Electronic Supporting Information

Design, synthesis and biological evaluation of benzimidazole-rhodanine conjugates as potent topoisomerase II inhibitors

Penghui Li^a, Wenjin Zhang^a, Hong Jiang^a, Yongliang Li^a, Changzhi Dong^{a,b}, Huixiong Chen^{a,c}, Kun Zhang^{a,d}, Zhiyun Du^a*

^aInstitute of Natural Medicine & Green Chemistry, School of Chemical Engineering and Light Industry, Guandong University of Technology, Guangzhou 510006, China ^bUniversite Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baif, 75270 Cedex 13 Pairs, France ^cCNRS, UMR8601, Laboratoire de Chimine et Biochimie Pharmacologiques et Toxicologiques, CBNIT, Universite Paris Descartes PRES Sorbonne Paris Cite, UFR Biomedicale, 45 rue des Saints-Peres, 75270 Cedex 06 Paris, France. ^dWuyi University, Jiangmen529020, China.

Table of contents

¢	Electronic Supporting Information	S1
¢	¹ H NMR and 2D NOESY Spectrum of Compound 3a	S2
¢	¹ H NMR and 2D NOESY Spectrum of Compound 3b	S3
¢	Chemistry	-S17
∻	¹ H NMR and ¹³ C NMR Spectrum of Target Compounds	-S52

¹H NMR and 2D NOESY (DMSO-*d*₆) Spectrum of Compound 3a

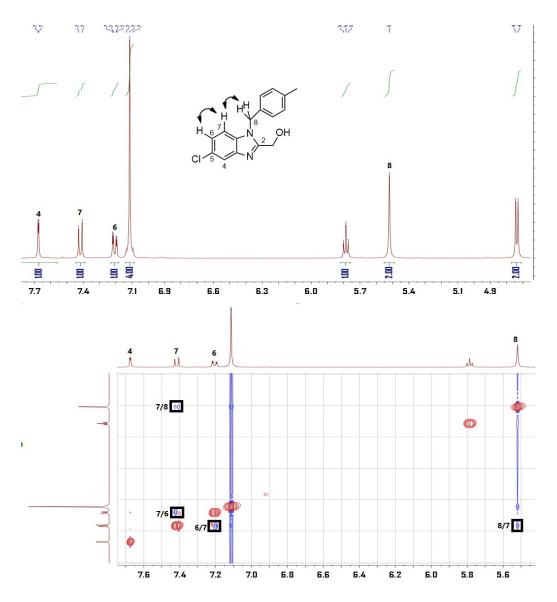



Fig. S1. ¹H NMR (upper) and 2D NOESY analysis of **3a**. The protons on the aromatic ring (6-H, 7-H, and 8-H) are easily assigned on the basis of 2D NOESY relations.

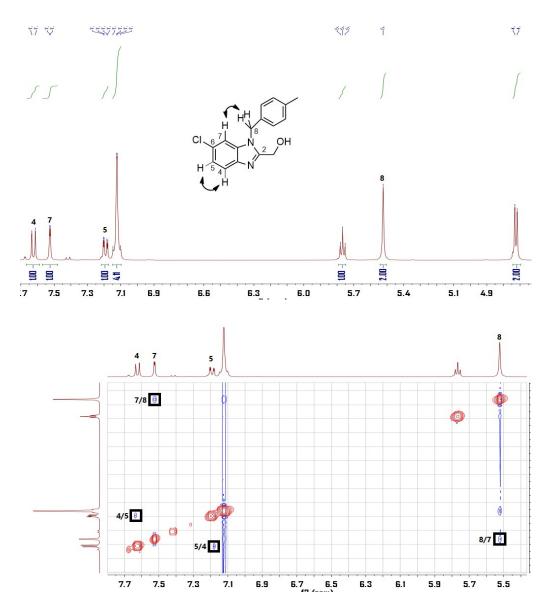
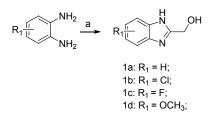
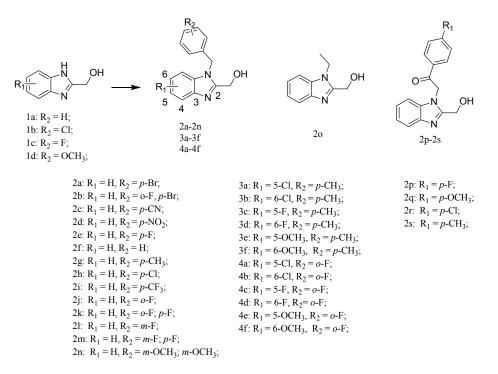



Fig. S2. ¹H NMR and 2D NOESY analysis of **3b**. The protons on the aromatic ring (4-H, 5-H,

7-H, and 8-H) are easily assigned on the basis of 2D NOESY relations.


Chemistry

General method for the synthesis of 1a–1d

The mixture of a substituted benzene-1,2-diamine (10 mmol) and glycolic acid (30 mmol) in HCl (4 N, 30 mL) was heated to reflux at 100 °C for 6 h and the reaction was quenched with saturated aqueous sodium bicarbonate. The white solid were collected by filtration. They were used directly without further purification.

General method for the synthesis of 2a-2s, 3a-3f, and 4a-4g

The solution of a **1a–1d** (1 mmol) in DMF (2 mL) were added the appropriate benzyl bromide (2 mmol) and K_2CO_3 (5 mmol), and the reaction mixture was stirred at room temperature for 8 h. It was then diluted with DCM (8 mL) and H₂O (8 mL). The organic layer

was separated, and the aqueous layer was extracted with DCM (8 mL \times 2). The combined organic layers were dried over Mg₂SO₄ and concentrated *in vacuo* to provide a crude product, which was purified by PTLC (DCM/ MeOH =100/5, v/v) to yield the title compound.

(1-(4-Bromobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2a)

1-Bromo-4-(bromomethyl) benzene and **1a** were used as reactants to give **2a**.While solid, Yield: 76%. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 7.9 Hz, 1H), 7.39 (d, *J* = 8.3 Hz, 2H), 7.26 – 7.19 (m, 2H), 7.16 (d, *J* = 7.7 Hz, 1H), 6.97 (d, *J* = 8.2 Hz, 2H), 5.41 (s, 2H), 4.86 (s, 2H).

(1-(4-Bromo-2-fluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2b)

4-Bromo-1-(bromomethyl)-2-fluorobenzene and **1a** were used as reactants to give **2b**. While solid. Yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.7 Hz, 1H), 7.30 (d, *J* = 9.7 Hz, 1H), 7.26 – 7.15 (m, 3H), 7.10 (d, *J* = 8.2 Hz, 1H), 7.03 – 6.95 (m, 1H), 5.45 (s, 2H), 4.91 (s, 2H).

4-((2-(Hydroxymethyl)-1H-benzo[d]imidazol-1-yl)methyl)benzonitrile (2c)

4-(Bromomethyl)benzonitrile and **1a** were used as reactants to give **2c**. While solid. Yield: 71%.¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.7 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.22 (d, *J* = 7.4 Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 7.8 Hz, 1H), 5.55 (s, 2H), 4.89 (s, 2H).

(1-(4-Nitrobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2d)

1-(Bromomethyl)-4-nitrobenzene and **1a** were used as reactants to give **2d**. While solid. Yield: 66%.¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.5 Hz, 2H), 7.70 (d, *J* = 7.7 Hz, 1H), 7.29 (d, *J* = 7.1 Hz, 1H), 7.27 – 7.21 (m, 3H), 7.12 (d, *J* = 7.8 Hz, 1H), 5.60 (s, 2H), 4.91 (s, 2H).

(1-(4-Fluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol(2e)

1-(Bromomethyl)-4-fluorobenzene and 1a were used as reactants to give 2e. While solid.
Yield: 87%.¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.8 Hz, 1H), 7.25–7.19 (m, 3H), 7.12 –
7.06 (m, 2H), 7.00 – 6.92 (m, 2H), 5.42 (s, 2H), 4.87 (s, 2H).
(1-benzyl-1H-benzo[d]imidazol-2-yl)methanol (2f)

(Bromomethyl)benzene and **1a** were used as reactants to give **2f**. While solid. Yield: 69%.¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.6 Hz, 1H), 7.32 – 7.22 (m, 6H), 7.13 – 7.07 (m, 2H), 5.45 (s, 2H), 4.87 (s, 2H).

(1-(4-Methylbenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2g)

1-(Bromomethyl)-4-methylbenzene and **1a** were used as reactants to give **2g**. While solid. Yield: 73%.¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.1 Hz, 1H), 7.25 – 7.19 (m, 3H), 7.09 (d, *J* = 7.7 Hz, 2H), 6.99 (d, *J* = 7.7 Hz, 2H), 5.40 (s, 2H), 4.87 (s, 2H), 2.30 (s, 3H).

(1-(4-Chlorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2h)

1-(Bromomethyl)-4-chlorobenzene and **1a** were used as reactants to give **2h**. While solid. Yield: 84%.¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 7.6 Hz, 1H), 7.29 – 7.25 (d, *J* = 8.2 Hz, 3H), 7.21 (d, *J* = 7.4 Hz, 1H), 7.17 (d, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 8.1 Hz, 2H), 5.43 (s, 2H), 4.87 (s, 2H).

(1-(4-(Trifluoromethyl)benzyl)-1H-benzo[d]imidazol-2-yl)methanol (2i)

1-(Bromomethyl)-4-(trifluoromethyl)benzene and **1a** were used as reactants to give **2j**. While solid. Yield: 86%.¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.7 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 7.2 Hz, 1H), 7.23 (d, 1H), 7.20 (d, *J* = 8.2 Hz, 2H), 7.16 (d, *J* = 7.7 Hz, 1H), 5.54 (s, 2H), 4.90 (s, 2H).

(1-(2-Fluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2j)

1-(Bromomethyl)-2-fluorobenzene and **1a** were used as reactants to give **2j**.While solid. Yield: 77%.¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.3 Hz, 1H), 7.30 – 7.22 (m, 3H), 7.10 (d, *J* = 9.2 Hz, 1H), 6.98 (d, *J* = 7.4 Hz, 1H), 6.84 (d, *J* = 7.4 Hz, 1H), 5.50 (s, 2H), 4.92 (s, 2H).

(1-(2,4-Difluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2k)

1-(Bromomethyl)-2,4-difluorobenzene and **1a** were used as reactants to give **2k**. While solid. Yield: 71%.¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 7.6 Hz, 1H), 7.26 – 7.16 (m, 3H), 6.90 – 6.82 (m, 2H), 6.70 (d, *J* = 8.3 Hz, 1H), 5.46 (s, 2H), 4.92 (s, 2H).

(1-(3-Fluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2l)

1-(Bromomethyl)-3-fluorobenzene and **1a** were used as reactants to give **2l**. While solid. Yield: 84%.¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.5 Hz, 1H), 7.26–7.18(m, 4H), 6.97 (d, *J* = 8.3 Hz, 1H), 6.89 (d, *J* = 7.6 Hz, 1H), 6.82 (d, *J* = 9.3 Hz, 1H), 5.46 (s, 2H), 4.88 (s, 2H), 4.37 (s, 1H).

(1-(3,4-Difluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2m)

4-(Bromomethyl)-1,2-difluorobenzene and **1a** were used as reactants to give **2m**. While solid. Yield: 74%.¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 7.7 Hz, 1H), 7.26 – 7.20 (m, 2H), 7.16 (d, *J* = 7.5 Hz, 1H), 7.11–7.05 (m, 1H), 7.01 – 6.93 (m, 1H), 6.86 (d, *J* = 6.6 Hz, 1H), 5.42 (s, 2H), 4.88 (s, 2H).

(1-(3,5-Dimethoxybenzyl)-1H-benzo[d]imidazol-2-yl)methanol (2n)

1-(Bromomethyl)-3,5-dimethoxybenzene and **1a** were used as reactants to give **2n**. While solid. Yield: 85%.¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.8 Hz, 1H), 7.22 (d, *J* = 14.1 Hz, 3H), 6.35 (s, 1H), 6.25 (s, 2H), 5.37 (s, 2H), 4.87 (s, 2H), 3.69 (s, 6H).

(1-Ethyl-1H-benzo[d]imidazol-2-yl)methanol (20)

Bromoethane and **1a** were used as reactants to give **2o**. ¹H NMR (400 MHz, CDCl₃-*d*₆) δ 7.68 (d, *J* = 6.7, 2.2 Hz, 1H), 7.32 (d, *J* = 6.7, 2.1 Hz, 1H), 7.28 – 7.21 (m, 2H), 4.88 (s, 2H), 4.29 (q, *J* = 7.3 Hz, 2H), 1.46 (t, *J* = 7.3 Hz, 3H).

