 2
1- I, 1- I, 1- P
c(—c +rc)
<—>05>3 4 e |fr12>0
1-r2
12
c(c —rc)
(—)CS+ 3 4 ;22 >
1-r

<>adjusted b, >0

bz: The bias of the crude estimate exceeds bias of the mutually adjusted estimate when

_ _ _ 2 2
03(04—7'1202) (C3C4 1,C,Cq (1 rlz)C3C4) (_'1202C3+'120304)
I,C,+CC, > ———"—L4>,.C > o, >
1-r2 1-r’ 1-r2
12 12 12
c (—c +r.C )
e > 2 Y jfr, >0
1-r2
12
c (c -r.c )
(—)C1+ 3 2 ;.2 4 >
1-r

<> adjusted b >0



