
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
Calhoun and team report a 3-way multimodal ICA-based data fusion in a large cohort of patients 
with schizophrenia and healthy controls. They also make an attempt to replicate their observations 
in an independent cohort (n=83), which is an effort that is highly commendable. Their 
observations implicate the salience network grey matter, corpus callosum’s fractional anisotropy, 
and central executive and default mode networks’ amplitude of low-frequency resting fluctuations 
as the markers of generalized cognitive ability across subjects.  
 
This is a very well designed analysis by a highly respected analytical team. It will come across as 
complex to many readers as the methods used are not still in widespread use in the imaging 
community. Given the complexity of analysis, the dependence of findings on derived rather than 
absolute MRI measures, and lack of a convincing replication of the referenced ICs in the 
independent cohort (see below for further clarification), the translational utility as claimed by the 
authors may not materialize. Nevertheless, this is an observation that adds a nuanced perspective 
to the existing literature of the neural-network basis of cognitive defects in schizophrenia.  
 
I was struck by how the authors chose to completely ignore the issue of antipsychotic dose 
exposure – both cumulative (lifetime) and cross-sectional dosages are linked to GM loss, fMRI 
changes as well as FA changes. To make matters worse, a large proportion of variance in 
measured cognition in schizophrenia may be affected by the dose of antipsychotics taken by an 
individual. The ‘reference’ factor binding the components reported here may very well be 
medication exposure, not cognition. Please refer to the works of Nancy Andreasen, and the meta-
analysis by Knowles and David.  
 
Also, the authors parsed individual domains of cognition only in relation to the ICs that related to 
general cognitive composite. This unnecessarily constrains the analysis in such a way that the 
brain regions that independently relate to a domain e.g. visual memory but not global composite, 
will not be identified in the search. This may improve replicability at a serious cost of validity. 
Please refer to the works of Dwight Dickinson in this regard (esp reg global and specific domains of 
cognition).  
 
The term ‘fMRI components’ is better replaced by ‘fALFF components’ wherever possible so a 
causal reader does not equate this with connectivity metrics.  
 
Given the major findings pertain to SN, I do not find a well referenced discussion regarding the 
role played by the SN in schizophrenia. The insular dysfunction hypothesis was developed around 
2010, with several structural findings relating SN deficits to symptoms such as reality distortion.  
 
 
I am not fully convinced that the replication across the data sets is excellent. The peak coordinates 
for every modality replicate poorly across the samples. The claim seems to be based on spatial 
correlation. Are the spatial correlation values based on binary conjunction maps thresholded at a 
specific Z value or simple voxel-by-voxel correlation of component loading across the 2 datasets? 
If it is the former, then the size of reported r will depend greatly on the Z cut-off.  
 
I am generally enthusiastic about publishing this work. But I would like to see a more realistic 
estimate of translational utility that takes into consideration the complexity of the analysis and 
issues with replication. I would also like to see more focus on mechanistic clarifications offered by 
the reported observation.  
 
 
 



 
Reviewer #2 (Remarks to the Author):  
 
In “Searching for multimodal neuromarkers in schizophrenia via cognition guided MRI data fusion: 
a cross-cohort and multi-domain study,” Sui et al. describe multimodal neuromarkers of cognition 
in a sample of healthy control samples and patients with schizophrenia. While this study has a 
good deal to recommend it, including a very interesting supervised data fusion method, there are 
several aspects of this work which at present diminish its impact.  
 
1. Style. Despite great interest, I found the paper fairly difficult to follow, which was largely due to 
a combination of a fairly convoluted analytic (see below) flow and a somewhat cumbersome 
writing style. For example, the abstract is poorly written, laden with run-on sentences and 
incomplete information-- “cognitive composite and multiple domain scores were used to guide 
three-way multimodal MRI data fusion in a discovery cohort(n=294) respectively.”  
 
2. Sample and inference. The authors seek to develop a multi-modal dimensional biomarker of 
cognition. However, this is accomplished in a mixed group of healthy controls and patients with 
schizophrenia. Because of the large cognitive deficits in patients, the neuromarkers discovered 
tend to be an admixture of the effects of diagnosis and individual differences in cognition. At one 
point the authors mention controlling for diagnosis (via partial correlation)—this should be done 
throught the paper, which would allow the authors to show that dimensional effects are present in 
both groups.  
 
3. Methods description. The readability of the manuscript would be improved if some of the 
relevant methods content could be placed within the context of the results section, especially the 
Multimodal fusion with reference subsection, to provide intuitions of the MCCAR+jICA throughout 
the manuscript.  
 
4. Parameter tuning. It is difficult to tell, but I imagine regularization is occurring to handle the 
p>>n problem of the data used. How regularization is performed, what constraints are used, and 
how these parameters are tuned are not discussed in the methods. (For example, there is a 
lambda in one of the equations that is not defined). If parameter tuning is performed, how do the 
authors ensure that they are not over-fitting the data? If significant tuning is occurring, this 
method should be cross-validated.  
 
5. Significance testing. Relatedly, it is unclear what the null distribution of this method is. If 
significant regularization is occurring, it is quite possible that the data is over-fit and the null 
distribution is not centered at zero. Standard permutation testing techniques that show the null, 
and how the observed correlations compare to the null, would increase confidence in the results 
substantially.  
 
6. Use of replication sample. It was somewhat curious how the authors used the replication 
sample. Rather than simply applying the model found from the discovery sample, new features 
were found de-novo. How well does the model from the discovery sample predict general cognition 
in the replication sample?  
 
7. Statistical testing of features in replication sample. One of the ways in which the authors assess 
the replication sample is through spatial correlations of the loading maps. They report high 
correlations, which are reasonably persuasive. However, statistical tests are also reported, which 
are uniformly so low as to below the precision of the test (p<10^-20, etc). These values are 
meaningless, as they seem to consider voxels as “samples” in the correlation. Thus, by simply 
increasing the resolution of the images in the spatial correlation, the authors are gaining additional 
“statistical power”, which is arbitrary and based purely on re-sampling. To test these relationships 
appropriately, a spatial permutation procedure that preserves the structure of the data is 
necessary—this has frequently been done on a spherical surface (see Gordon et al., Cerebral 



Cortex 2014 for example).  
 
8. Feature overlap. The rationale for finding overlapping features across cognitive sub-domains 
and then testing them separately was very unclear. Why not simply use the original features 
defined by the data fusion technique?  
 
9. Resting state pre-processing. The authors used a de-noising pipeline which certainly leaves a 
huge amount of noise related to motion and physiological artifact in the data, but do not control 
for motion in the group level analyses using fALFF based components. This of course can be a 
substantial confound in group level analyses—see for example recent data regarding this risk from 
the HCP below. Please display the group level correlation between fALFF neuromarkers and mean 
FD, cognition and FD, and control for FD in group level analyses.  
Siegel, J.S., Mitra, A., Laumann, T.O., Seitzman, B.A., Raichle, M., Corbetta, M., and Snyder, A.Z. 
(2016). Data Quality Influences Observed Links Between Functional Connectivity and Behavior. 
Cereb Cortex   
 
 
Minor  
1. Typo/Grammar Page 17. “Except for” should be “in addition to”, or “besides”  
2. Clarify in figures Figure 7 d-e. No labeling of the panels were provided to indicated that these 
data were from FBIRN alone, not from UNM or combined dataset.  
 
 
 
 
Reviewer #3 (Remarks to the Author):  
 
In this manuscript, Sui and colleagues tested whether multimodal MRI data can be leveraged to 
provide useful predictors of cognitive ability in healthy controls and cognitive impairment in 
schizophrenia. This topic is of keen interest to the brain imaging community, and this study is 
noteworthy for its use of multimodal data and cross-validation in an independent dataset. The 
impact of this manuscript hinges on the generalizability of the identified multimodal biomarkers. 
On this, my enthusiasm is tempered by the following concerns.  
 
