Environ Health Perspect

DOI: 10.1289/EHP2546

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehp508@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Changing Susceptibility to Non-Optimum Temperatures in Japan, 1972-2012: The Role of Climate, Demographic, and Socioeconomic Factors

Yeonseung Chung, Daewon Yang, Antonio Gasparrini, Ana M. Vicedo-Cabrera, Chris Fook Sheng Ng, Yoonhee Kim, Yasushi Honda, and Masahiro Hashizume

Table of Contents

Details for statistical methods.

Table S1. Summary statistics for daily mortality and mean temperature (study period: 1972.01.01 - 2012.12.31 for Hokkaido-Nagasaki, 1973.01.01 - 2012.12.31 for Okinawa).

Table S2. Prefecture-specific average of yearly measurements for each meta-variable.

Table S3. Association between each aspect (MMT, heat- and cold-related mortality risks) and each meta-variable in female mortality.

Table S4. Association between each aspect (MMT, heat- and cold-related mortality risks) and each meta-variable in male mortality.

Figure S1. Map of the 47 prefectures in Japan. Blue and red indicate the eastern and western prefectures, respectively.

Figure S2. Time-series plot for each of the prefecture-specific meta-variables. Blue and red indicate the eastern and western prefectures, respectively.

Figure S3. Prefecture-specific time-varying temperature distribution (minimum, $1st$, $25th$, $50th$, 75th, 99th percentiles, and maximum). At each time point, a temperature distribution was defined using the daily mean temperatures for the 6-year moving period with the specific time point as a center.

Figure S4. Region-specific time-varying minimum mortality temperature (MMT) together with the time-varying minimum mortality temperature percentile (MMTP) (top), time-varying heatrelated mortality risk (middle), and time-varying cold-related mortality risk (bottom). Black solid and dashed lines indicate the point estimate of the MMT and 95% point-wise confidence intervals, respectively. Blue line in the top panels indicates the MMTP.

Figure S5. Prefecture-specific time-varying minimum mortality temperature (MMT) and minimum mortality temperature percentile (MMTP). Black solid and dashed lines indicate the point estimate of the MMT and 95% point-wise confidence intervals, respectively. Blue line indicates the MMTP.

Figure S6. Prefecture-specific time-varying heat-related mortality risk. The heat-related risk was defined as the relative risk comparing the time-varying minimum mortality temperature (MMT) and the time-varying 99th temperature percentile. Black solid and dashed lines indicate the point estimate of the heat risk and 95% point-wise confidence intervals, respectively.

Figure S7. Prefecture-specific time-varying cold-related mortality risk. The cold-related risk was defined as the relative risk comparing the time-varying minimum mortality temperature (MMT) and the time-varying 1st temperature percentile. Black solid and dashed lines indicate the point estimate of the heat risk and 95% point-wise confidence intervals, respectively.

Figure S8. Prefecture-specific lag-cumulative relative risk (RR) curve at the first/last years (1972/2012) of the study period. Green and blue sold lines with shaded areas indicate the estimated RR curves with 95% confidence regions in 1972 and in 2012, respectively.

Figure S9. Gender-specific time-varying minimum mortality temperature (MMT) together with the time-varying minimum mortality temperature percentile (MMTP) (top), time-varying heatrelated mortality risk (middle), and time-varying cold-related mortality risk (bottom). Black solid and dashed lines indicate the point estimate of the MMT and 95% point-wise confidence intervals, respectively. Blue line in the top panels indicates the MMTP.

Figure S10. Cause-specific time-varying minimum mortality temperature (MMT) together with the time-varying minimum mortality temperature percentile (MMTP) (top), time-varying heatrelated mortality risk (middle), and time-varying cold-related mortality risk (bottom). Black solid and dashed lines indicate the point estimate of the MMT and 95% point-wise confidence intervals, respectively. Blue line in the top panels indicates the MMTP.