1-(4-Fluorophenyl)-2-(2-(hydroxymethyl)-1H-benzo[d]imidazol-1-yl)ethanone (2p)

2-Bromo-1-(4-fluorophenyl)ethanone and **1a** were used as reactants to give **2p**. While solid. Yield: 77%.¹H NMR (400 MHz, CDCl₃) δ 8.12–8.02 (dd, *J* = 8.6, 5.3 Hz, 2H), 7.72 – 7.67 (m, 1H), 7.25 – 7.19 (m, 4H), 7.12 – 7.08 (m, 1H), 5.65 (s, 2H), 4.80 (s, 2H).

2-(2-(hydroxymethyl)-1H-benzo[d]imidazol-1-yl)-1-(4-methoxyphenyl)ethanone(2q)

2-Bromo-1-(4-methoxyphenyl)ethanone and **1a** were used as reactants to give **2q**. While solid. Yield: 88%.¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.8 Hz, 2H), 7.72 (dd, *J* = 6.3, 2.2 Hz, 1H), 7.26 – 7.20 (m, 2H), 7.12 (dd, *J* = 6.4, 2.4 Hz, 1H), 7.01 (d, *J* = 8.9 Hz, 2H), 5.64 (s, 2H), 4.83 (s, 2H), 3.91 (s, 3H).

1-(4-chlorophenyl)-2-(2-(hydroxymethyl)-1H-benzo[d]imidazol-1-yl)ethanone (2r)

2-Bromo-1-(4-chlorophenyl)ethanone and **1a** were used as reactants to give **2r**. While solid. Yield: 81%.¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.5 Hz, 2H), 7.70 (d, *J* = 8.6 Hz, 1H), 7.51 (s, 2H), 7.26 – 7.22 (m, 2H), 7.12 – 7.09 (m, 1H), 5.65 (s, 2H), 4.81 (s, 2H).

2-(2-(Hydroxymethyl)-1H-benzo[d]imidazol-1-yl)-1-(p-tolyl)ethanone (2s)

2-Bromo-1-(p-tolyl)ethanone and **1a** were used as reactants to give **2s**. While solid. Yield: 75%.¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.1 Hz, 2H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.25 – 7.20 (m, 2H), 7.13 – 7.09 (m, 1H), 5.66 (s, 2H), 4.81 (s, 2H), 2.46 (s, 3H).

(5 or 6-Chloro-1-(4-methylbenzyl)-1H-benzo[d]imidazol-2-yl)methanol (3a and 3b)

1-(Bromomethyl)-4-methylbenzene and **1b** were used as reactants to give **3a** and **3b**. For **3a**: while solid. Yield: 36%.¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 1.3 Hz, 1H), 7.21–7.09 (m, 4H), 6.98 (d, *J* = 8.0 Hz, 2H), 5.40 (s, 2H), 4.88 (s, 2H), 2.31 (s, 3H). For **3b**: while solid. Yield: 41%.¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 9.3 Hz, 1H), 7.23 – 7.19 (m, 2H), 7.10 (d, *J* = 7.9 Hz, 2H), 6.97 (d, *J* = 8.0 Hz, 2H), 5.35 (s, 2H), 4.85 (s, 2H), 2.32 (s, 3H).

(5 or 6-Fluoro-1-(4-methylbenzyl)-1H-benzo[d]imidazol-2-yl)methanol (3c and 3d)

1-(Bromomethyl)-4-methylbenzene and 1c were used as reactants to give 3c and 3d. For 3c: while solid. Yield: 33%.¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.30 (m, 1H), 7.12 – 7.08 (m, 3H), 7.02 – 6.94(dd, J = 8.0, 3.7 Hz, 3H), 5.39 (s, 2H), 4.86 (s, 2H), 2.31 (s, 3H). For 3d: while solid. Yield: 27%.¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.60 (m, 1H), 7.10 (d, J = 8.0 Hz, 2H), 6.99 (d, J = 8.2 Hz, 3H), 6.92 – 6.84 (m, 1H), 5.36 (s, 2H), 4.86 (s, 2H), 2.31 (s, 3H).

(5 or 6-Methoxy-1-(4-methylbenzyl)-1H-benzo[d]imidazol-2-yl)methanol (3e and 3f)

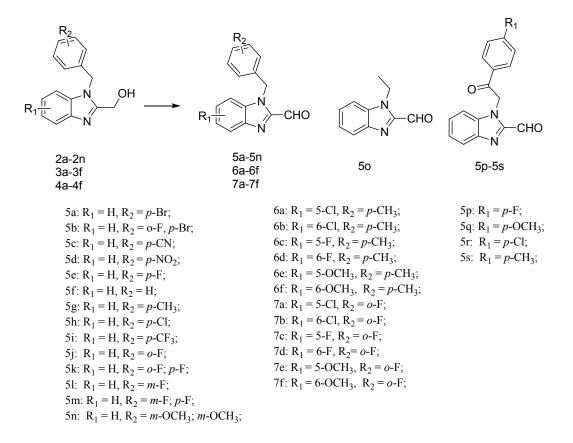
1-(Bromomethyl)-4-methylbenzene and **1d** were used as reactants to give **3e** and **3f**. For **3e**: while solid. Yield: 42%. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, *J* = 2.1 Hz, 1H), 7.12 – 7.04 (m, 3H), 6.98 (d, *J* = 8.0 Hz, 2H), 6.91 – 6.83 (m, 1H), 5.38 (s, 2H), 4.85 (s, 2H), 3.82 (s, 3H), 2.30 (s, 3H). For **3f**: while solid. Yield: 38%. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.8 Hz, 1H), 7.09 (d, *J* = 7.9 Hz, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.87 (dd, *J* = 8.7, 2.2 Hz, 1H), 6.65 (d, *J* = 2.1 Hz, 1H), 5.36 (s, 2H), 4.82 (s, 2H), 3.77 (s, 3H), 2.30 (s, 3H).

(5 or 6-Chloro-1-(2-fluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol (4a and 4b)

1-(Bromomethyl)-2-fluorobenzene and**1b** were used as reactants to give **4a** and **4b**. For **4a**: while solid. Yield: 37%.¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.32 – 7.27 (m, 1H), 7.21 – 7.15 (m, 1H), 7.18 – 7.06 (m, 2H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.87 (t, *J* = 7.1 Hz, 1H), 5.49 (s, 2H), 4.92 (s, 2H). For **4b**: while solid. Yield: 29%.¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.3 Hz, 1H), 7.33 – 7.27 (m, 1H), 7.25 – 7.20 (m, 2H), 7.14 – 7.09 (m, 1H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.85 (t, *J* = 7.2 Hz, 1H), 5.46 (s, 2H), 4.90 (s, 2H).

(5 or 6-fluoro-1-(2-fluorobenzyl)-1H-benzo[d]imidazol-2-yl)methanol(4c and 4d)

1-(Bromomethyl)-2-fluorobenzene and1c were used as reactants to give 4c and 4d. For 4c: while solid. Yield: 42%.¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.33 (m, 1H), 7.32 – 7.27 (m, 1H), 7.17 – 7.08 (m, 2H), 7.04 – 6.94 (m, 2H), 6.87 (t, *J* = 7.6 Hz, 1H), 5.49 (s, 2H), 4.92 (s, 2H). For 4d: while solid. Yield: 38%.¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.7, 4.7 Hz, 1H), 7.35 – 7.29 (m, 1H), 7.14 – 7.08 (m, 1H), 7.03 (t, *J* = 5.1 Hz, 1H), 7.01 – 6.95 (m, 1H), 6.94 – 6.86 (m, 2H), 5.46 (s, 2H), 4.91 (s, 2H).


(1-(2-Fluorobenzyl)-5 or 6-methoxy-1H-benzo[d]imidazol-2-yl)methanol (4e and 4f)

1-(Bromomethyl)-2-fluorobenzene and**1d** were used as reactants to give **4e** and **4f**. For **4e**: while solid. Yield: 34%.¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.22 (m, 1H), 7.18 (d, *J* = 2.3 Hz, 1H), 7.12 – 7.07 (m, 2H), 6.97 (t, *J* = 7.5 Hz, 1H), 6.87 – 6.80 (m, 2H), 5.47 (s, 2H), 4.89 (s, 2H), 3.83 (s, 3H). For **4f**: while solid. Yield: 40%. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.8 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.13 – 7.08 (m, 1H), 7.00 (t, *J* = 7.5 Hz, 1H), 6.89 – 6.83 (m, 2H), 6.65 (d, *J* = 2.2 Hz, 1H), 5.46 (s, 2H), 4.88 (s, 2H), 3.78 (s, 3H).

General method for the synthesis of 5a–5s, 6a–6f, and 7a–7g

To a solution of 2a-2s, 3a-3f, or 4a-4f (1 mmol) in DCM (10 mL) was added Dess-Martin reagent (1.1 mmol), and the reaction was stirred at 4 °C for 1 h. The reaction was quenched with a saturated aqueous sodium thiosulfate solution (3 mL) and subsequent mixture was extracted with DCM (10 mL × 3). The combined organic extracts were dried over Mg₂SO₄

and concentrated. The crude product obtained was purified by PTLC (DCM/MeOH = 100/5,

v/v) to yield the title products.

1-(4-Bromobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5a)

Compound2a was used as reactant to give 5a. While solid. Yield: 48%.¹H NMR (400 MHz,

CDCl₃) δ 10.14 (s, 1H), 7.97 (d, *J* = 7.7 Hz, 1H), 7.49 – 7.39 (m, 5H), 7.04 (d, *J* = 8.1 Hz,

2H), 5.80 (s, 2H).

1-(4-Bromo-2-fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5b)

Compound 2b was used as reactant to give 5b. While solid. Yield: 53%.¹H NMR (400 MHz,

 $CDCl_3$) δ 10.15 (s, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.50 – 7.39 (m, 3H), 7.31 – 7.27 (m, 1H),

7.22 – 7.16 (m, 1H), 6.80 (t, *J* = 8.1 Hz, 1H), 5.87 (s, 2H).

4-((2-Formyl-1H-benzo[d]imidazol-1-yl)methyl)benzonitrile(5c)

Compound 2c was used as reactant to give 5c. While solid. Yield: 52%.¹H NMR (400 MHz,

CDCl₃) δ 10.12 (s, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 8.1 Hz, 2H), 7.51 - 7.42 (m,

2H), 7.40 (d, *J* = 7.9 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 5.90 (s, 2H).

1-(4-Nitrobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5d)

Compound **2d**was used as reactant to give **5d**. While solid. Yield: 47%.¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 8.16 (d, *J* = 8.4 Hz, 2H), 8.00 (d, *J* = 7.9 Hz, 1H), 7.52 - 7.39 (m, 3H), 7.30 (d, *J* = 8.3 Hz, 2H), 5.95 (s, 2H).

1-(4-Fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5e)

Compound **2e**was used as reactant to give **5e**. While solid. While solid. Yield: 57%.¹H NMR (400 MHz, CDCl₃) δ 10.14 (s, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.50 – 7.38 (m, 3H), 7.21 – 7.13 (m, 2H), 6.98 (t, *J* = 8.5 Hz, 2H), 5.82 (s, 2H).

1-Benzyl-1H-benzo[d]imidazole-2-carbaldehyde (5f)

Compound **2f**was used as reactant to give **5f**. While solid. Yield: 64%.¹H NMR (400 MHz, CDCl₃) δ 10.15 (s, 1H), 7.96 (d, *J* = 7.9 Hz, 1H), 7.48 – 7.38 (m, 3H), 7.30 – 7.25 (m, 3H), 7.17 (d, *J* = 7.1 Hz, 2H), 5.87 (s, 2H).

1-(4-Methylbenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5g)

Compound **2g**was used as reactantto give **5g**. While solid. Yield: 58%.¹H NMR (400 MHz, CDCl₃) δ 10.15 (s, 1H), 7.95 (d, *J* = 7.9 Hz, 1H), 7.49 – 7.37 (m, 3H), 7.12 – 7.05 (m, 4H), 5.82 (s, 2H), 2.29 (s, 3H).