Main points:  
The authors have not given sufficient consideration for head motion as a factor that affects image 
quality in all three MR modalities included. The influence of head motion needs to be addressed, 
e.g. by accounting for differences in motion between individuals and particularly between patient 
and control groups. First, more aggressive removal of motion signals could have been applied to 
the data (e.g. by regression of whole-brain signal). Second, summary motion parameters should 
be included in the multiple regression as a covariate. Third, a useful proof that motion does not 
determine the results might come from using the motion parameters as the reference in the 
“MCCAR+jICA” clustering and repeating the analyses. Individual differences in head motion could 
be a uniting factor that links the observed imaging features in the different modalities.  
 
It would be interesting to see a null model – for instance using a permuted vector as reference – 
to give us an indication of what kinds of spatial patterns we might expect by chance. This would 
give us confidence that the observed patterns are specific to the cognitive measures being used as 
priors. I found it interesting that the areas identified in the fMRI and FA data were regions that 
typically show the highest signal in each of those modalities. i.e. the corpus callosum and 
corticospinal tracts typically show high FA, and the default mode network typically exhibits high 
signal in fMRI. Is it possible that these regions were clustered together due to their SNR 
properties, rather than any interesting associations with cognitive measures?  
 
I found the generalization of the derived model to be underwhelming. Evidence for generalization 



came from two forms, 1) the spatial similarity of the IC maps defined separately in the two 
datasets, and 2) application of the regression model derived from one dataset to the other:  
 
1) Spatial similarity: The spatial maps derived from the two datasets were correlated to ~0.5, 
however the details of how the spatial correlation was performed are not fully explained. Were the 
spatial maps masked to exclude white matter voxels? For instance, in the GM correlation in Fig 3, 
were all voxels included in the final correlation analysis, or was the correlation restricted to the GM 
voxels? If the former, this would inflate the correlations. More information about the spatial 
correlation would be welcome.  
 
2) Regression model: The high p values in Figs 1 and 7 and Table 1 suggest that there is a large 
degree of overfitting happening in the training dataset. Hence the frequent reporting of p-values 
from the training dataset is misleading as the real test of the model’s validity is its generalizability 
to the replication dataset (i.e. Figure 7c). Here, the model fit is not very good (r=0.2, p=0.04), 
and to my eye there is no clear relationship between True and Predicted values. It looks to me like 
the slope is influenced by the red datapoint at the top right of the plot, and I would need to see 
the same plot with outliers removed before I could be convinced of any relationship.  
 
On a similar note, if the composite cognition scores were used as a reference for the definition of 
the components, how informative is it to report a p value for the correlation between component 
loadings and composite cognition scores in Figure 1? Is it surprising that there is a good fit of the 
loadings to the scores?  
 
As a general point, I found the motivation of the study slightly muddled. The stated aim is to 
unearth markers of cognitive ability, however the authors also study cognitive impairment in 
schizophrenia. Why are these two aims carried out in the same datasets? Does the inclusion of 
schizophrenic patients determine the results? And if so, doesn’t this make the identified markers 
less generalizable indicators of normal cognitive ability? Although the authors did test that the 
model holds when patients were excluded, the model was still derived using both patients and 
controls.  
 
Other points:  
 
Abstract:  
The term “neuromarker” is defined in the introduction, after being mentioned in the abstract.  
 
The inclusion of schizophrenic patients in the dataset is not mentioned in the abstract.  
 
 
Introduction:  
P3 > Definition of “neuromarker”: The term “neurocognitive” seems misplaced here.  
 
P3 > Grammar: ‘For example, Rosenberg et al., demonstrate that a set of whole-brain functional 
network strength’  
 
P3 > “Cognitive Composite ability” – Please explain how this composite measure is defined.  
 
Aim 1 – Given the multimodal nature of the analysis, how do the authors know a priori that the 
“identified multimodal neuromarker” will be a ‘network’, classically defined based on anatomical 
connectivity, or spontaneous correlations between brain regions, or perhaps even distributed 
regions showing similar task activation profiles? The authors need to define what they mean by 
terms like ‘network’ and ‘neuromarker’ more carefully. For instance, in the Results section the 
term “multimodal neuromarker network” is introduced. Are these ‘networks’ only definable by a 
confluence of imaging techniques? How does this then relate to the “brain networks” as defined 
classically?  



 
Aim 3 – Similarly, “What are the neuromarker networks associated with specific representative 
cognitive domains?” > By the authors definition aren’t the “neuromarker networks” defined by 
their association with cognitive domains? Perhaps remove the word “neuromarker”?  
 
Aim 3 – What is a “cognitive domain discrepancy”?  
 
Given that the central hypothesis of the study follows from the Triple Network Theory proposed by 
Vinod Menon, it would be useful to have a summary of this in the introduction, particularly in 
regards to the roles of the three networks in question, and schizophrenia.  
 
P4 > “…each of the four cognitive domains…” > the domains being referred to have not yet been 
defined.  
 
P4 > Grammar: “Remarkably, these models were successful in predicting for new individuals in an 
independent cohort on the corresponding cognitive metrics. This validates the generalizability of 
the identified modality” > “Remarkably, these models were successful in predicting the 
corresponding cognitive metrics for new individuals in an independent cohort”.  
 
 
Methods:  
P25 > Typo: “we can obtained”  
P25 > Please state explicitly what Aj denotes in equation 3.  
P25 > Please provide more details about how the target ICref is defined. Is the component that 
has highest correlation with the ref selected?  
 
P26 > Typo: “After defined”  
P26 > The section titled: “Predictive neuromarker extraction” was hard to follow. At one point we 
are referred to Figure 7a for explanation of the methods.  
 
Figures:  
Fig 1: Typo: “congnition”  
 



Dear editor: 

Thanks for giving our article further consideration. We have performed a number of additional 

analyses and revised the paper thoroughly based on the constructive comments made by the reviewers. 

Below, we shown the reviewers’ comments in black and the responses to the comments in blue. For 

convenience, we have also included the updated text added to the manuscript which is underlined.  

 

Comments to the Authors:  

Reviewer #1 (Remarks to the Author):  

Calhoun and team report a 3-way multimodal ICA-based data fusion in a large cohort of patients with 

schizophrenia and healthy controls. They also make an attempt to replicate their observations in an 

independent cohort (n=83), which is an effort that is highly commendable. Their observations implicate 

the salience network grey matter, corpus callosum’s fractional anisotropy, and central executive and 

default mode networks’ amplitude of low-frequency resting fluctuations as the markers of generalized 

cognitive ability across subjects.  

This is a very well designed analysis by a highly respected analytical team. It will come across as 

complex to many readers as the methods used are not still in widespread use in the imaging community. 

Given the complexity of analysis, the dependence of findings on derived rather than absolute MRI 

measures, and lack of a convincing replication of the referenced ICs in the independent cohort (see 

below for further clarification), the translational utility as claimed by the authors may not materialize. 

Nevertheless, this is an observation that adds a nuanced perspective to the existing literature of the 

neural-network basis of cognitive defects in schizophrenia.  

Thank you for the useful and insightful comments.  

1. I was struck by how the authors chose to completely ignore the issue of antipsychotic dose exposure 

– both cumulative (lifetime) and cross-sectional dosages are linked to GM loss, fMRI changes as well 

as FA changes. To make matters worse, a large proportion of variance in measured cognition in 

schizophrenia may be affected by the dose of antipsychotics taken by an individual. The ‘reference’ 

factor binding the components reported here may very well be medication exposure, not cognition. 