Details for statistical methods

Two-stage modeling

The first stage models the time-varying association between temperature and mortality for each prefecture. For i -th prefecture, let y_{it} be the daily death count on day t , $\mathbf{x}_{it} = (x_{it}, x_{it-1}, \dots, x_{it-L})'$ be the vector of daily mean temperatures on day t and over the previous L days and T_t be a variable representing time on day t . We use the following generalized linear model with a quasi-Poisson family.

$$
y_{it}
$$
 ~ quasi-Poisson(λ_{it}),

$$
log(\lambda_{it}) = \alpha_{i0} + s_i(\mathbf{x}_{it}, T_t; \boldsymbol{\beta}_i) + \sum_{j=1}^J h_{ij}(u_{ijt}; \boldsymbol{\gamma}_{ij}), \text{ for } t = L + 1, ..., N,
$$
 (1)

where $\lambda_{it} \equiv E(y_{it})$ is the expected mortality count for *i*-th prefecture on day *t*, α_{i0} is a model intercept, u_{ijt} is j-th control variable for *i*-th prefecture on day t , $h_{ij}(\cdot)$ is a flexible function to represent the effect of j-th control variable for *i*-th prefecture, characterized by γ_{ii} . In our analysis, $h_{ij}(\cdot)$ include a natural cubic B-spline of time with 8 degrees of freedom (df) per year to control for seasonality and long-term time trend and indicator variables to control for the day of week.

In equation (1), $s_i(\cdot)$ is a flexible function to describe a time-varying, nonlinear and delayed association between temperature and mortality, and we use a time-varying distributed lag nonlinear model (TV-DLNM) as follows. We first define a cross-basis (CB) for temperature and lag as in the time-constant DLNM. Let $f_1(\cdot), \dots, f_{v_x}(\cdot)$ be the basis to describe the nonlinear temperature-mortality association with dimension v_x and let $g_1(\cdot)$, \cdots , $g_{v_l}(\cdot)$ be the basis to describe the relationship along the lag space. Then, the TV-DLNM for $s_i(\cdot)$ is expressed as follows

$$
s(\mathbf{x}_{it}, T_t; \boldsymbol{\beta}_i) = \sum_{j=1}^{\nu_x} \sum_{k=1}^{\nu_l} \mathbf{r}'_{i,tj} \cdot \mathbf{c}_{k} \beta_{i,jk0} + T_t \sum_{j=1}^{\nu_x} \sum_{k=1}^{\nu_l} \mathbf{r}'_{i,tj} \cdot \mathbf{c}_{k} \beta_{i,jk1}
$$
(2)

where $\mathbf{r}_{i,tj} = (f_j(x_{it}), \dots, f_j(x_{it-L}))'$ is the transformed vector using j-th basis f_j in the temperature dimension and $\mathbf{c}_k = (g_k(0), \dots, g_k(L))'$ is the transformed vector using k-th basis g_k in the lag dimension. The coefficient vector $\boldsymbol{\beta}_i = (\beta_{i,110}, \beta_{i,120}, \dots, \beta_{i,\nu_x \nu_i 1})'$ has the length of $v_x \times v_i \times 2$ and is divided into the coefficients for the main term of the CB, β_i =

 $(\beta_{i,110}, \beta_{i,120}, \dots, \beta_{i,\nu_x \nu_i 0})'$ and the coefficients for the interaction between the CB and time, $\beta_i = (\beta_{i,111}, \beta_{i,121}, \dots, \beta_{i,\nu_x \nu_i1})'$, with the length of $\nu_x \times \nu_i$ for each. In our analysis, we use a quadratic B-spline for temperature with three internal knots and a natural cubic spline for the lag with three internal knows and thus, $v_x = 5$ and $v_l = 5$. Therefore, the coefficients in $s_i(\cdot)$ are $5 \times 5 \times 2 = 50$.

Because of the high dimensionality, we reduce the coefficients over the lag space as follows.

$$
\theta_i = \mathbf{M}_1 \boldsymbol{\beta}_i
$$

$$
V(\boldsymbol{\theta}_i) = \mathbf{M}_1 V(\boldsymbol{\beta}_i) \mathbf{M}_1' \tag{3}
$$