1-(4-Chlorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5h)

Compound 2hwas used as reactant to give 5h. While solid. Yield: 64%. ¹H NMR (400 MHz,

CDCl₃) δ 10.14 (s, 1H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.49 – 7.39 (m, 3H), 7.27 (d, *J* = 5.9 Hz,

2H), 7.11 (d, *J* = 8.0 Hz, 2H), 5.82 (s, 2H).

1-(4-(Trifluoromethyl)benzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5i)

Compound **2i**was used as reactant to give **5i**. While solid. Yield: 55%. ¹H NMR (400 MHz, CDCl₃) δ 10.14 (s, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.48 – 7.44 (m, 3H), 7.26 (s, 2H), 5.92 (s, 2H).

1-(2-Fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5j)

Compound **2j**was used as reactant to give **5j**. While solid. Yield: 49%. ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 7.95 (d, *J* = 7.9 Hz, 1H), 7.50 – 7.38 (m, 3H), 7.25 (d, *J* = 10.5 Hz, 1H), 7.09 (t, *J* = 9.2 Hz, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.91 (t, *J* = 7.5 Hz, 1H), 5.94 (s, 2H).

1-(2,4-Difluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5k)

Compound 2kwas used as reactant to give 5k. While solid. Yield: 67%.¹H NMR (400 MHz,

CDCl₃) δ 10.16 (s, 1H), 7.96 (d, J = 7.5 Hz, 1H), 7.51 – 7.39 (m, 3H), 6.99 – 6.95 (m, 1H),

6.85 (t, *J* = 8.0 Hz, 1H), 6.76 (t, *J* = 7.1 Hz, 1H), 5.88 (s, 2H).

1-(3-Fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5l)

Compound 21was used as reactant to give 51. While solid. Yield: 55%.¹H NMR (400 MHz,

CDCl₃) δ 10.16 (s, 1H), 7.98 (d, J = 7.5 Hz, 1H), 7.50 – 7.39 (m, 3H), 7.29 – 7.26 (m, 1H),

6.96 (t, J = 8.8 Hz, 2H), 6.85 (d, J = 9.4 Hz, 1H), 5.85 (s, 2H).

1-(3,4-Difluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5m)

Compound 2mwas used as reactant to give 5m. While solid. Yield: 46%.¹H NMR (400 MHz,

CDCl₃) δ 10.14 (s, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.51 – 7.41 (m, 3H), 7.13 – 7.05 (m, 1H),

7.03 - 6.97 (m, 1H), 6.93 (m, 1H), 5.80 (s, 2H).

1-(3,5-Dimethoxybenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (5n)

Compound **2n**was used as reactant to give **5n**. While solid. Yield: 49%.¹H NMR (400 MHz, CDCl₃) δ 10.07 (s, 1H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.75 (d, *J* = 8.3 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 6.40 (s, 1H), 6.32 (s, 2H), 5.81 (s, 2H), 3.67 (s, 6H).

1-Ethyl-1H-benzo[d]imidazole-2-carbaldehyde (50)

Compound **20**was used as reactantto give **50**. While solid. Yield: 42%.¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 7.94 (d, *J* = 8.3 Hz, 1H), 7.55 – 7.45 (m, 2H), 7.46 – 7.34 (m, 1H), 4.67 (q, *J* = 7.2 Hz, 2H), 1.46 (t, *J* = 7.2 Hz, 3H).

1-(2-(4-Fluorophenyl)-2-oxoethyl)-1H-benzo[d]imidazole-2-carbaldehyde (5p)

Compound 2pwas used as reactant to give 5p. While solid. Yield: 55%.¹H NMR (400 MHz,

CDCl₃) δ 10.09 (s, 1H), 8.14 – 8.06 (m, J = 7.0, 5.0, 2.4 Hz, 2H), 8.00 (d, J = 7.6 Hz, 1H),

7.50 – 7.40 (m, 2H), 7.32 (d, *J* = 7.9 Hz, 1H), 7.26 – 7.21 (m, 2H), 6.03 (s, 2H).

1-(2-(4-methoxyphenyl)-2-oxoethyl)-1H-benzo[d]imidazole-2-carbaldehyde (5q)

Compound 2qwas used as reactant to give 5q. While solid. Yield: 59%.¹H NMR (400 MHz,

CDCl₃) δ 10.09 (s, 1H), 8.03 (d, J = 8.8 Hz, 2H), 7.98 (d, J = 7.8 Hz, 1H), 7.48 – 7.39 (m,

2H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.03 (d, *J* = 8.8 Hz, 2H), 6.03 (s, 2H), 3.92 (s, 3H).

1-(2-(4-Chlorophenyl)-2-oxoethyl)-1H-benzo[d]imidazole-2-carbaldehyde (5r)

Compound **2r**was used as reactant to give **5r**. While solid. Yield: 63%.¹H NMR (400 MHz, CDCl₃) δ 10.08 (s, 1H), 7.99 (d, *J* = 8.6 Hz, 3H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.49 – 7.41 (m, 2H), 7.32 (d, *J* = 7.9 Hz, 1H), 6.02 (s, 2H).

1-(2-Oxo-2-(p-tolyl)ethyl)-1H-benzo[d]imidazole-2-carbaldehyde (5s)

Compound **2s**was used as reactant to give **5s**. While solid. Yield: 49%.¹H NMR (400 MHz, CDCl₃) δ 10.10 (s, 1H), 7.99 – 7.95 (m, 3H), 7.50 – 7.38 (m, 3H), 7.38 – 7.30 (m, 3H), 6.05 (s, 2H), 2.47 (s, 3H).

5-Chloro-1-(4-methylbenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (6a)

Compound **3a** was used as reactantto give **6a**. While solid. Yield: 57%.¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 7.92 (s, 1H), 7.38 (s, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 8.1 Hz, 2H), 5.80 (s, 2H), 2.30 (s, 3H).

6-Chloro-1-(4-methylbenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (6b)

Compound **3b** was used as reactant to give **6b**. While solid. Yield: 39%.¹H NMR (400 MHz, CDCl₃) δ 10.12 (s, 1H), 7.86 (d, *J* = 8.8 Hz, 1H), 7.45 (d, *J* = 1.6 Hz, 1H), 7.39 – 7.31 (m, 1H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 2H), 5.77 (s, 2H), 2.31 (s, 3H).

5-Fluoro-1-(4-methylbenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (6c)

Compound **3c** was used as reactant to give **6c**. While solid. Yield: 45%. ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 7.61 – 7.67 (m, 1H), 7.41 – 7.35 (m, 1H), 7.26 – 7.18 (m, 1H), 7.10 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 8.1 Hz, 2H), 5.81 (s, 2H), 2.30 (s, 3H).

6-Fluoro-1-(4-methylbenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (6d)

Compound3d was used as reactant to give 6d. While solid. Yield: 36%.¹H NMR (400 MHz,

CDCl₃) δ 10.09 (s, 1H), 7.91 – 7.87 (m, 1H), 7.17 – 7.09 (m, 4H), 7.06 (d, *J* = 8.1 Hz, 2H),

5.77 (s, 2H), 2.30 (s, 3H).

5-Methoxy-1-(4-methylbenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (6e)

Compound **3e** was used as reactant to give **6e**. While solid. Yield: 61%.¹H NMR (400 MHz,

CDCl₃) δ 10.10 (s, 1H), 7.36 – 7.28 (m, 2H), 7.10 (d, *J* = 2.2 Hz, 1H), 7.09 – 7.04 (m, 4H),

5.79 (s, 2H), 3.88 (s, 3H), 2.29 (s, 3H).

6-Methoxy-1-(4-methylbenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (6f)

Compound **3f** was used as reactant to give **6f**. While solid. Yield: 63%.¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 7.81 (d, J = 9.0 Hz, 1H), 7.10 (d, J = 8.2 Hz, 2H), 7.08 – 7.01 (m, 3H), 6.77 (d, J = 2.3 Hz, 1H), 5.78 (s, 2H), 3.84 (s, 3H), 2.30 (s, 3H).

5-Chloro-1-(2-fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (7a)

Compound **4a** was used as reactant to give **7a**. While solid. Yield: 53%.¹H NMR (400 MHz, CDCl₃) δ 10.14 (s, 1H), 7.93 (d, *J* = 0.8 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.36 – 7.28 (m, 1H), 7.12 – 7.06 (m, 1H), 7.06 – 7.00 (m, 1H), 6.98 – 6.90 (m, *J* = 7.6, 1.4 Hz, 1H), 5.92 (s, 2H).

6-Chloro-1-(2-fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde(7b)

Compound **4b** was used as reactant to give **7b**. While solid. Yield: 56%.¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 7.86 (d, *J* = 8.8 Hz, 1H), 7.47 (d, *J* = 1.6 Hz, 1H), 7.40 – 7.32 (m, 1H), 7.32 – 7.27 (m, 1H), 7.14 – 7.08 (m, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 5.89 (s, 2H).

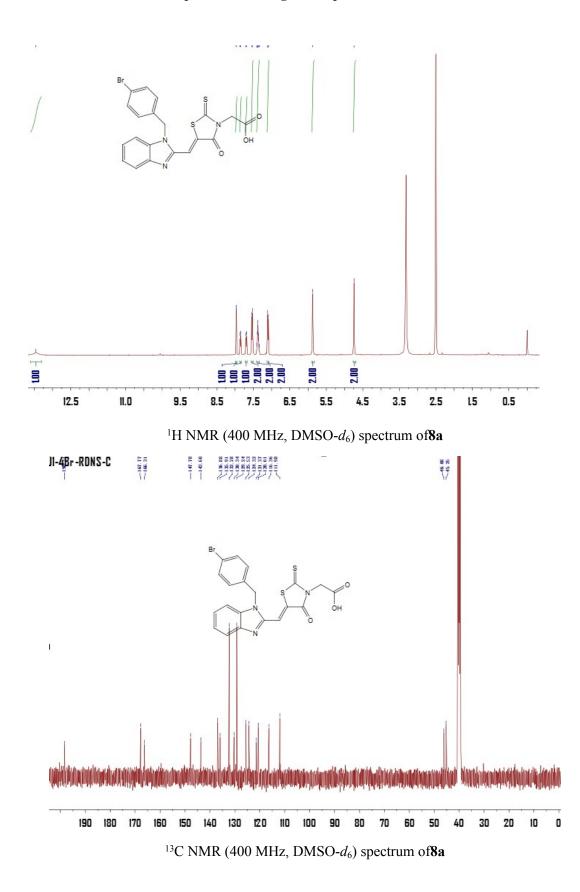
5-Fluoro-1-(2-fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (7c)

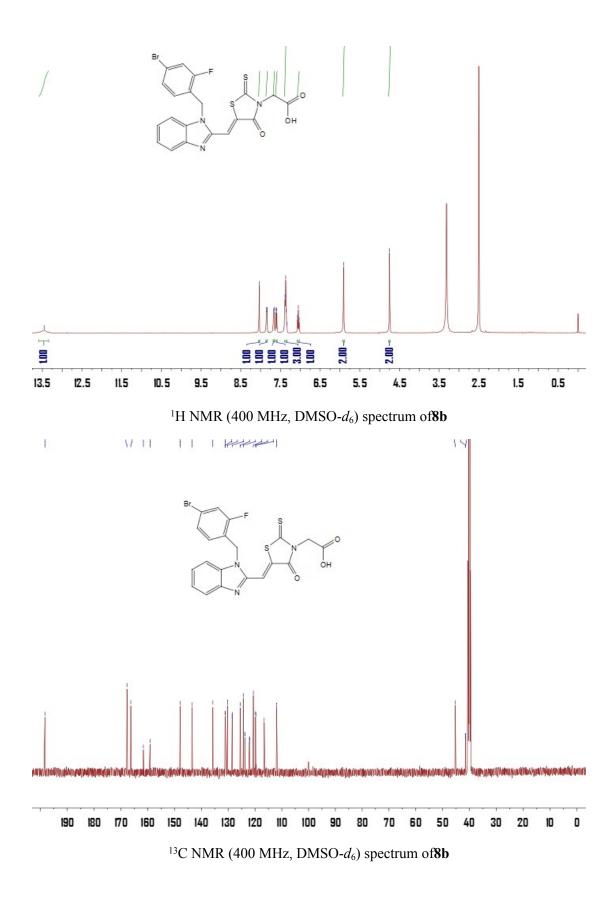
Compound **4c** was used as reactant to give **7c**. While solid. Yield: 62%.¹H NMR (400 MHz, CDCl₃) δ 10.14 (s, 1H), 7.63 – 7.55 (m, 1H), 7.47 – 7.39 (m, 1H), 7.31 – 7.26 (m, 1H), 7.23 – 7.19 (m, 1H), 7.12 – 7.07 (m, 1H), 7.13 – 7.05 (m, 1H), 6.97 – 6.93 (m, 1H), 5.92 (s, 2H). **6-Fluoro-1-(2-fluorobenzyl)-1H-benzo[d]imidazole-2-carbaldehyde (7d)**