Please refer to the works of Nancy Andreasen, and the meta-analysis by Knowles and David. 

Thanks for highlighting this important point. Not surprisingly, most of the patients enrolled in our 

current study were taking antipsychotic medications. In response to the reviewer, we performed 

correlation analysis between cognitive domain scores and medication dosages. A standardized total 

dose of drug dose, i.e., Chlorpromazine equivalent doses1, were used to estimate medication dose. 

Supplementary Table 9 list the p values for correlations with all cognitive domains. It is clear that there 

is very little association between medication dose and cognitive scores in our current data.  

 



Table 9. Correlation analysis between medication dosages and cognitive scores 

Cognitive 

domains 
Composite 

Speed of 

Processing 
Attention 

Working 

Memory 

Verbal 

Learning 

Visual 

Learning 
Reasoning 

p value 0.571 0.439 0.768 0.096 0.398 0.772 0.442 

r 0.054 0.075 0.029 0.121 0.083 -0.028 0.074 

 

We also performed correlation analysis between medication dosages and multimodal imaging 

features (voxel-wise). No imaging voxels showed a significant correlation with medication dose, again 

suggesting that medication dose have little or at best very subtle effects on the brain imaging. These 

results support our claim that the identified replicable multimodal covarying patterns are associated 

with cognition but not medication exposure. 

We have added the following contents in discussion on page 26.  

“…Furthermore, most participants were receiving antipsychotic medication at the time of 

scanning (medication information can be found in Supplementary Table 8). In our current study, the 

correlation between medication dose and cognitive domain was not significant (Supplementary Table 

9). In addition, no imaging voxels showed a significant correlation with medication dosage for any of 

the three modalities, demonstrating that medication has little or at best a very subtle effect on brain 

imaging in our current data. These results support our claim that the identified replicable multimodal 

covarying patterns are associated with cognition but not medication exposure.” 

2. Also, the authors parsed individual domains of cognition only in relation to the ICs that related to 

general cognitive composite. This unnecessarily constrains the analysis in such a way that the brain 

regions that independently relate to a domain e.g. visual memory but not global composite, will not be 

identified in the search. This may improve replicability at a serious cost of validity. Please refer to the 

works of Dwight Dickinson in this regard (esp reg global and specific domains of cognition).  

The primary purpose of the study is to investigate the multimodal imaging patterns associated 

with global cognitive deficits. Beyond this, we further identified the imaging patterns that are 

specifically associated with 3 subdomain scores including attention, working memory and verbal 

learning (as shown in Fig. 5-6). Therefore, investigation of other cognitive domain can be easily 

generalized by our current framework, while we choose these 3 domains mainly due to that they were 

most impaired in SZ and closely relevant to global composite.  

In addition, the global cognitive composite is also significantly correlated with all other sub-

domain scores. A variety of statistical analyses have showed that individual test scores and domain 

specific scores were significantly inter-correlated and that domain specific scores were highly 

correlated with the global composite score2, as listed in the last column of Supplementary Table 10 

(FBIRN-CMINDS) and Table 11 (UNM-MCCB). The work of Dwight Dickinson (Dickinson D, 

Harvey PD.2009.“Systematic hypotheses for generalized cognitive deficits in schizophrenia: a new 



take on an old problem”. Schizophrenia bulletin 35, 403-414), also argue that a generalized cognitive 

deficit is at the core of schizophrenia and deserves more focused consideration from cognitive 

specialists in the field2.  

Table 10. Demographics and the CMINDS scores for FBIRN subjects 

Measure  HC SZ p r 

Number  147 147   

Age  37.4±11.1 39.5±11.8 0.117 -0.303 

Gender  44F/103M 35F/112M 0.238 -0.139 

CMINDS Composite -0.017±1.0 -1.590±1.2 1.7E-24 1 

Speed of processing -0.010±1.0 -1.356±1.1 2.3E-21 0.729 

Attention/vigilance 0.002±1.0 -1.435±1.4 2.7E-18 0.770 

Working memory 0.010±1.0 -1.152±1.1 1.9E-17 0.731 

Verbal learning 0.024±1.0 -1.373±1.2 1.1E-21 0.785 

Visual learning -0.017±1.0 -1.051±1.1 1.5E-13 0.830 

Reasoning/problem solving -0.034±1.0 -0.803±1.2 6.6E-08 0.663 

PANSS Negative NA 14.556±5.6  -0.256 

 Positive NA 15.424±4.8  -0.121 

* r means correlation value with the CMINDS composite score. 

Table 11． MCCB domain scores and PANSS scores of the UNM subjects 

Measure  HC SZ p r 

MCCB Composite 50.4±10.6 30.5±16.1 2.5E-08 1 

Speed of processing 52.1±9.2 34.5±14.4 2.2E-08 0.912 

Attention/vigilance 49.0±10.3 35.7±15.1 2.8E-05 0.864 

Working memory 46.9±11.4 35.8±14.8 3.8E-04 0.839 

Verbal learning 47.9±9.3 38.2±9.1 1.0E-05 0.810 

Visual learning 49.2±9.1 36.8±12.7 5.6E-06 0.787 

Reasoning/problem solving 48.8±9.3 36.8±12.7 10.0E-06 0.787 

Social cognition 54.8±9.8 45.8±11.4 0.5E-04 0.614 

PANSS Negative NA 28.923±11.4  -0.392 

 Positive NA 15.846±5.5  -0.488 

* r means correlation value with the MCCB composite score. 

3. The term ‘fMRI components’ is better replaced by ‘fALFF components’ wherever possible so a 

causal reader does not equate this with connectivity metrics.  

    Thank you for the suggestion. We have changed the term “fMRI components” to “fALFF 

components” throughout the manuscript.  

4. Given the major findings pertain to SAN, I do not find a well referenced discussion regarding the 

role played by the SAN in schizophrenia. The insular dysfunction hypothesis was developed around 

2010, with several structural findings relating SAN deficits to symptoms such as reality distortion. 

    Thank you for the suggestion. We have added the following contents to describe the role of SAN 



in schizophrenia. See also manuscript page No. 22-23.  

“Both functional and structural studies have pointed to a dysfunctional SAN in schizophrenia3. 

Bilateral volume reduction has been seen in the anterior insula and ACC in patients with schizophrenia. 

Furthermore, SAN deficits in patients with schizophrenia have also been linked to reality distortion, 

leading to the suggestion that SAN abnormality leads to an impaired attribution of salience to stimuli 

that is associated with delusions and hallucinations in schizophrenia3, 4, 5. Together with other consistent 

findings6, we speculate that SAN in GM may play a crucial role as a structural substrate for 

neurocognition7, 8. In particular, the insula (an integral hub for initiating network switching that leads 

to the functional engagement of the CEN and functional disengagement of the pDMN) and its deficit 

may impact across multiple cognitive domains. Within this hierarchy, the SAN would stand in a ‘hub’ 

position at a ‘crossroads’ within the functional architecture of the brain, acting as a switch to deploy 

other major functional networks according to motivational demands and environmental constraints9.” 

[3] Dickinson D, Harvey PD. Systemic hypotheses for generalized cognitive deficits in schizophrenia: 

a new take on an old problem. Schizophrenia bulletin 35, 403-414 (2009). 

[4] White TP, Joseph V, Francis ST, Liddle PF. Aberrant salience network (bilateral insula and anterior 

cingulate cortex) connectivity during information processing in schizophrenia. Schizophrenia 

research 123, 105-115 (2010).  