where β_i is the set of 50 coefficients, $M_1 = I_{2 \times v_x} \otimes 1'_{L+1}C$ is a reducing matrix, $\theta_i =$ $(\theta_{i,1,0}, \theta_{i,2,0} \dots, \theta_{i,\nu_x,1})'$ is the set of reduced coefficient with length of $\nu_x \times 2$, and $V(\theta_i)$ is the associated error covariance matrix. The θ_i is divided into the ones for the main term, θ_i = $(\theta_{i,1,0}, \theta_{i,2,0} \dots, \theta_{i,\nu_x,0})'$ and the ones for the interaction, $\theta_i = (\theta_{i,1,1}, \theta_{i,2,1} \dots, \theta_{i,\nu_x,1})'$ with length of v_x for each. In our analysis, as $v_x = 5$, the reduced set of coefficients θ_i include 10 coefficients, 5 for the main term and 5 for the interaction. The 10 coefficients represent the timevarying temperature-mortality association cumulated over the lags. Then, in the second stage, we apply a multivariate meta-analysis using the 10 coefficients and their standard error matrices obtained from the first stage modeling and obtain a pooled estimate and the best linear unbiased predictor (BLUP) for θ_i and its error matrices.

Estimating the time-varying MMT, heat- and cold-related mortality risks

Let $\hat{\theta}_l$ be the BLUP and $V(\hat{\theta}_l)$ be the corresponding error matrix. Using them, we first estimate the time-varying MMT over a grid of every 10 days for the whole study period. Let T_t represent a specific time point. Then, the MMT at that time point, denoted by MMT_{T_t} , can be derived as follows.

$$
\widehat{\eta_{l,x}} = \mathbf{M}_{2,x} \widehat{\boldsymbol{\theta}}_i = (\widehat{\eta_{l,x,0}}, \widehat{\eta_{l,x,1}})'
$$

$$
MMT_{T_t} = argmin_{x} (\widehat{\eta_{l,x,0}} + T_t \times \widehat{\eta_{l,x,1}})
$$
 (4)

where $M_{2,x} = I_2 \otimes q'_x$ is the reducing matrix and q_x is the vector of a specific temperature x transformed through the basis for temperature. However, the solution in (4) serves as a point estimate only and a confidence interval cannot be calculated. Therefore, we use a Monte Carlo simulation method (ref) to obtain the empirical distribution of the MMT at a given time T_t . We first simulate θ_i 's from a multivariate normal distribution with mean as the BLUP and the covariance as the standard error matrix and calculate the MMT for each simulated θ_i in the same way as in (4) . The procedure is expressed as follows.

$$
\boldsymbol{\theta}_{i,(j)} \sim N(\widehat{\boldsymbol{\theta}}_i, V(\widehat{\boldsymbol{\theta}}_i))
$$

$$
\boldsymbol{\eta}_{i,(j),x} = \boldsymbol{M}_{2,x} \boldsymbol{\theta}_{i,(j)}
$$

$$
MMT_{T_{t},(j)} = \operatorname{argmin}_{x} (\eta_{i,(j),x,0} + T_t \times \eta_{i,(j),x,1}) \quad (5)
$$

where (j) indicates j-th simulated sample. We obtain 1,500 samples of the MMT_{T_t} through the procedure (5) and use the sample mean as a point estimate and the sample $2.5th$ and $97.5th$ percentiles as an interval estimate for the MMT.

Next, we estimate the time-varying heat- and cold-related mortality risks over a grid of every 10 days for the whole study period. At a specific time point T_t , the heat- and cold-related mortality risks are calculated as follows.

Heat Risk_{T_t} = exp{(1, T_t) × (
$$
\mathbf{M}_{2, x_{\text{heat}, T_t}} \hat{\boldsymbol{\theta}}_i - \mathbf{M}_{2, MMT_{T_t}} \hat{\boldsymbol{\theta}}_i
$$
)}
Gold Risk_{T_t} = exp{(1, T_t) × ($\mathbf{M}_{2, x_{\text{cold}, T_t} \hat{\boldsymbol{\theta}}_i - \mathbf{M}_{2, MMT_{T_t} \hat{\boldsymbol{\theta}}_i}$)} (6)

where x_{heat,T_t} and x_{heat,T_t} are the 99th and the 1st percentile, respectively, of the temperature distribution at a specific time T_t . Also, pointwise confidence intervals were calculated through the corresponding transformation of $V(\hat{\theta}_i)$.