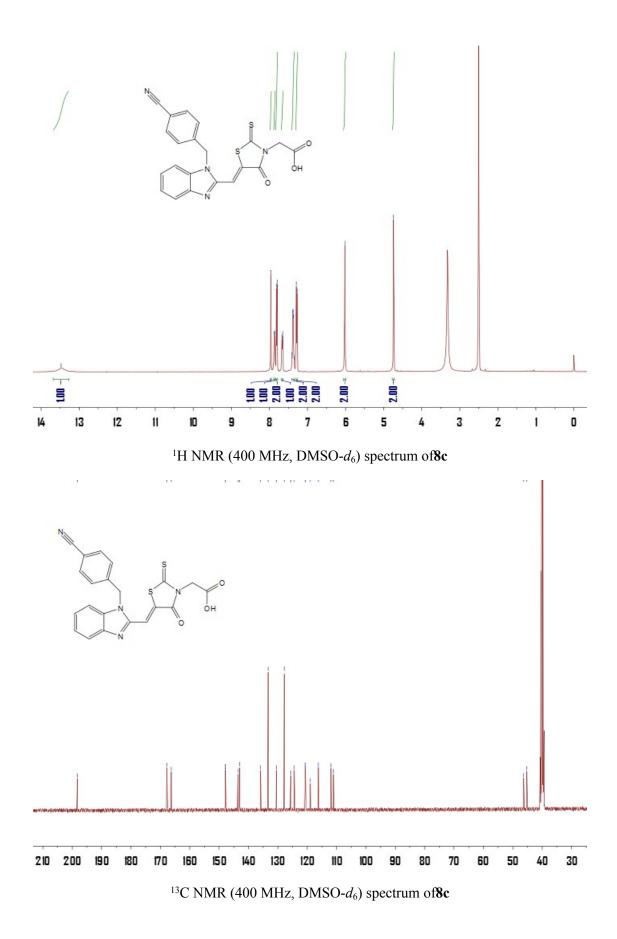
Compound 4d was used as reactant to give 7d. While solid. Yield: 57%.¹H NMR (400 MHz,

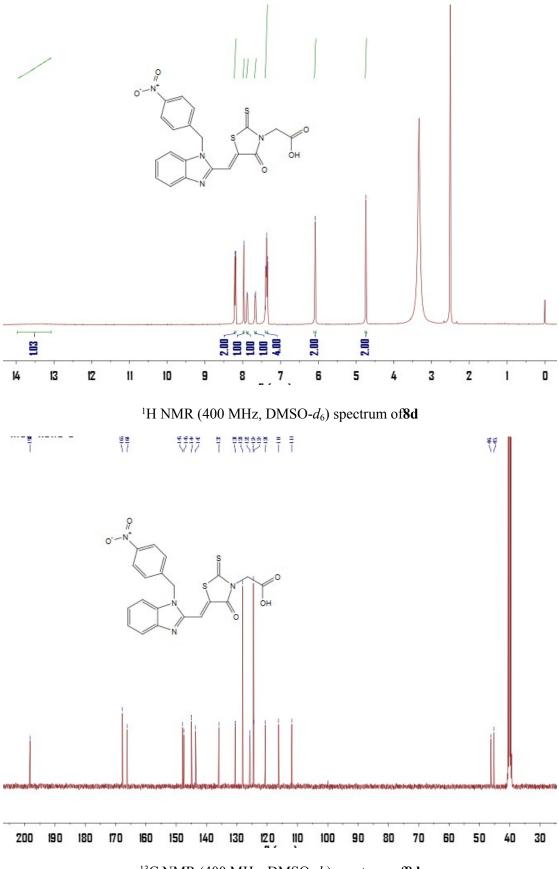
CDCl₃) δ 10.11 (s, 1H), 7.92 – 7.88 (m, 1H), 7.32 – 7.26 (m, 1H), 7.17 – 7.09 (m, 3H), 7.06 –

7.02 (m, 1H), 7.02 – 6.94 (m, 1H), 5.89 (s, 2H).

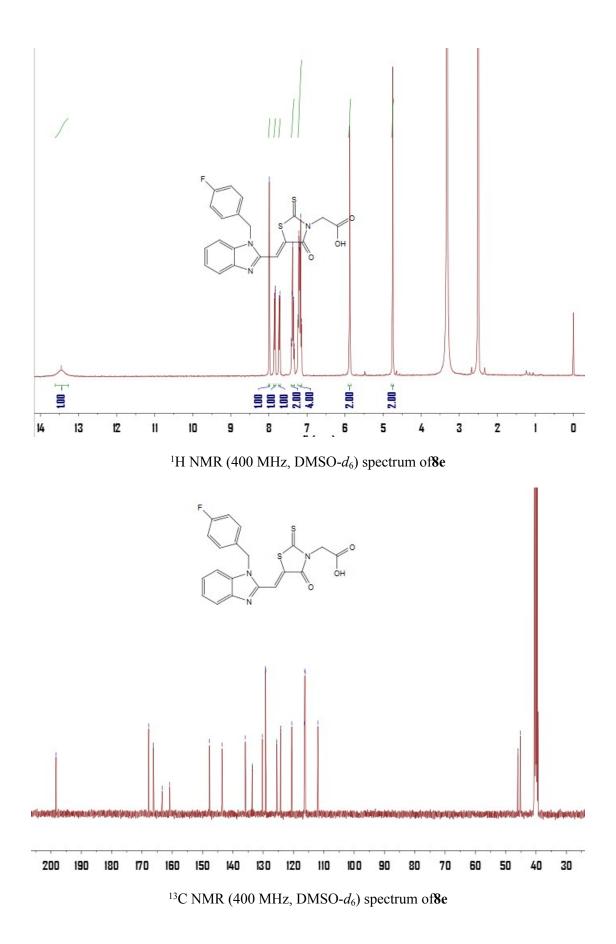

1-(2-Fluorobenzyl)-5-methoxy-1H-benzo[d]imidazole-2-carbaldehyde (7e)

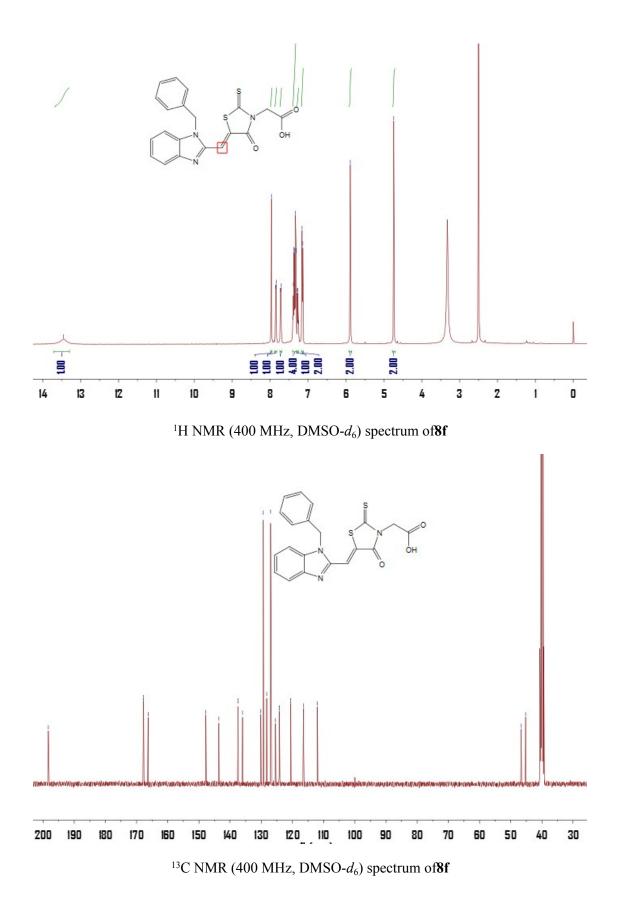

Compound **4e** was used as reactant to give **7e**. While solid. Yield: 42%.¹H NMR (400 MHz, CDCl₃) δ 10.11 (s, 1H), 7.35 (d, *J* = 9.1 Hz, 1H), 7.31 (d, *J* = 2.2 Hz, 1H), 7.26 – 7.22 (m, 1H), 7.13 – 7.05 (m, 2H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.92 (t, *J* = 7.6 Hz, 1H), 5.91 (s, 2H), 3.88 (s, 3H).

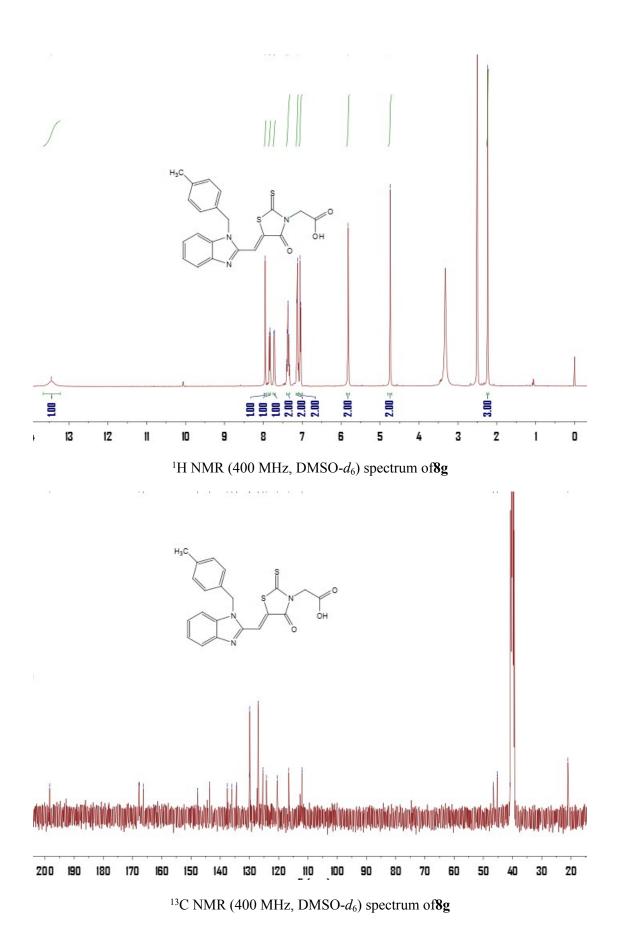

1-(2-Fluorobenzyl)-6-methoxy-1H-benzo[d]imidazole-2-carbaldehyde (7f)

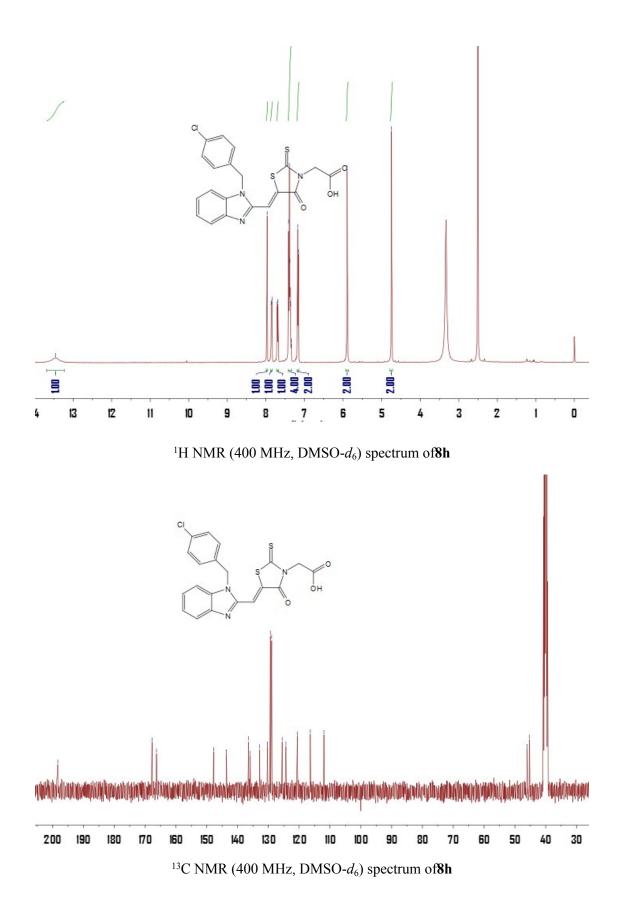

Compound **4f** was used as reactant to give **7f**. While solid. Yield: 45%.¹H NMR (400 MHz, CDCl₃) δ 10.07 (s, 1H), 7.81 (d, *J* = 9.0 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.13 – 7.07 (m, 1H), 7.06 – 7.00 (m, 2H), 6.98 – 6.94 (m, 1H), 6.82 (d, *J* = 2.3 Hz, 1H), 5.90 (s, 2H), 3.85 (s, 3H).