[5] Palaniyappan L, Mallikarjun P, Joseph V, White TP, Liddle PF. Reality distortion is related to the 

structure of the salience network in schizophrenia. Psychological medicine 41, 1701-1708 (2011). 

[6] Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching 

between central-executive and default-mode networks. Proceedings of the National Academy of 

Sciences of the United States of America 105, 12569-12574 (2008).  

[7] Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. 

Brain structure & function 214, 655-667 (2010).  

[8] S. Kristian Hill，James L. Reilly，Richard S.E. Keefe，James M. Gold，Jeffrey R. Bishop，Elliot 

S. Gershon CAT, Godfrey D. Pearlson, Matcheri S. Keshavan, John A. Sweeney. 

Neuropsychological Impairments in Schizophrenia and Psychotic Bipolar Disorder: Findings 

from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) Study. Am J 

Psychiatry 170, 1275–1284 (2013). 

[9] Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. 

Trends in cognitive sciences 15, 483-506 (2011).  

 

5. I am not fully convinced that the replication across the data sets is excellent. The peak coordinates 

for every modality replicate poorly across the samples. The claim seems to be based on spatial 

correlation. Are the spatial correlation values based on binary conjunction maps thresholded at a 

specific Z value or simple voxel-by-voxel correlation of component loading across the 2 datasets? If it 

is the former, then the size of reported r will depend greatly on the Z cut-off.  

    In response to the reviewer, we have added the following figure to compare the peak coordinates 

of components between FBIRN and UNM for all three modalities in addition to Fig. 3. Notably, the 

anatomic locations of the peak coordinates replicate between the 2 datasets and includes caudate and 



the bilateral insula for GM, precuneus for fALFF, and posterior and anterior corpus callosum for FA.  

 
Peak coordinates comparison between FBIRN and UNM for three modalities. 

The original spatial correlation is based on the voxel-by-voxel correlation of the thresholded 

component, but not the binary conjunction maps. As suggested by reviewers, we now calculated the 

spatial correlation of the identified target component between two cohorts using only voxels masked 

at |Z|>T (threshold). First, the spatial maps were transformed into Z scores and masked at |Z|> T. Then 

we obtained two masks from FBIRN (mask_FBIRN) and UNM (mask_UNM) respectively, which 

were used to perform the voxel selection. Only voxels that fell in the union of the masks 

(mask_FBIRN ∪ mask_UNM) were used to calculate the cross-cohort correlation. Thus total number 

of voxels for calculating the spatial correlation is greatly reduced, e.g., from 𝑛= 153594 (whole brain 

voxels) to 𝑚 =1936 (T=2, used in our paper). Spatial correlation was finally performed on these 

commonly identified voxels (𝑚=1936) between two cohorts.  

As suggested, we further compared the impact of using different T thresholds on cross-cohort 

spatial correlations. As listed in Table 4, all cross-cohort correlations r are significant (FDR corrected) 

regardless of different T thresholds, with p<1.0e-5 in all cases. We have added the above content and 

the Table 4 to supplementary file in section of “cross-cohort spatial correlation”.  

Table 4 Spatial correlation derived from different thresholded T values 

Threshold GM FA fALFF 

𝑻 = 1 𝑟 = 0.38* 𝑚 = 8553 𝑟 = 0.42* 𝑚 = 7738 𝑟 = 0.22* 𝑚 = 16420 

𝑻 = 2 𝑟 = 0.51* 𝑚 = 1936 𝑟 = 0.59* 𝑚 = 2720 𝑟 = 0.39* 𝑚 = 3692 

𝑻 = 3 𝑟 = 0.65* 𝑚 = 405 𝑟 = 0.67* 𝑚 = 845 𝑟 = 0.45* 𝑚 = 732 

 

In addition, we also performed a permutation test to calculate the significance for the cross-cohort 

spatial correlation. We do this by randomly shuffling Y (UNM_ICref) across voxels and re-running the 

correlation analyses (between X [FBIRN_ICref] and Y) 10000 times in order to obtain an empirical null 

distribution. We then record the number of times the correlation exceeds the obtained sample 

correlation. Take GM component for example (Fig. 3), the observed correlation between FBIRN_ICref 

and UNM_ICref was 0.51, while 8 of the 10000 permutations obtained correlations falling out the range 

of [-0.51, 0.51], thus the probability of p=8.0× 10−4 was estimated for cross-cohort correlation of 

r=0.51 between GM maps by chance.   

We have updated Fig. 3 as below by replacing the original p values with permuted p values in the 



blue arrows (cross-cohort replication). The corresponding contents was also added in Supplementary 

section “Cross-cohort spatial correlation”. This could respond to Reviewer 2 point #7 as well. 

 

Figure 3. Similarity and covarying patterns of the identified neuromarker networks between cohorts. (a) The 

identified neuromarker network associated with CMINDS composite in FBIRN cohort. (b) The identified 

neuromarker network associated with MCCB composite in UNM cohort. The spatial maps were visualized at |Z|>2; 

The blue arrows represent the cross-cohort spatial correlation (Pperm are permuted p values of 10000 randomizations); 

the orange arrows represent inter-modality covariation across subjects; and the pink arrows denote the correlations 

between cognitive composite (the reference) and the identified ICref_composite.  

6. I am generally enthusiastic about publishing this work. But I would like to see a more realistic 

estimate of translational utility that takes into consideration the complexity of the analysis and issues 

with replication. I would also like to see more focus on mechanistic clarifications offered by the 

reported observation.  

As to a realistic translational perspective, we identified a replicable multimodal covarying pattern, 

including GM_SAN, FA_CC, fALFF_PFC and fALFF_pDMN, which define a modality-specific brain 

network that may be used broadly as neuromarkers, i.e., to predict multiple cognitive domain scores 

for unseen subjects in independent datasets, even in the case where the cognitive scores were measured 

from two different methodologies (CMIND vs. MCCB, they are two similar but not identical cognitive 

measurement systems10). We have modified the Discussion as follows on page 23-24:  

“Neuroimaging techniques like structural and functional magnetic resonance imaging have led to 

a search for neuromarkers that can bring psychiatry from subjective descriptive classification into 

objective and tangible brain-based measures11, 12. The four neuromarkers (including GM_SAN, 



FA_CC, fALFF_PFC and fALFF_pDMN) identified in our current work can be applied directly to 

predict cognitive ability in new individuals and similarly potentially for other mental disorders (such 

as ADHD or MDD). In addition to cognitive dysfunction, other clinical measures could also be studied 

using the analysis pipeline proposed in our current study including symptom severity, intelligence 

quotient (IQ), and behavioral measures (e.g., temperament inventory, reading ability), or even 

epigenetic variants (e.g., the expression levels of a specific microRNA13), suggesting a wide utility in 

the neuroimaging community. This approach is consistent with the scope of the research domain 

criteria (RDoC) project proposed by NIMH as well, which aims to incorporating genetics, 

neuroimaging and cognitive science into classifying and clarifying the underlying causes of mental 

disorders based on dimensions of observable behavior and neurobiological measures14.”  

 

[11] Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in 

translational neuroimaging. Nat Neurosci 20, 365-377 (2017). 

[12] Abi-Dargham A, Horga G. The search for imaging biomarkers in psychiatric disorders. Nat Med 

22, 1248-1255 (2016). 

[13] Qi S, et al. MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major 

depressive disorder. Brain, awx366-awx366 (2018).  

[14] Cuthbert BN. The RDoC framework: facilitating transition from ICD/DSM to dimensional 

approaches that integrate neuroscience and psychopathology. World Psychiatry 2014;13:28-35. 