Investigating the relation with prefecture-specific meta-variables

Let y_{ij} be ith prefecture's estimated aspect (MMT, heat or cold risks) at time point j. The logged values of RR were used as y_{ij} for the heat and cold risks. Let x_{ij} be ith prefecture's metavariable observed at time j. Then, for each aspect and each meta-variable, we fit the following linear mixed effects model (LMEM). For i=1,..,46 (excluding Okinawa) and j=1,..., T (T is the number of yearly time points and ranges from 8 to 41 depending on the meta-variable),

$$
E(y_{ij}) = \alpha_{i0} + x_{ij}\alpha_1 + f_i(\text{Time}_{ij}; \beta_i) + longitude_i + latitude_i + e_{ij}, \qquad (7)
$$

where α_{i0} is ith prefecture-specific intercept (a combination of fixed intercept and random intercept), Time_i represents the time at jth time point for ith prefecture (the years for which each meta-variable is available), $f_i(\cdot)$ is a flexible function characterized by β_i to adjust for prefecture-specific nonlinear time trends, and e_{ij} are residuals with a 1st order autoregressive (AR(1)) within-prefecture residual correlation structure. For $f_i(\cdot)$, we used natural cubic spline with two internal knots placed at 1985 and 2000 for all meta-variables except for EPI. For EPI, we used a linear function because the yearly measurements were available only after 2003. Then, α_1 represents the association between each aspect and each meta-variable, as the change in MMT, or in the log of heat/cold risks per unit change in each meta-variable. Each-meta variable was properly scaled such that the estimate for α_1 is not a value too close to zero. For fitting model (7) and estimating α_1 , we used the maximum likelihood estimation with weights given for y_{ij} as an inverse of the squared standard error for the estimated aspect to incorporate uncertainty.

	Prefecture name	Latitude $(^{\circ}N)$	Longitude $(^{\circ}E)$	Total	Average	Distribution of daily mean temperature (°C)						
Region				deaths	daily deaths	Min	1st	25th	50th	75th	99th	Max
East	Hokkaido	43.06	141.35	1636834	109.3	-14.1	-8.3	0.1	9.2	17.2	25.9	30.1
East	Iwate	39.70	141.15	487277	32.5	-8.9	-6.2	1.6	10.3	18.3	27.0	29.6
East	Miyagi	38.27	140.87	638639	42.6	-5.2	-2.1	4.8	12.8	19.1	27.8	31.2
East	Aomori	40.82	140.74	495285	33.1	-8.7	-5.3	2.1	10.6	17.9	27.0	30.1
East	Fukushima	37.75	140.47	711527	47.5	-5.2	-2.2	4.8	13.3	20.2	29.1	31.4
East	Ibaraki	36.34	140.45	855768	57.1	-3.8	-0.2	6.1	14.1	20.2	28.4	31.3
East	Yamagata	38.24	140.36	458516	30.6	-7.4	-4.1	3.0	11.9	19.7	28.2	31.5
East	Chiba	35.60	140.12	1335634	89.2	-1.4	2.0	8.6	16.1	22.0	29.3	32.2
East	Akita	39.72	140.10	450848	30.1	-6.4	-3.7	3.3	11.6	19.6	28.2	31.6
East	Tochigi	36.57	139.88	597355	39.9	-4.5	-1.0	5.8	14.3	20.8	28.7	31.4
East	Tokyo	35.69	139.69	3056617	204.1	-0.6	2.6	9.0	16.5	22.5	30.1	33.1
East	Saitama	35.86	139.65	1437142	96.0	-2.8	0.7	7.1	15.3	21.8	30.1	33.7
East	Kanagawa	35.45	139.64	1785316	119.2	-1.0	2.4	8.8	16.1	21.9	29.0	30.9
East	Gunma	36.39	139.06	612478	40.9	-3.8	0.0	6.7	14.8	21.5	29.9	32.6
East	Niigata	37.90	139.02	844622	56.4	-3.9	-0.9	5.8	13.9	21.2	29.5	32.6
East	Yamanashi	35.66	138.57	287196	19.2	-4.4	-0.4	6.5	15.1	22.1	29.1	31.8
East	Shizuoka	34.98	138.38	1052669	70.3	-0.9	3.2	9.9	17.0	22.7	29.2	31.9
East	Nagano	36.65	138.18	741340	49.5	-7.7	-4.3	3.0	12.4	20.3	28.	30.7
East	Toyama	36.70	137.21	379473	25.3	-4.4	-1.3	6.1	14.3	21.3	29.8	33.8
East	Aichi	35.18	136.91	1683493	112.4	-2.9	0.8	7.9	16.2	22.9	30.3	32.7
East	Gifu	35.39	136.72	626398	41.8	-3.0	0.6	7.9	16.2	23.1	30.5	32.9
East	Ishikawa	36.59	136.63	365554	24.4	-3.9	-0.4	6.9	14.9	21.8	29.7	32.3
West	Mie	34.73	136.51	587047	39.2	-2.4	1.6	8.3	16.1	22.8	30.2	33.5
East	Fukui	36.07	136.22	242150	18.2	-3.8	-0.3	6.4	14.9	22.0	30.0	32.1
West	Shiga	35.00	135.87	354703	23.7	-3.2	0.1	6.8	14.8	22.0	29.4	31.4
West	Nara	34.69	135.83	388331	25.9	-3.7	0.5	6.9	15.1	22.1	29.1	31.7
West	Kyoto	35.02	135.76	772252	51.6	-3.4	1.1	7.9	16.2	23.2	30.5	32.8
West	Osaka	34.69	135.52	2276669	152.0	-2.1	2.4	9.1	17.2	23.9	30.8	32.9
West	Hyogo	34.69	135.18	1587308	106.0	-4.3	1.3	8.8	16.8	23.2	29.9	32.0
West	Wakayama	34.23	135.17	398680	26.6	-2.7	2.6	9.1	17.0	23.5	29.9	31.9
West	Tokushima	34.07	134.56	309974	20.7	-4.0	2.3	9.2	17.0	23.3	29.8	32.3
West	Tottori	35.50	134.24	226586	15.1	-5.6	0.1	7.3	15.0	21.9	29.9	32.3
West	Kagawa	34.34	134.04	355744	23.8	-3.3	2.0	8.5	16.4	23.2	30.5	32.3