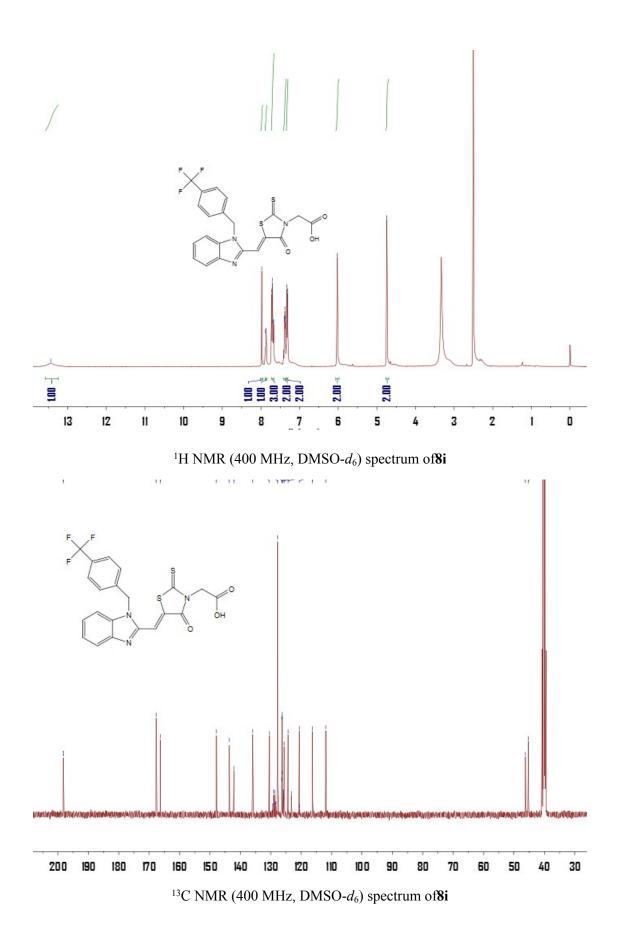
¹H NMR and ¹³C NMR Spectrum of Target Compounds