 

 Regarding replication issues, we tested both cross-cohort similarity of brain patterns as well as 

generalizability of the cogntion-predictive models. please also refer to reponse to Reviewer 1 point 

#5, explanation of Fig. 3 as below on page 10 and the section of “Generalization for independent 

cohorts” on page 18-20 in mansucript.  

“…Notably, the anatomic locations of the peak coordinates replicate between the two datasets and 

include caudate and the bilateral insula for GM, precuneus for fALFF, and PCC/ACC for FA. 

Specifically, blue arrows indicate the cross-cohort spatial correlations by using the Z thresholded 

spatial maps of each modality. The cross-cohort correlation between the identified components are GM: 

r=0.51, pperm=8.0 × 10−4 , FA: r=0.59, pperm=2.0 × 10−4 ; fALFF: r=0.45, pperm=0.002 where the 

significance pperm were resulted from 10000 permutations. Details were provided in Supplementary 

Table 4….” 

In terms of mechanistic clarifications, we have added the following in discussion: 

“One major finding was that CEN, SAN and pDMN are three key networks that are particularly 

important for understanding multiple cognitive functions and their dysfunction in SZ53, 54, 55 . These 

networks are unique in that they can be readily identified across an extremely wide range of cognitive 



tasks, and their responses increase and decrease proportionately, with general cognitive task demands8. 

More importantly, they are in accord with the triple network model of major psychopathology8. In this 

model, the SAN, with the anterior insular as its integral causal outflow hub, assists target brain regions 

in the generation of appropriate behavioral responses to salient stimuli15. Once such a stimulus or event 

is detected, the insular facilitates task-related information processing by initiating appropriate transient 

control signals. These signals engage brain areas that mediate attentional, working memory and higher-

order cognitive processes through CEN while disengaging the DMN. Consequently, the aberrant 

organization of these three core brain networks play a significant role in cognitive impairment of many 

psychiatric and neurological disorders. 

… 

our work provides evidence that a synthesis and interaction exist among the three intrinsically 

coupled networks8 in both brain function and structure, which are systematically engaged during 

cognition and impact multiple cognitive domains. 

Within this hierarchy, the SAN would stand in a ‘hub’ position in mediating dynamic interactions 

between other large-scale brain networks involved in externally oriented attention and internally 

oriented self-related mental processes9. As inferred by Vinod Menon15, the general consequences for 

psychopathology are simple: aberrant saliency filtering, detection and mapping result in deviant 

signaling into and out of the SAN. This in turn has important repercussions for how attentional 

resources are allocated, and consequently for cognition and behavior. These are suggested as the 

fundamental mechanisms underlying cognitive dysfunction in psychiatric disorders8. Our results also 

highlight that aberrant functional and anatomical organization within this triple network could be a 

prominent feature of schizophrenic cognitive impairment. And a proper characterization of these 

multimodal networks may serve as a neuromarker network to quantify the cognitive dysfunction in 

psychopathology.” 

 

  



Reviewer #2 (Remarks to the Author):  

In “Searching for multimodal neuromarkers in schizophrenia via cognition guided MRI data fusion: a 

cross-cohort and multi-domain study,” Sui et al. describe multimodal neuromarkers of cognition in a 

sample of healthy control samples and patients with schizophrenia. While this study has a good deal 

to recommend it, including a very interesting supervised data fusion method, there are several aspects 

of this work which at present diminish its impact.  

Thank you for the insightful comments.  

1. Style. Despite great interest, I found the paper fairly difficult to follow, which was largely due to a 

combination of a fairly convoluted analytic (see below) flow and a somewhat cumbersome writing 

style. For example, the abstract is poorly written, laden with run-on sentences and incomplete 

information-- “cognitive composite and multiple domain scores were used to guide three-way 

multimodal MRI data fusion in a discovery cohort (n=294) respectively.”  

Thank you for the suggestion. We have rewritten the abstract as following and gone through the 

whole manuscript carefully to present the analysis flow.  

“Imaging neuromarkers that can interrelate cognitive impairments and ultimately predict 

individual cognitive performance are a major research focus in this new era of psychiatric study. To 

this end, our goal was to identify multimodal neuromarkers that can be used to quantify and predict 

cognitive performance，especially impaired in schizophrenia. By supervised learning strategy, multiple 

cognitive domain scores were used to guide three-way multimodal magnetic resonance imaging (MRI) 

data fusion in two independent cohorts. Results highlighted the salience network (gray matter, GM), 

corpus callosum (fractional anisotropy, FA), central executive and default mode networks (fractional 

amplitude of low frequency fluctuation, fALFF) as potential, modality-specific, neuromarkers of 

generalized cognition. FALFF features were found to be more sensitive to cognitive domain 

differences, while the salience network in GM and corpus callosum in FA are highly consistent and 

predictive on multiple cognitive domains. These modality-specific brain regions define a promising 

neuromarker network which covaries subject-wisely and has the potential to be used as predictors of 

multi-domain cognitive scores for new individuals.” 

 

2. Sample and inference. The authors seek to develop a multi-modal dimensional biomarker of 

cognition. However, this is accomplished in a mixed group of healthy controls and patients with 

schizophrenia. Because of the large cognitive deficits in patients, the neuromarkers discovered tend to 

be an admixture of the effects of diagnosis and individual differences in cognition. At one point the 

authors mention controlling for diagnosis (via partial correlation)—this should be done throughout the 

paper, which would allow the authors to show that dimensional effects are present in both groups.  

    Thank you for this suggestion. We have performed the partial correlation analysis throughout the 



paper and added the following contents in the main text of the revised manuscript, see page No.13.  

“In order to quantify the robustness of the cognition-brain correlation across groups, we 

performed partial correlation to minimize the group effect. As shown in Supplementary Table 6, in any 

case of partial correlation, the cognition-imaging correlations remain significant (FDR corrected) after 

controlling for diagnosis in all four domains.”  

Table 6. Partial correlation analysis of FBIRN results after controlling for diagnosis 

Modality GM_ICref FA_ICref fALFF_ICref 

Partial correlations r p r p r p 

Composite 0.241 9.0e-05* 0.118 0.05 0.275 6.9e-06* 

Attention/vigilance 0.137 0.026 0.128 0.037 0.223 2.8e-04* 

Working memory 0.291 1.3e-06* 0.188 0.002* 0.265 1.1e-05* 

Verbal learning 0.151 0.014 0.156 0.001* 0.139 0.023 

 

3. Methods description. The readability of the manuscript would be improved if some of the relevant 

methods content could be placed within the context of the results section, especially the Multimodal 

fusion with reference subsection, to provide intuitions of the MCCAR+jICA throughout the manuscript. 

    Thank you for the suggestion. We have moved the “Analysis flowchart” section to the “Results” 

section, and also added a brief description of MCCAR+jICA, see pages 5-6.  

4. Parameter tuning. It is difficult to tell, but I imagine regularization is occurring to handle the p>>n 

problem of the data used. How regularization is performed, what constraints are used, and how these 

parameters are tuned are not discussed in the methods. (For example, there is a lambda in one of the 

equations that is not defined). If parameter tuning is performed, how do the authors ensure that they 

are not over-fitting the data? If significant tuning is occurring, this method should be cross-validated.  