Table S1. Summary statistics for daily mortality and mean temperature (study period: 1972.01.01 - 2012.12.31 for Hokkaido-Nagasaki, 1973.01.01 - 2012.12.31 for Okinawa)

Table S2. Prefecture-specific average of yearly measurements for each meta-variable

^a Climate variables for 1972–2012 (annual values, $N = 41$): Tmax (maximum daily mean temperature), Tmean (average daily mean temperature), Tmin (minimum daily mean temperature) and RHmean (average daily mean relative humidity)

b Demographic variables for 1972–2012 (annual values, N = 41): Percent of population ≤ 4 , 5–9, and ≥ 65 years of age.

^c Socio-economic variables: Savings (annual average savings per household with two or more persons, available every 5 years from 1974–2009, N = 8), EPI (economic power index, a measure of financial strength of a local government, higher value represents more strength, 2003-2010, N =8), CPI (consumer price index, measure of the cost of goods and services by household, 1972-2012, N = 41)

 d Air conditioning prevalence for households with two or more persons, 1972-2009 (N = 38)

Table S3. Association between each aspect (MMT, heat- and cold-related mortality risks) and each meta-variable in female mortality

^a Change in each outcome [MMT in °C, heat- and cold-related mortality ln(RR)] per 1-unit increase in each meta-variable. Each meta-variable is scaled such that the slope estimate is not a value very close to zero.

^b Climate variables for 1972–2012 (annual values, N = 41): Tmax (maximum daily mean temperature), Tmean (average daily mean temperature), Tmin (minimum daily mean temperature) and RHmean (average daily mean relative humidity)

^c Demographic variables for 1972–2012 (annual values, N = 41): Percent of population ≤ 4 , 5–9, and ≥ 65 years of age.

^d Socio-economic variables: Savings (annual average savings per household with two or more persons, available every 5 years from 1974–2009, N = 8), EPI (economic power index, a measure of financial strength of a local government, higher value represents more strength, 2003-2010, N =8), CPI (consumer price index, measure of the cost of goods and services by household, 1972-2012, N = 41)
 \textdegree Air conditioning prevalence for households with two or more persons, 1972-2009 (N = 38)

 p -value <0.01

Table S4. Association between each aspect (MMT, heat- and cold-related mortality risks) and each meta-variable in male mortality

^a Change in each outcome [MMT in °C, heat- and cold-related mortality ln(RR)] per 1-unit increase in each meta-variable. Each meta-variable is scaled such that the slope estimate is not a value very close to zero.

 b Climate variables for 1972–2012 (annual values, N = 41): Tmax (maximum daily mean temperature), Tmean (average daily mean temperature), Tmin (minimum daily mean</sup> temperature) and RHmean (average daily mean relative humidity)