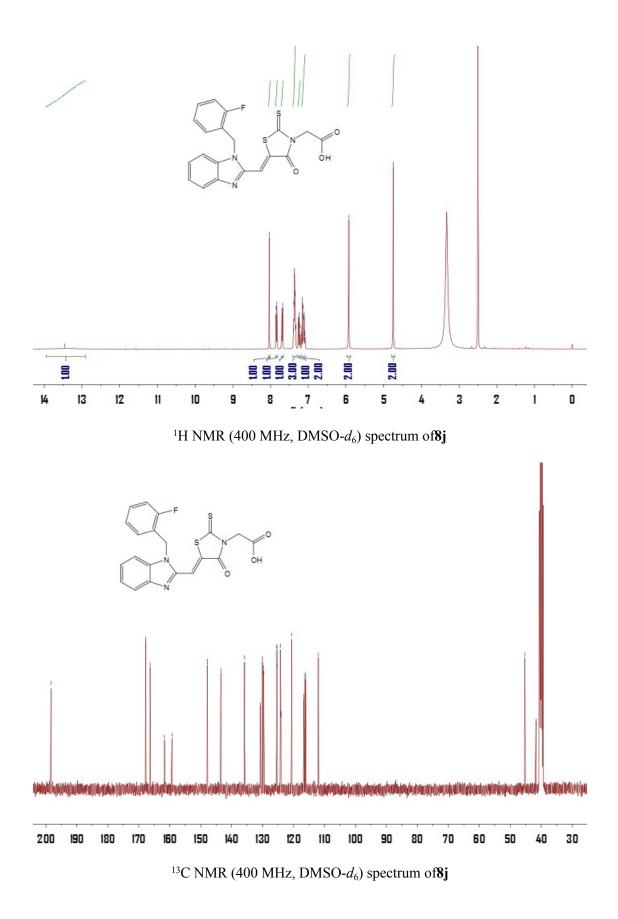


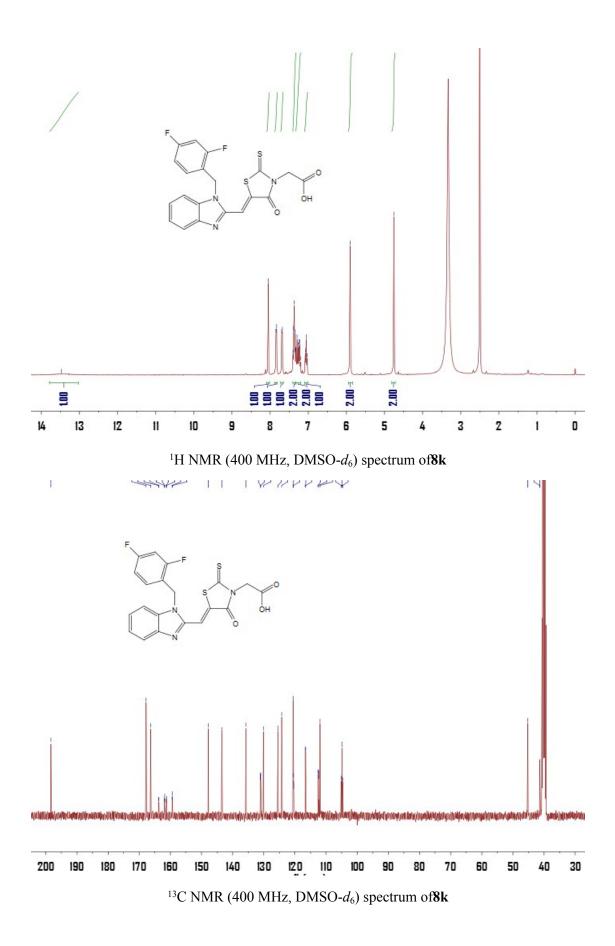


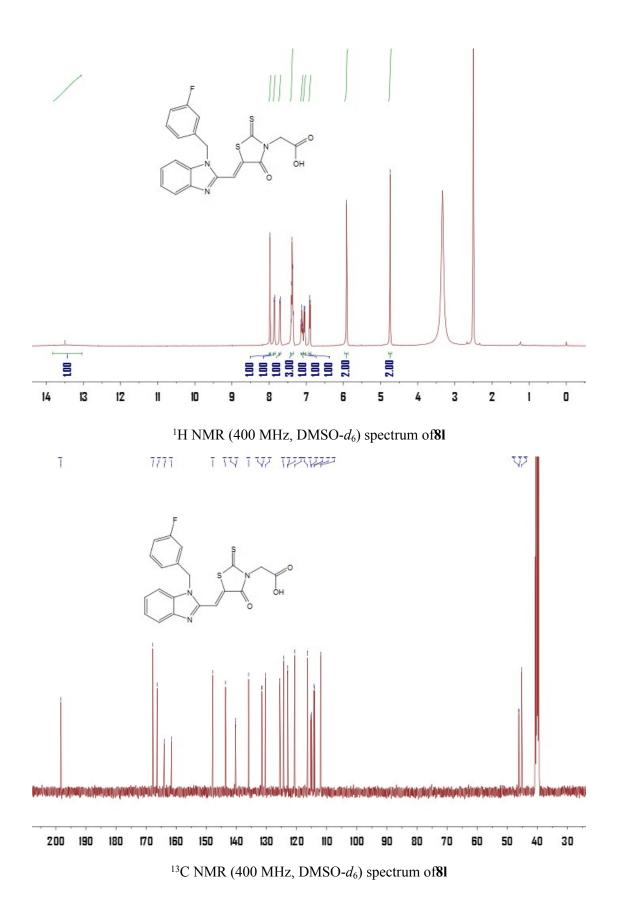


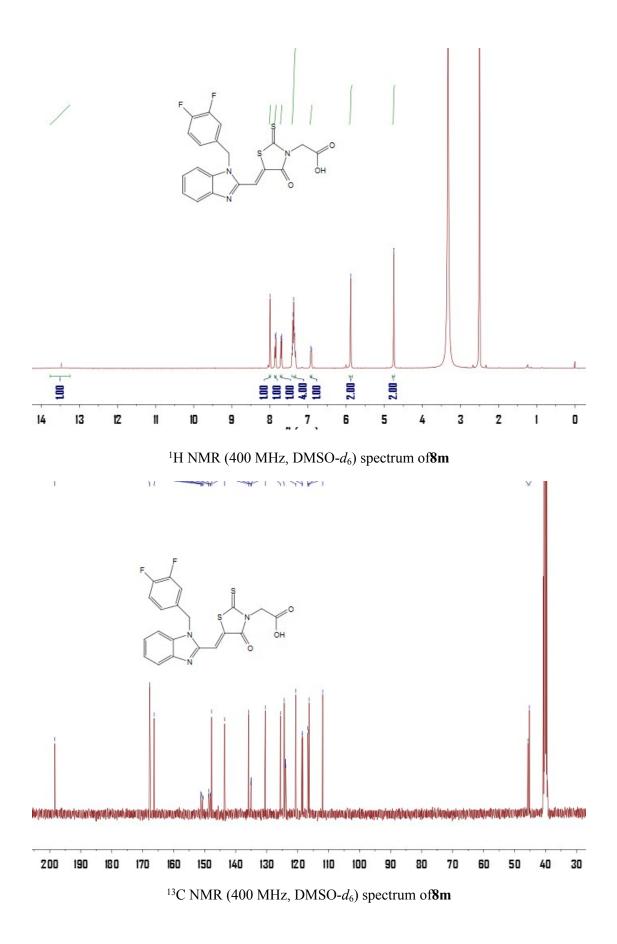

¹³C NMR (400 MHz, DMSO-*d*₆) spectrum of**8d**

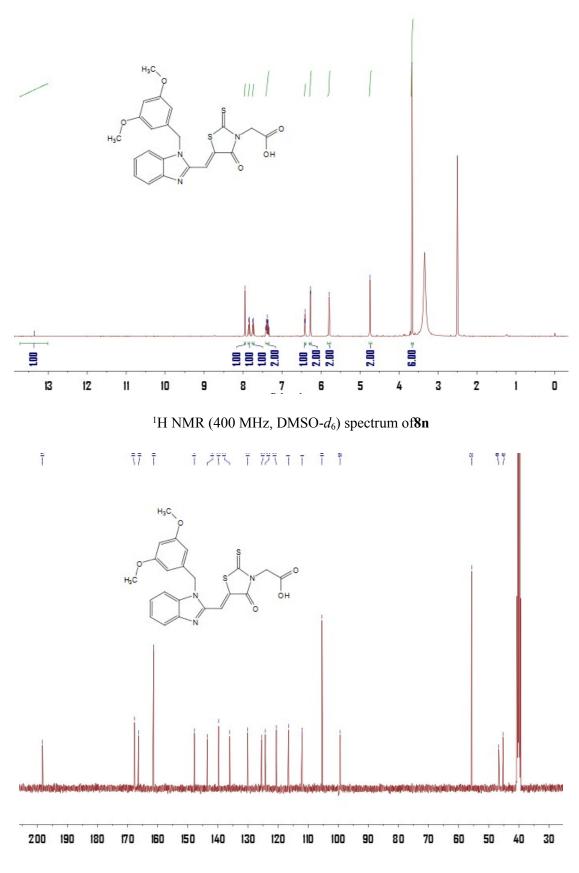


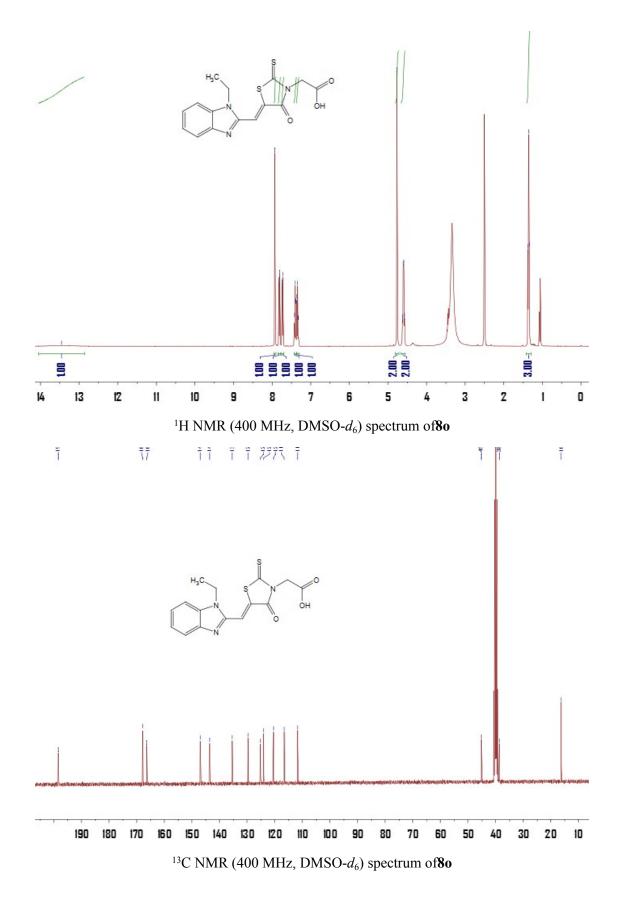


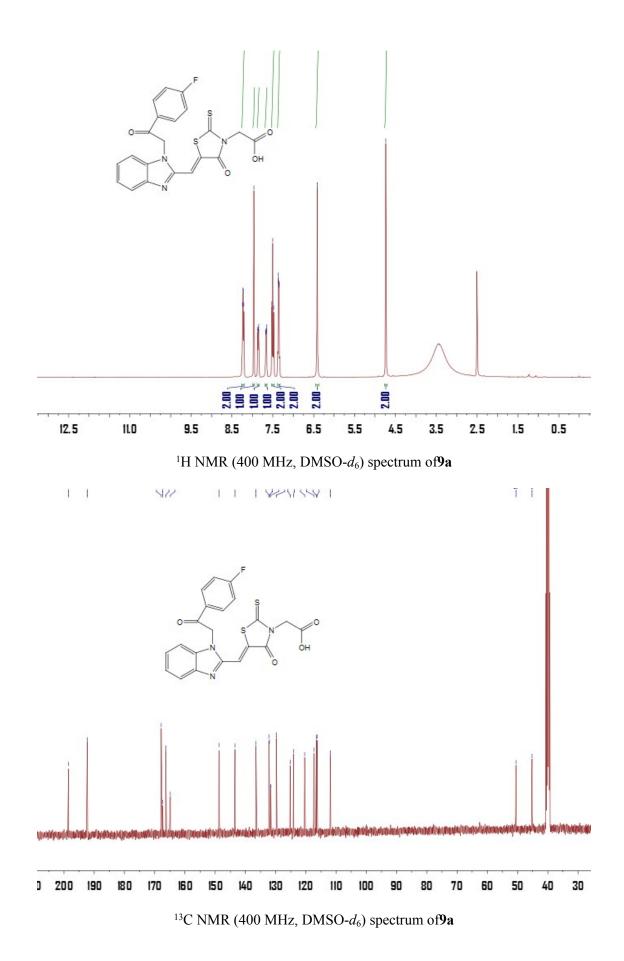

S23

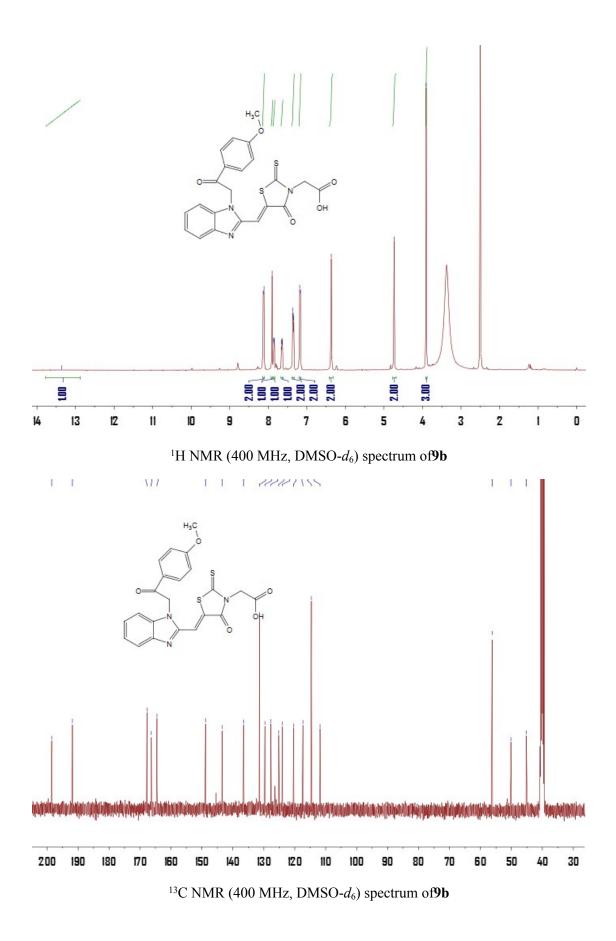


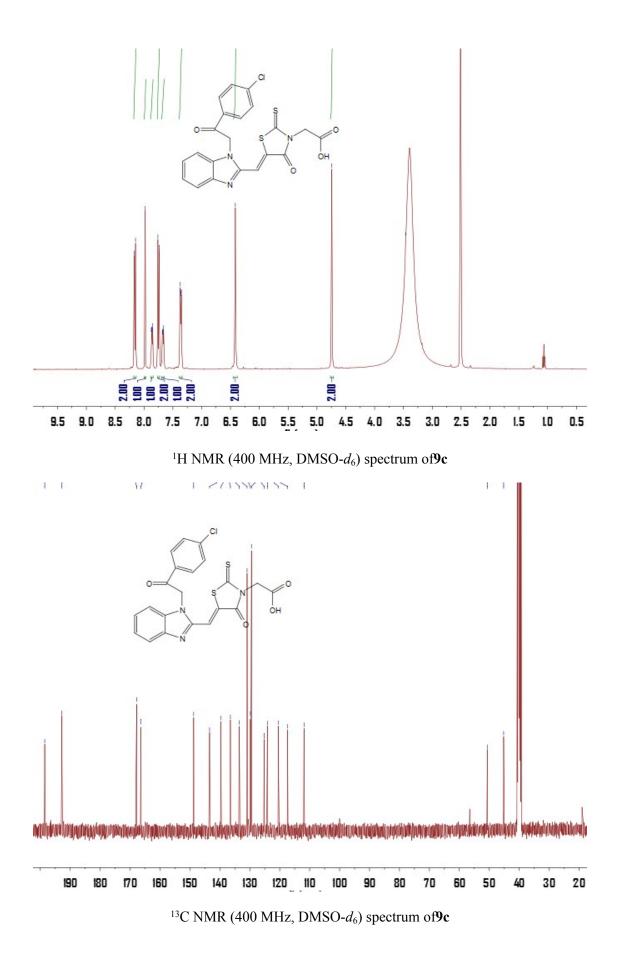


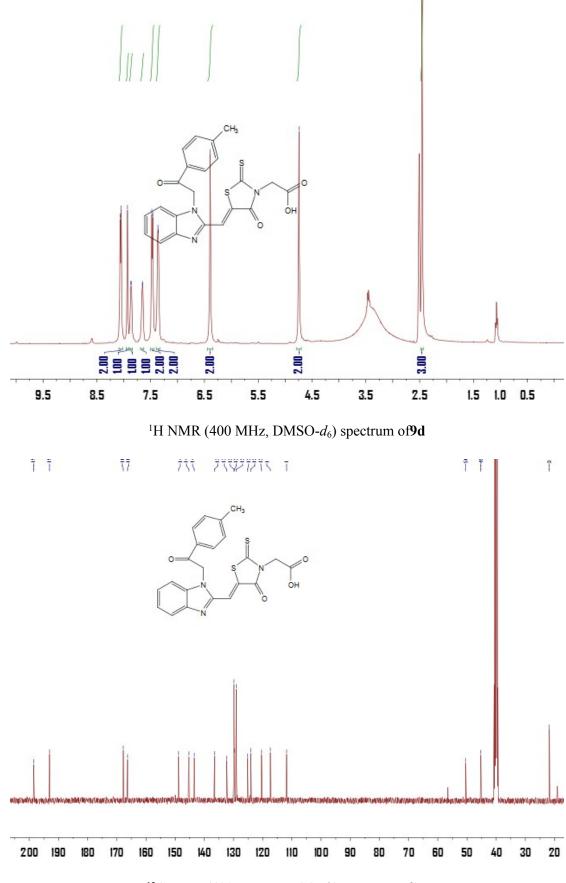




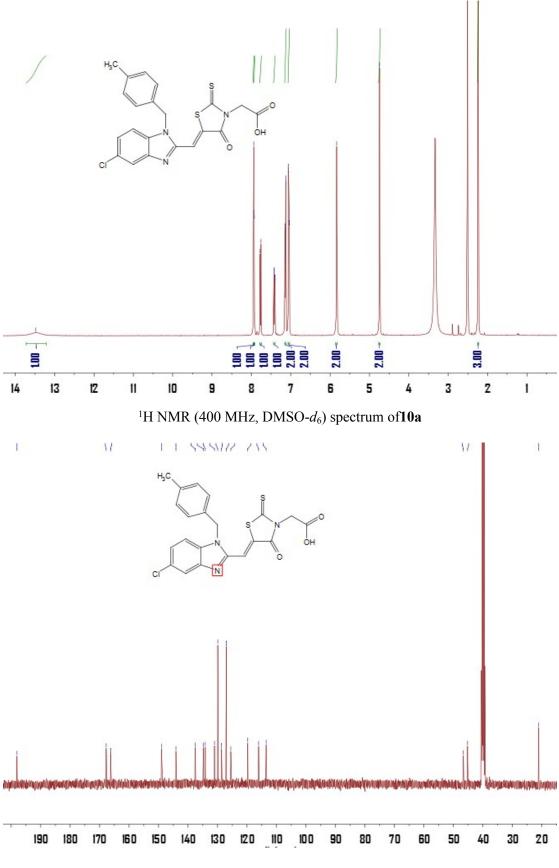

S29