    We now clarify that we are indeed cross-validating the parameters. Note, the parameter λ  in 

equation (3) is not used to handle the p>>n problem of the data but to balance the contribution of cost 

function：‖corr(𝑨k, 𝑨j)‖
2

2
 and ‖corr(𝑨k, 𝑟𝑒𝑓)‖2

2 in equation (3). “MCCA with reference (MCCAR) 

imposes an additional constraint upon the MCCA (equation (4)) framework to maximize not only the 

covariations among mixing matrices of each modality, but also the column-wise correlations between 

𝑨𝑘  and the reference signal (𝑟𝑒𝑓).” 

max ∑ {‖corr(𝑨k, 𝑨j)‖
2

2
+ 2λ ∙ ‖corr(𝑨k, 𝑟𝑒𝑓)‖2

2}3
k,j=1                (3) 

max ∑ {‖corr(𝑨k, 𝑨j)‖
2

2
}3

k,j=1                         (4) 

“When determining the value of λ, we performed a five-fold cross validation on these 294 

subjects for 50 iterations. 4/5 of the data was trained by MCCAR+jICA to be decomposed into 𝑨𝑡𝑟𝑎𝑖𝑛 

and 𝑺, where 𝑺 is further used in the remaining 1/5 of testing data to decompose it into 𝑨𝑡𝑒𝑠𝑡 and 

𝑺. Then we tested the correlation between the reference and the target component of 𝑨𝑡𝑒𝑠𝑡 (with the 



same IC order of the target component derived from 𝑨𝑡𝑟𝑎𝑖𝑛) for 5×50 = 250 times on each modality. 

As shown in Fig. S1, the mean and standard derivation of correlations of all iterations for the three 

modalities were calculated and λ was set to the value at which the correlation between target IC and 

the reference reaches its maximum value (λ = 0.5 for the FBIRN data). For UNM data, we adopted 

the same strategy to independently determine the value of λ.” 

 
Figure S1. Correlation of the identified components and 

CMINDS composite scores across multiple cross-

validations. When λ is 0.5, the mean correlation between 

estimated target IC and composite cognitive scores of all 

modalities reaches its maximum value. The black line, 

yellow patch and blue line represent mean, standard error of 

the mean (SEM) and the standard deviation (SD) of 

correlations between target IC and composite scores. 

 

 

We have added the above text and results to the Supplementary “Lamda determination in 

MCCAR+jICA” section.  

5. Significance testing. Relatedly, it is unclear what the null distribution of this method is. If significant 

regularization is occurring, it is quite possible that the data is over-fit and the null distribution is not 

centered at zero. Standard permutation testing techniques that show the null, and how the observed 

correlations compare to the null, would increase confidence in the results substantially.  

In response to the reviewer, “we also performed standard permutation test for the correlations 

listed in the Results. We do this by randomly shuffling Y (cognitive scores) across participants and re-

running the correlation analysis (between X [loadings of ICref] and Y) 10000 times in order to obtain 

an empirical null distribution. We also record the number of times a correlation coefficient between X 

and Y exceeds the obtained sample correlation (r=0.262, here we take the FA component as an 

example). Significance cutoffs were determined using the above permutation test (10000 permutations; 

a cutoff was chosen for a significant alpha of 0.05, that is, 5% of permutations showed one or more 

significant ICref vs cognition relationships). As in our results (Fig. 1b), the observed correlation 

between FA_ICref and cognitive scores obtained on the original data was 0.262, while the sampling 

distribution of r under randomization is symmetric around 0.0 (Fig. S2), and 20 of the 10000 

randomizations exceeded ± 0.262. This analysis quantifies the probability p=0.002 of obtaining a 

particular r=0.262 between loadings of FA_ICref and composite cognitive scores by chance.” 



 

 

 

Figure S2. Permutation test for the correlation analysis 

between FA_ICref and cognitive scores (10000 times). The 

black dotted line indicates ±0.262. 

 

 

 

 

“Based on the above permutation procedure, we tested all the correlations for both FBIRN and 

UNM. FBIRN: ppermutation = 1.3× 10−4, 0.002, 1.0× 10−4 for sMRI, dMRI and fMRI, respectively 

(Fig. 1b). UNM: ppermutation = 0.02, 0.01, 0.001 for sMRI, dMRI and fMRI, respectively (Fig. 2b).” 

 

Fig. 1a-b 

FBIRN: ppermutation = 1.3× 10−4, 0.002, 1.0× 10−4 for sMRI, dMRI and fMRI.  

 

Fig. 2a-b 

UNM: ppermutation = 0.02, 0.01, 0.001 for sMRI, dMRI and fMRI.  



We have added the above contents to the Supplementary “Permutation test” section.  

6. Use of replication sample. It was somewhat curious how the authors used the replication sample. 

Rather than simply applying the model found from the discovery sample, new features were found de-

novo. How well does the model from the discovery sample predict general cognition in the replication 

sample?  

    Thanks for making this point. We now clarify that we tested replicability in two ways. 

We actually used both approaches mentioned by the reviewer. One included replication of the 

entire analysis pipeline on two independent data sets and comparison of the similarity of the spatial 

maps and the correlation with cognitive domains. This is a stronger replication criteria as we are 

allowing the estimation of the components to be data-driven in two independent datasets. The fact that 

they were highly similar and significantly replicate provides additional support for our proposed 

approach.  

The second approach included regression of the first results onto the second to evaluate the links 

between the identified spatial networks and cognition. In this case the regions are fixed ahead of time 

based on the reference data set. Results also replicated in this case. Both cases showed significant 

replication results, providing strong support for both the proposed approach and the generalizability of 

the results. 

7. Statistical testing of features in replication sample. One of the ways in which the authors assess the 

replication sample is through spatial correlations of the loading maps. They report high correlations, 

which are reasonably persuasive. However, statistical tests are also reported, which are uniformly so 

low as to below the precision of the test (p<10^-20, etc). These values are meaningless, as they seem 

to consider voxels as “samples” in the correlation. Thus, by simply increasing the resolution of the 

images in the spatial correlation, the authors are gaining additional “statistical power”, which is 

arbitrary and based purely on re-sampling. To test these relationships appropriately, a spatial 

permutation procedure that preserves the structure of the data is necessary—this has frequently been 

done on a spherical surface (see Gordon et al., Cerebral Cortex 2014 for example).  

Thank you for the comments. As suggested, “we now calculated the spatial correlation of the 

identified target component between two cohorts with only voxels masked at |Z|>T. First, the spatial 

maps were transformed into Z scores and masked at |Z|>2. Then we obtained two masks from FBIRN 

(mask_FBIRN) and UNM (mask_UNM) respectively, which were used to perform the voxel selection. 

Only voxels that fell in the union of the masks (mask_FBIRN ∪ mask_UNM) were used to calculate 

the cross-cohort correlation. Thus total number of voxels in calculating the spatial correlation is greatly 

reduced, e.g., from 𝑛= 153594 (whole brain voxels) to 𝑚=1936 (T=2). Spatial correlation was finally 

performed on these commonly identified voxels (𝑚=1936) between two cohorts.” 

“In addition, we also performed a permutation test to calculate the significance for the cross-



cohort spatial correlation. We do this by randomly shuffling Y (UNM_ICref) across voxels and re-

running the correlation analyses (between X [FBIRN_ICref] and Y) 10000 times in order to obtain an 

empirical null distribution. We then record the number of times the correlation exceeds the obtained 

sample correlation. Take GM component for example (Fig. 3), the observed correlation between 

FBIRN_ICref and UNM_ICref was 0.51, while 8 of the 10000 permutations obtained correlations falling 

out the range of [-0.51, 0.51], thus the probability of p=8.0× 10−4 was estimated for cross-cohort 

correlation of r=0.51 between GM maps by chance.” 

We have revised Fig. 3 by changing p values for spatial correlation to permuted p values and 

added the above contents to the Supplementary “Spatial correlation” section.  