^c Demographic variables for 1972–2012 (annual values, N = 41): Percent of population ≤ 4 , 5–9, and ≥ 65 years of age.

 d Socio-economic variables: Savings (annual average savings per household with two or more persons, available every 5 years from 1974–2009, N = 8), EPI (economic power index, a measure of financial strength of a local government, higher value represents more strength, 2003-2010, N =8), CPI (consumer price index, measure of the cost of goods and services by household, 1972-2012, N = 41)

^e Air conditioning prevalence for households with two or more persons, 1972-2009 (N = 38) $p-value < 0.01$

Figure S1. Map of the 47 prefectures in Japan. Blue and red indicate the eastern and western prefectures, respectively.

Figure S2. Time-series plot for each of the prefecture-specific meta-variables. Blue and red indicate the eastern and western prefectures, respectively.

Figure S3. Prefecture-specific time-varying temperature distribution (minimum, 1st, 25th, 50th, 75th, 99th percentiles, and maximum). At each time point, a temperature distribution was defined using the daily mean temperatures for the 6-year moving period with the specific time point as a center.

Figure S4. Region-specific time-varying minimum mortality temperature (MMT) together with the time-varying minimum mortality temperature percentile (MMTP) (top), time-varying heatrelated mortality risk (middle), and time-varying cold-related mortality risk (bottom). Black solid and dashed lines indicate the point estimate of the MMT and 95% point-wise confidence intervals, respectively. Blue line in the top panels indicates the MMTP.

C. Time-varying heat risk in the East

D. Time-varying heat risk in the West

F. Time-varying cold risk in the West

Year

Figure S5. Prefecture-specific time-varying minimum mortality temperature (MMT) and minimum mortality temperature percentile (MMTP). Black solid and dashed lines indicate the point estimate of the MMT and 95% point-wise confidence intervals, respectively. Blue line indicates the MMTP.

Figure S6. Prefecture-specific time-varying heat-related mortality risk. The heat-related risk was defined as the relative risk comparing the time-varying minimum mortality temperature (MMT) and the time-varying 99th temperature percentile. Black solid and dashed lines indicate the point estimate of the heat risk and 95% point-wise confidence intervals, respectively.

Niigata (East)

Yamanashi (East)

Shiga (West)

Tokushima (West)

Kagawa (West)

Okayama (West)

Kagoshima (West)

Figure S7. Prefecture-specific time-varying cold-related mortality risk. The cold-related risk was defined as the relative risk comparing the time-varying minimum mortality temperature (MMT) and the time-varying 1st temperature percentile. Black solid and dashed lines indicate the point estimate of the heat risk and 95% point-wise confidence intervals, respectively.

Year

Year

Year

Year

Year

Year

Figure S8. Prefecture-specific lag-cumulative relative risk (RR) curve at the first/last years (1972/2012) of the study period. Green and blue sold lines with shaded areas indicate the estimated RR curves with 95% confidence regions in 1972 and in 2012, respectively.

 -5 $\,$ 5 $\,$ 25

Temperature

Okayama (West)

 1.6

 1.2

 $\frac{8}{2}$

0 10

 R

 $-1972 - 2012$

20

Temperature

30

Temperature

 $\frac{10}{1}$

 $0.\overline{8}$

Kagoshima (West) $1972 - 2012$

25

15

Temperature

 2.0

 1.5 R

 $\frac{1}{2}$

 $0₅$

Hiroshima (West)

Temperature

Figure S9. Gender-specific time-varying minimum mortality temperature (MMT) together with the time-varying minimum mortality temperature percentile (MMTP) (top), time-varying heatrelated mortality risk (middle), and time-varying cold-related mortality risk (bottom). Black solid and dashed lines indicate the point estimate of the MMT and 95% point-wise confidence intervals, respectively. Blue line in the top panels indicates the MMTP.

Figure S10. Cause-specific time-varying minimum mortality temperature (MMT) together with the time-varying minimum mortality temperature percentile (MMTP) (top), time-varying heatrelated mortality risk (middle), and time-varying cold-related mortality risk (bottom). Black solid and dashed lines indicate the point estimate of the MMT and 95% point-wise confidence intervals, respectively. Blue line in the top panels indicates the MMTP.