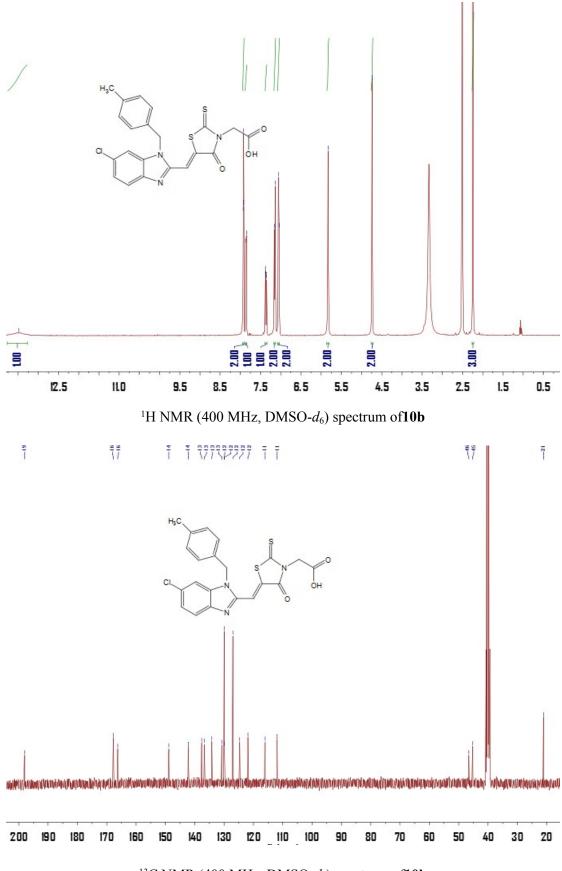


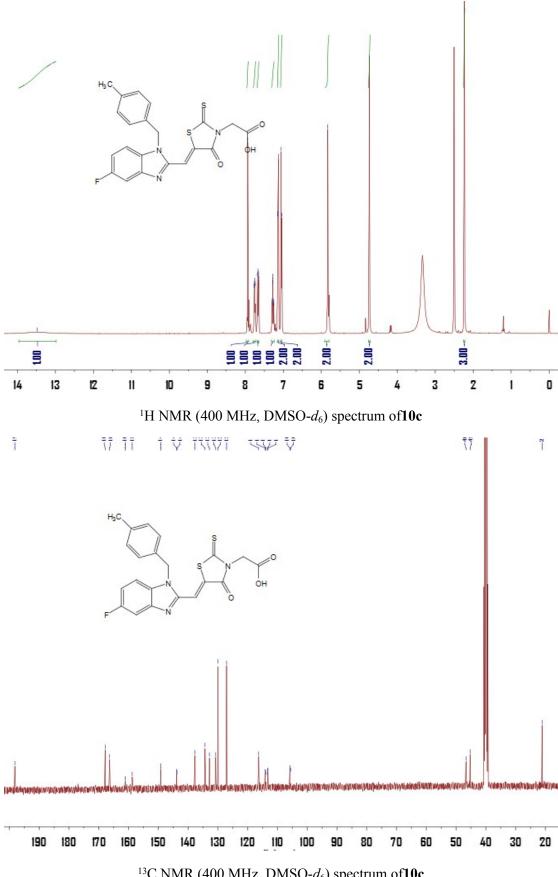

¹³C NMR (400 MHz, DMSO-*d*₆) spectrum of**8n**

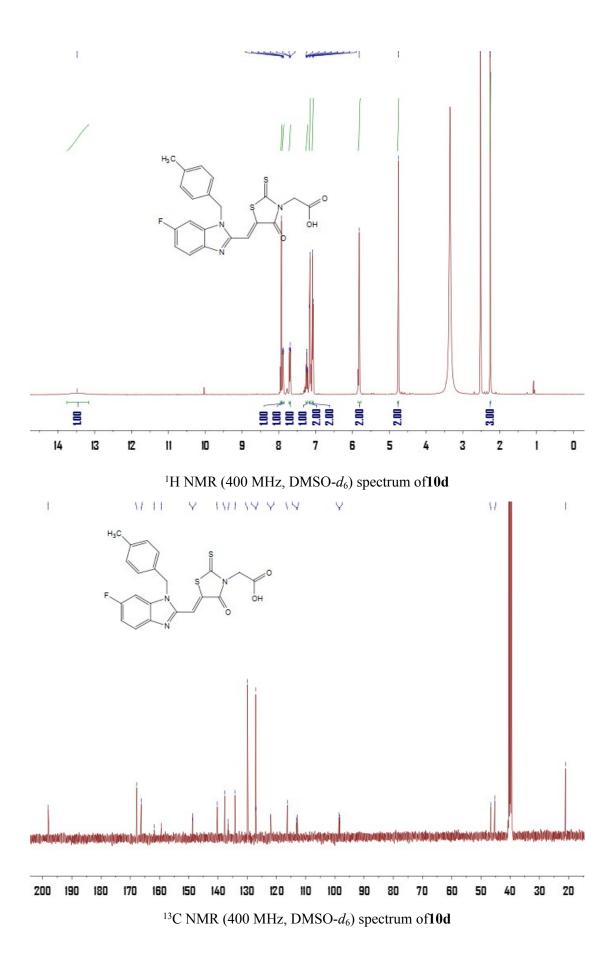


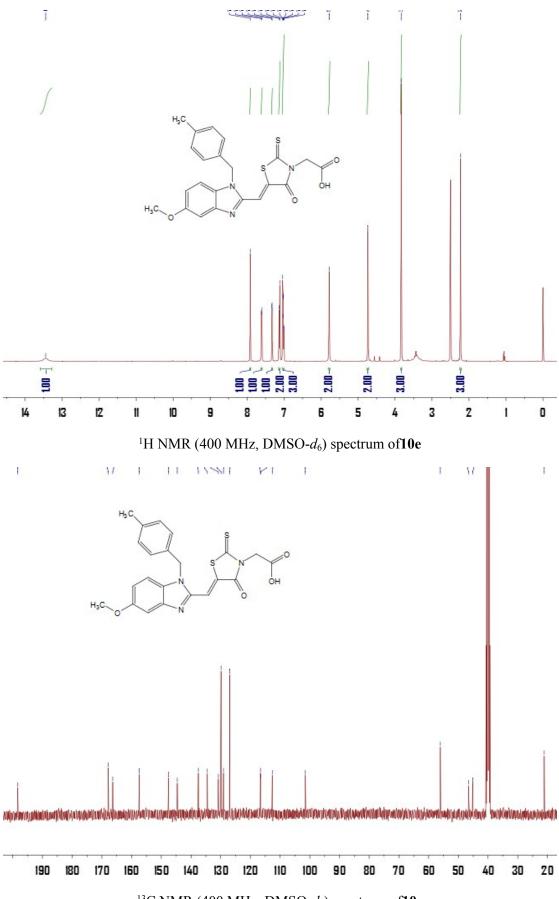
S33



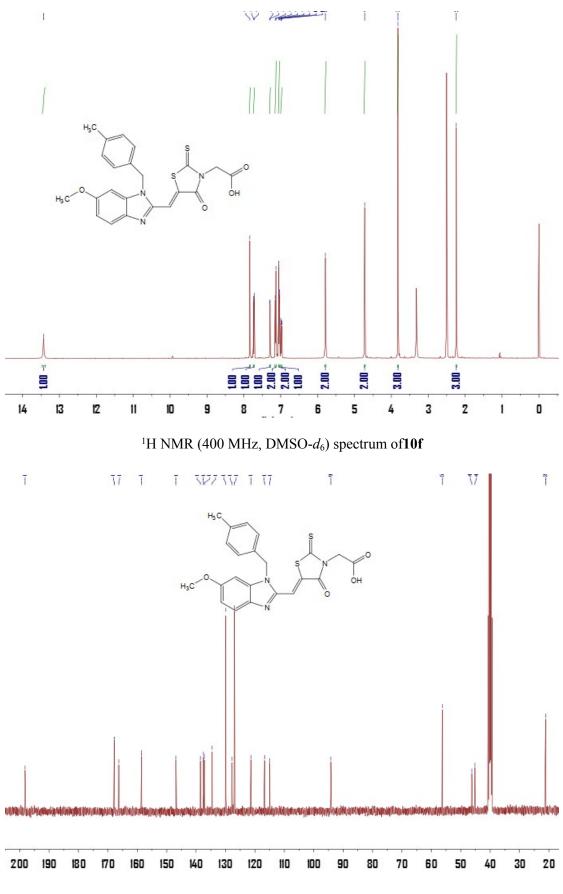

S35


¹³C NMR (400 MHz, DMSO- d_6) spectrum of **9d**

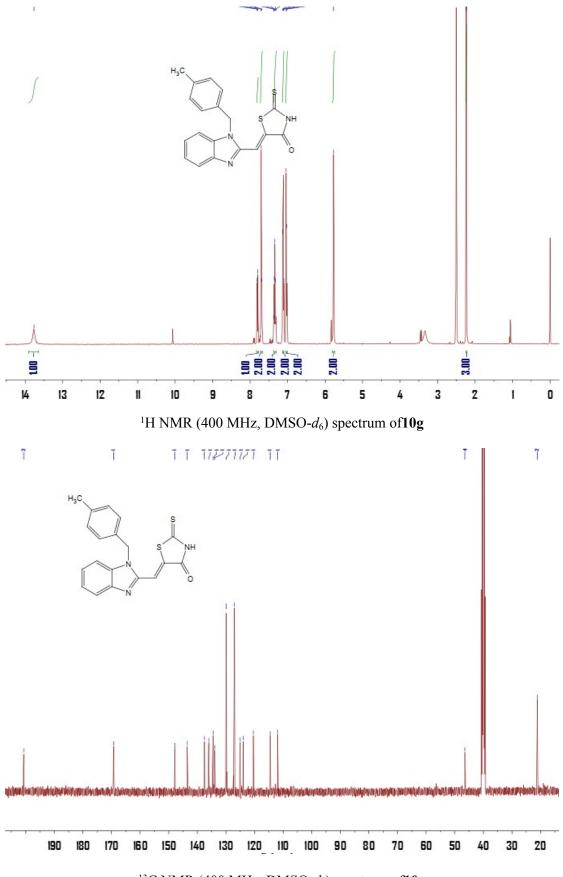

¹³C NMR (400 MHz, DMSO-*d*₆) spectrum of**10a**

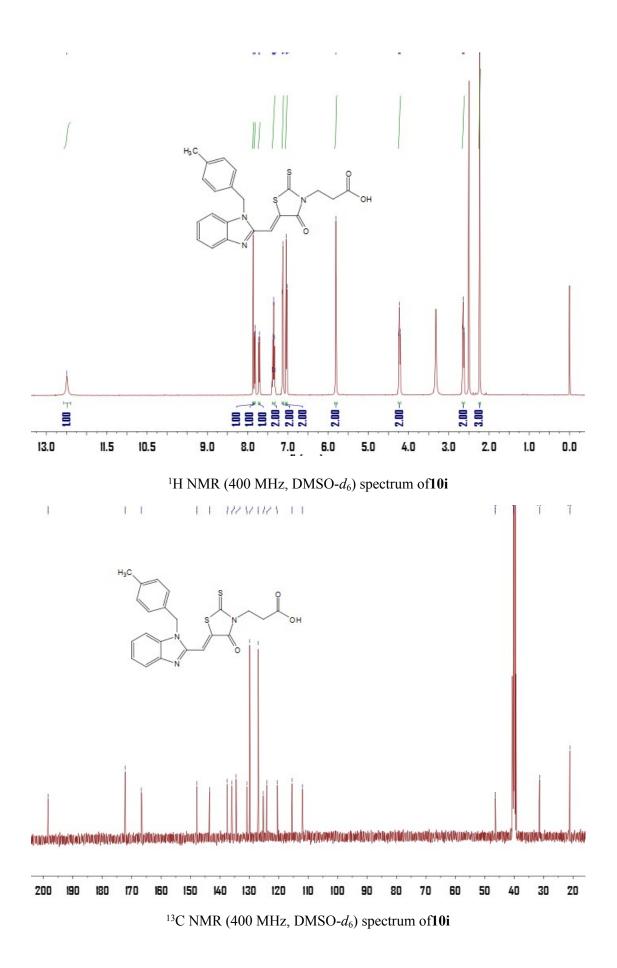


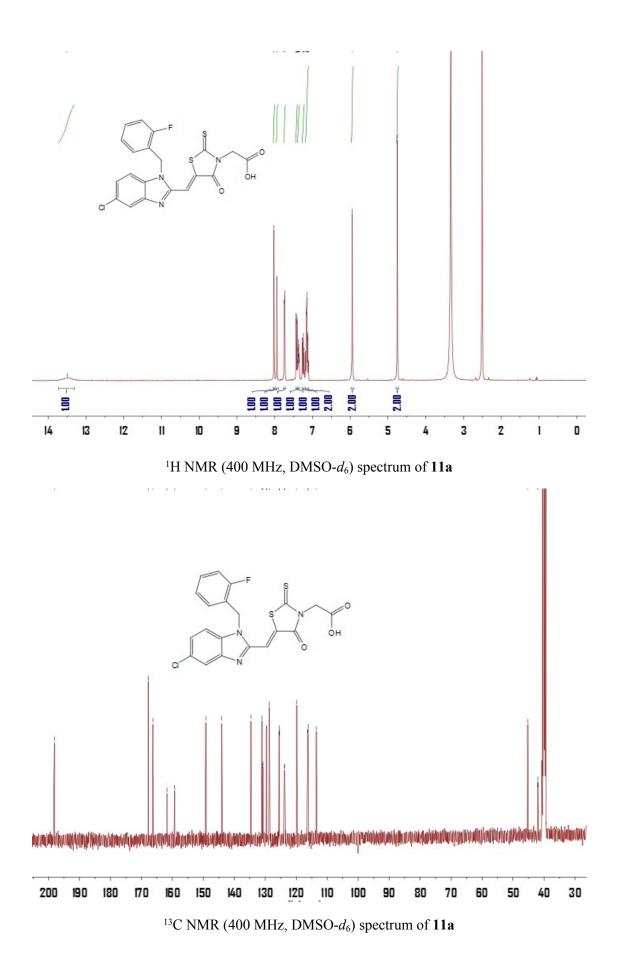
¹³C NMR (400 MHz, DMSO- d_6) spectrum of**10b**