 

Figure 3. Similarity and covarying patterns of the identified neuromarker networks between cohorts. (a) The 

identified neuromarker network associated with CMINDS composite in FBIRN cohort. (b) The identified 

neuromarker network associated with MCCB composite in UNM cohort. The spatial maps were visualized at |Z|>2; 

The blue arrows represent intra-modality similarity (spatial correlation) cross cohorts (the listed p values are permuted 

p values); the orange arrows represent inter-modality covariation across subjects; and the pink arrows denote the 

correlations between cognitive composite (the reference) and the identified ICref_composite. 

 

8. Feature overlap. The rationale for finding overlapping features across cognitive sub-domains and 

then testing them separately was very unclear. Why not simply use the original features defined by the 

data fusion technique?  



Note that one aim of this paper is to extract multimodal features that are significantly associated 

with cognitive dysfunction. The domain-common multimodal features are the core brain networks that 

affect across different cognitive domains. Hence, we performed the overlapping procedure across sub-

domains to extract common core multimodal co-varying brain networks that can predict multiple 

cognitive domains for both FBIRN and UNM cohort.  

In addition, the global composite is significantly correlated with all other sub-domain scores 

(Supplementary Table 10, 12). A variety of statistical analyses showed that individual test scores and 

domain specific scores were significantly inter-correlated and that domain specific scores were highly 

correlated with a global composite score2. Please also refer to Reviewer 1 point #2. Certainly, domain-

specific research can also be investigated in future study.  

9. Resting state pre-processing. The authors used a de-noising pipeline which certainly leaves a huge 

amount of noise related to motion and physiological artifact in the data, but do not control for motion 

in the group level analyses using fALFF based components. This of course can be a substantial 

confound in group level analyses—see for example recent data regarding this risk from the HCP below. 

Please display the group level correlation between fALFF neuromarkers and mean FD, cognition and 

FD, and control for FD in group level analyses.  

Siegel, J.S., Mitra, A., Laumann, T.O., Seitzman, B.A., Raichle, M., Corbetta, M., and Snyder, A.Z. 

(2016). Data Quality Influences Observed Links Between Functional Connectivity and Behavior. 

Cereb Cortex.  

We are sorry that the section of fMRI preprocessing was not clear enough (we had initially 

shortened it due to the word limitation). We did remove outlier subjects who have framewise 

displacements (FD) exceeding 1.0 mm, as well as head motion exceeding 2.0 mm of maximal 

translation (in any direction of x, y or z) or 1.0o of maximal rotation throughout the course of scanning. 

We also despiked the fMRI data, and regressed out six head motion parameters, white matter, and 

cerebrospinal fluid. Results indicate all FDs (mean framewise displacements, mean of root of mean 

square frame-to-frame head motions assuming 50 mm head radius16) for all subjects were <0.3 mm at 

every time point. Note also there is no significant difference between patients and controls on mean 

FDs, namely,  

UNM, HC: mean=0.22±0.12mm, SZ: 0.21±0.11 mm, two sample t-test: p = 0.77  

FBIRN, HC: mean=0.25±0.18mm, SZ: 0.27±0.21mm, two sample t-test: p = 0.65 

In response to the reviewer, “we also performed correlation analysis between cognitive scores 

and mean FDs for both FBIRN and UNM cohort, as displayed in Table 13 and Table 14, none of these 

tests was significant.” 

 



Table 13. p values for the correlations between mean FD and cognition for FBIRN 

 Composite Speed of 

Processing 
Attention 

Working 

Memory 

Verbal 

Learning 

Visual 

Learning 
Reasoning 

p value 0.650 0.602 0.450 0.365 0.782 0.685 0.562 

 

Table 14. p values for the correlations between mean FD and cognition for UNM 

 
Composite 

Speed of 

Processing 
Attention 

Working 

Memory 

Verbal 

Learning 

Visual 

Learning 
Reasoning 

p value 0.139 0.166 0.096 0.112 0.153 0.371 0.637 

“Here, we also performed partial correlation analysis for ICref and cognitive scores by regressing 

out mean FD, as shown in Table 15 and Table 16, since partial correlation has been proposed as an 

alternative approach for removing spurious shared variance in correlation analysis17. It is clear that the 

correlations between components and cognitive scores are still significant after regressing out FD.”  

Table 15. Partial correlation after regressing out mean FD for FBIRN results 

Modality GM_ICref FA_ICref fALFF_ICref 

Partial correlations r p r p r p 

Composite 0.431 3.5e-11* 0.223 0.028 0.363 1.6e-07* 

Attention/vigilance 0.318 1.4e-05* 0.233  0.001* 0.202 0.001* 

Working memory 0.290 1.5e-04* 0.183  0.002* 0.232 0.0013* 

Verbal learning 0.285 2.2e-04* 0.211 0.005 0.259 1.7e-03* 

 

Table 16. Partial correlation after regressing out mean FD for UNM results 

Modality GM_ICref FA_ICref fALFF_ICref 

Partial correlations r p r p r p 

composite 0.276 0.014 0.300 0.007* 0.304 0.006* 

 

“For FBIRN cohort, as for the associations between imaging features and mean FD, there are no 

imaging voxels showed a significant correlation with mean FD after FDR multiple comparison 

correction (puncorrected < 1.0e-04) for fALFF, FA and GM. And the correlations between mean FD and 

fALFF neuromarkers (fALFF_PFC, fALFF_pDMN, shown in Fig. 7a) are not significant either 

(p=0.78, 0.56 for fALFF_PFC and fALFF_pDMN respectively). In UNM cohort, no imaging voxels 

showed a significant correlation with mean FD after the FDR multiple comparison correction 

(puncorrected < 0.001) for any of the three modalities.” 

“Finally, the fusion analysis was conducted on the fALFF spatial maps but not the functional 

connectivity (FC) features as discussed in HCP paper18. Considering there is no group difference in 

head motion, and no significant correlations between mean FD and cognitive scores, and partial 

correlations between ICref and cognitive scores are still significant after regressing out mean FD, we 

believe that micro-motion is not a major factor affecting the current results.”  

In response to the reviewer, we now have added these details to the Supplementary “Head motion” 



and “Data preprocessing” sections as below. 

The fMRI data were preprocessed using the automated analysis pipeline19, whose steps are 

conducted in SPM8 (http://www.fil.ion.ucl.ac.uk/spm) as follows: motion correction to the first image 

using INRIalign; slice timing corrected to the middle slice; and normalization to MNI space, including 

reslicing to 3 × 3 × 3 mm voxels. “We removed subjects who have framewise displacements (FD) 

exceeding 1.0 mm, and head motion exceeding 2.0 mm of maximal translation (in any direction of x, 

y or z) or 1.0o of maximal rotation throughout the course of scanning. We also despiked the fMRI data, 

regressed out six head motion parameters, white matter, and cerebrospinal fluid in the denoising 

procedure. Results indicate FD (mean framewise displacements, mean of root of mean square frame-

to-frame head motions assuming 50 mm head radius 16) for all subjects were <0.3 mm at every time 

point. There is no significant difference between patients and controls on mean FDs; namely, UNM, 

HC: mean=0.22 ± 0.12mm, SZ: 0.21 ± 0.11 mm, two sample t-test: p = 0.77, FBIRN, HC: 

mean=0.25±0.18mm, SZ: 0.27±0.21mm, two sample t-test: p = 0.65. No imaging voxels showed a 

significant correlation with mean FD after the FDR multiple comparison correction for any of the three 

modalities, and also no significant correlations between mean FD and cognition. Detailed head motion 

correction could be found in the Supplementary “Head motion” section.” Data were then spatially 

smoothed with an 8 mm, full-width half-maximum (FWHM) Gaussian filter. To calculate fractional 

amplitude of low frequency fluctuations (fALFF) 20, the sum of the amplitude values in the 0.01 to 

0.08Hz low-frequency power range was divided by the sum of the amplitudes over the entire detectable 

power spectrum (range: 0–0.25Hz)21. “Finally, the fusion analysis was conducted on the spatial maps 

of fALFF. Considering there is no group difference in head motion, and no significant correlations 

between mean FD and cognitive scores, and partial correlations between ICref and cognitive scores still 

significant after regressing out mean FD, we believe that micro-motion is not a major factor affecting 

the current results.” 