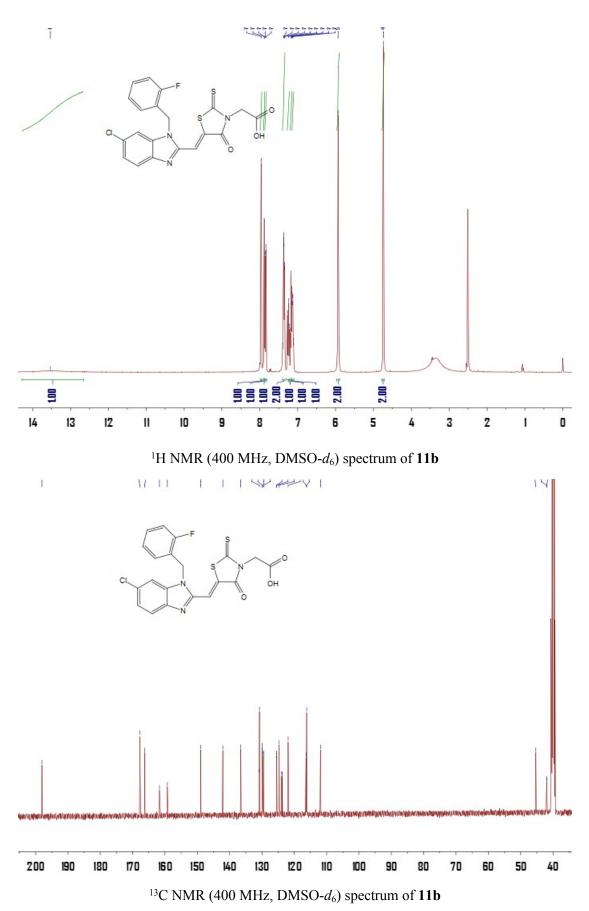
¹³C NMR (400 MHz, DMSO- d_6) spectrum of **10c**



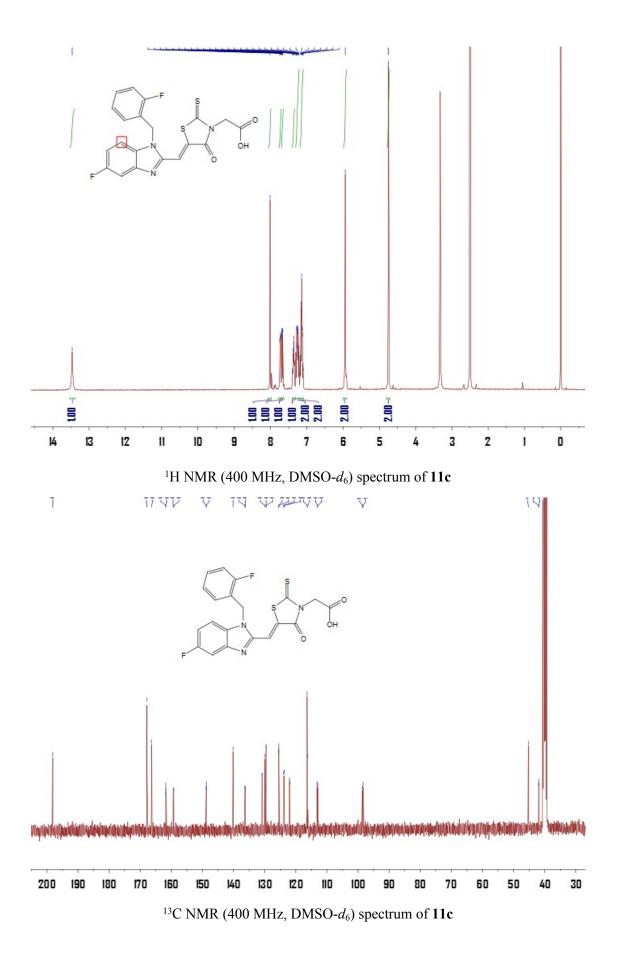

¹³C NMR (400 MHz, DMSO-*d*₆) spectrum of**10e**

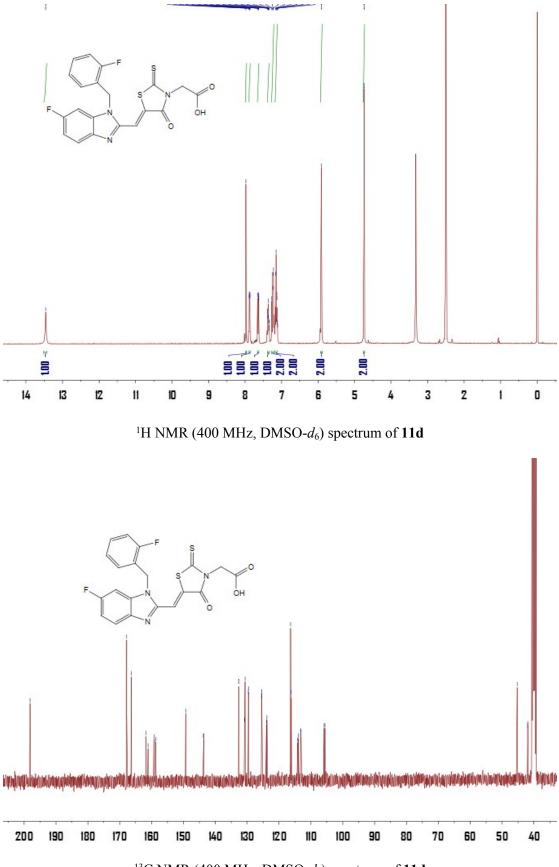


 13 C NMR (400 MHz, DMSO- d_6) spectrum of **10f**

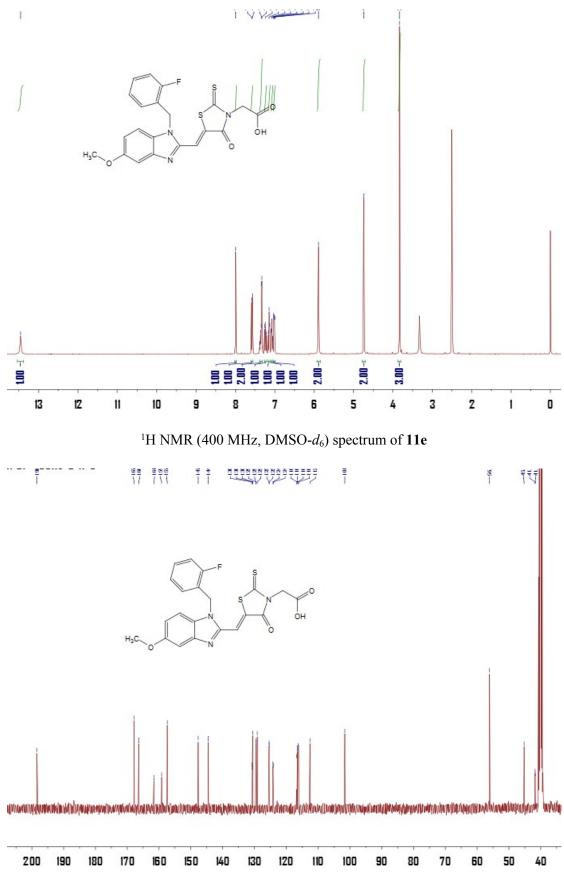


¹³C NMR (400 MHz, DMSO- d_6) spectrum of **10g**

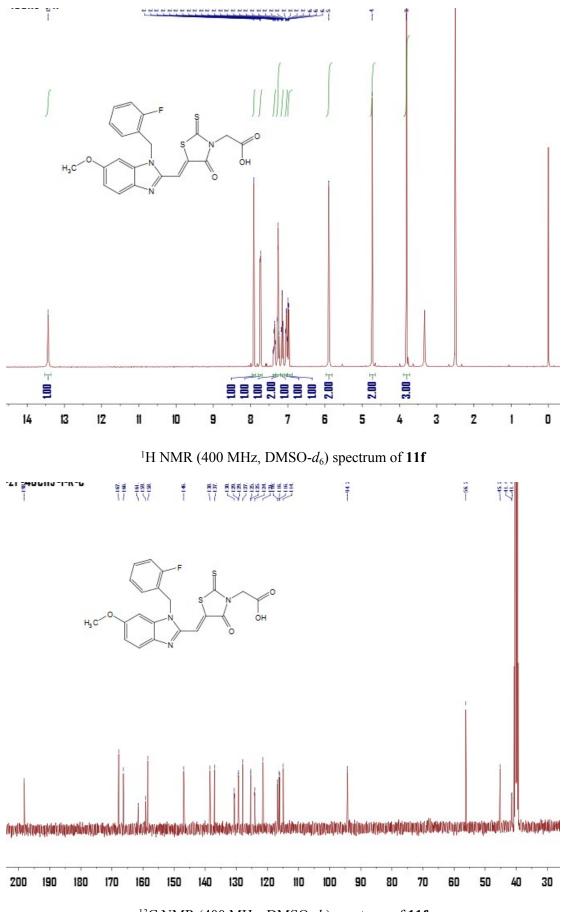


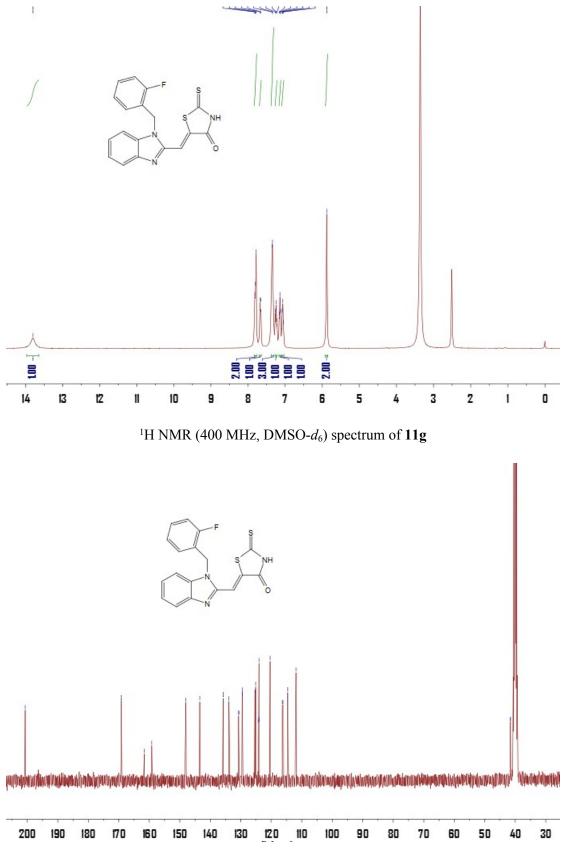


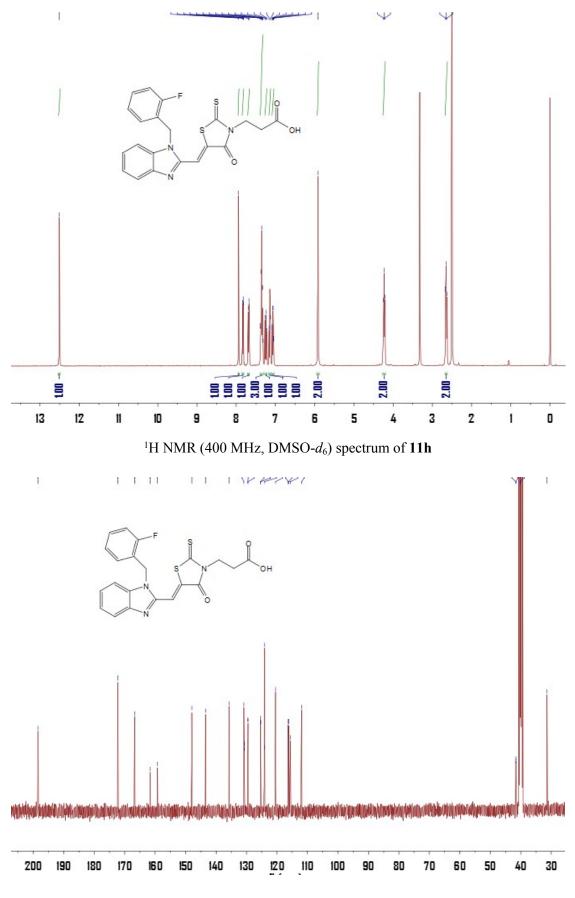
S45



S46




¹³C NMR (400 MHz, DMSO-*d*₆) spectrum of **11d**


 13 C NMR (400 MHz, DMSO- d_6) spectrum of **11e**

 13 C NMR (400 MHz, DMSO- d_6) spectrum of 11f

¹³C NMR (400 MHz, DMSO-*d*₆) spectrum of **11g**

 13 C NMR (400 MHz, DMSO- d_6) spectrum of **11h**