Minor 

1. Typo/Grammar Page 17. “Except for” should be “in addition to”, or “besides”.  

We have changed “Except for” to “In addition to” in the revised manuscript, see page No.19. 

2. Clarify in figures Figure 7 d-e. No labeling of the panels were provided to indicated that these data 

were from FBIRN alone, not from UNM or combined dataset. 

    Thank you for the suggestion. We have clarified the dataset cohort in revised Fig. 7d-e, see page 

No. 17.  



 
Figure 7. Selected multimodal neuromarkers and its predictability on cognitive scores. (a) Four selected MRI 

neuromarkers from FBIRN data that were used as regressors to predict individual cognitive scores. (b) Prediction of 

CMINDS composite based on linear regression of the four regressors (mean ROI values in (a)). A correlation of r = 

0.463 was achieved between the estimated CMINDS composite scores and its true values. (c) By extracting the same 

four MRI neuromarkers in the UNM cohort via masks and applying the same prediction model as trained in the 

FBIRN cohort, the MCCB composite scores were predicted for UNM data. A spearman correlation of r =0.231 was 

achieved between the estimated MCCB composite scores and its true values for 41 HCs (red dots) and 37 SZs (blue 

dots), indicating excellent generalizability of the proposed prediction model. (d-e) Prediction results for subgroups 

(HC and SZ only in FBIRN). Either is significant, suggesting the prediction model works for both healthy and 

diseased people. The gray regions in (b-e) indicate a 95% confidence interval.  

 

  



Reviewer #3 (Remarks to the Author):  

In this manuscript, Sui and colleagues tested whether multimodal MRI data can be leveraged to provide 

useful predictors of cognitive ability in healthy controls and cognitive impairment in schizophrenia. 

This topic is of keen interest to the brain imaging community, and this study is noteworthy for its use 

of multimodal data and cross-validation in an independent dataset. The impact of this manuscript 

hinges on the generalizability of the identified multimodal biomarkers. On this, my enthusiasm is 

tempered by the following concerns. 

    Thank you for the insightful and valuable comments.  

Main points:  

1. The authors have not given sufficient consideration for head motion as a factor that affects image 

quality in all three MR modalities included. The influence of head motion needs to be addressed, e.g. 

by accounting for differences in motion between individuals and particularly between patient and 

control groups. First, more aggressive removal of motion signals could have been applied to the data 

(e.g. by regression of whole-brain signal). Second, summary motion parameters should be included in 

the multiple regression as a covariate. Third, a useful proof that motion does not determine the results 

might come from using the motion parameters as the reference in the “MCCAR+jICA” clustering and 

repeating the analyses. Individual differences in head motion could be a uniting factor that links the 

observed imaging features in the different modalities.  

We are sorry that the section of fMRI preprocessing was not clear enough (we had initially 

shortened it due to the word limitation). “We did remove outlier subjects who have framewise 

displacements (FD) exceeding 1.0 mm, as well as head motion exceeding 2.0 mm of maximal 

translation (in any direction of x, y or z) or 1.0o of maximal rotation throughout the course of scanning. 

We also despiked the fMRI data, and regressed out six head motion parameters, white matter, and 

cerebrospinal fluid. Results indicate all FDs (mean framewise displacements, mean of root of mean 

square frame-to-frame head motions assuming 50 mm head radius16) for all subjects were <0.3 mm at 

every time point. Note also there is no significant difference between patients and controls on mean 

FDs, namely, 

 

UNM, HC: mean=0.22±0.12mm, SZ: 0.21±0.11 mm, two sample t-test: p = 0.77 

FBIRN, HC: mean=0.25±0.18mm, SZ: 0.27±0.21mm, two sample t-test: p = 0.65” 

 

“Partial correlation has been proposed as an alternative approach for removing spurious shared 

variance in correlation analysis17. Here, for the second point, we also performed partial correlation 

analysis for ICref and cognitive scores by regressing out mean FD, as shown in Table 15 and Table 16, 

none of them is significant.” 



Table 15. Partial correlation after regressing out mean FD for FBIRN results 

Modality GM_ICref FA_ICref fALFF_ICref 

Partial correlations r p r p r p 

Composite 0.431 3.5e-11* 0.223 0.028 0.363 1.6e-07* 

Attention/vigilance 0.318 1.4e-05* 0.233 0.0014 0.202 0.001* 

Working memory 0.290 1.5e-04* 0.183 0.002* 0.232 0.0013* 

Verbal learning 0.285 2.2e-04* 0.211 0.005 0.259 1.7e-03* 

 

Table 16. Partial correlation analysis after regressing out mean FD for UNM results 

Modality GM_ICref FA_ICref fALFF_ICref 

Partial correlations r p r p r p 

composite 0.276 0.014 0.300 0.007* 0.304 0.006* 

 

  

Figure S4. The identified joint components that are significantly correlated with mean FD. (a) The spatial maps. 

(b) Correlations between loadings of component and mean FD (HC: the red dots, SZ: the blue dots). (c) There is no 

group difference for the loadings of components. The gray regions in (b) indicate a 95% confidence interval. 

“The proposed supervised fusion method, MCCAR+jICA22, is usually used to investigate 

multimodal brain covarying patterns associated with clinical measures of interest, such as symptom 

severity, intelligence quotient (IQ), cognitive and behavioral measures, or even epigenetic variant (e.g., 

a microRNA expression13).” In response to the reviewer, “we also performed supervised fusion 

analysis using mean FD as reference. Results (Fig. S4) show that FD associated patterns, which are 

mainly artifacts in each modality, such as white matter in fALFF and GM, CSF in GM and FA.” 

“Finally, the fusion analysis was conducted on the spatial maps of fALFF. Considering there is 

no group difference in head motion, and no significant correlations between mean FD and cognitive 



scores, and partial correlations between ICref and cognitive scores still significant after regressing out 

mean FD, we believe that micro-motion is not a major factor affecting the current results.” 

2. It would be interesting to see a null model – for instance using a permuted vector as reference – to 

give us an indication of what kinds of spatial patterns we might expect by chance. This would give us 

confidence that the observed patterns are specific to the cognitive measures being used as priors. I 

found it interesting that the areas identified in the fMRI and FA data were regions that typically show 

the highest signal in each of those modalities. i.e. the corpus callosum and corticospinal tracts typically 

show high FA, and the default mode network typically exhibits high signal in fMRI. Is it possible that 

these regions were clustered together due to their SNR properties, rather than any interesting 

associations with cognitive measures?  

In response to the reviewer, “we permuted the reference vector (cognitive scores) in the 

supervised fusion analysis. The goal is to compute the null model of spatial patterns that are observed 

by chance. To do this we hold imaging variables (e.g. [𝑿1 , 𝑿2 , 𝑿3 ]) constant, and permute the 

reference (global cognitive scores) against them. Thus each Xi is randomly paired with a reference. 

This permuted reference was then used as reference in a supervised fusion analysis (MCCAR+jICA). 

By repeating this process a large number of times (1000), we obtain 1000 three-MRI covarying patterns 

associated with the permuted reference. We also record the number of times each spatial pattern occurs. 

Here we presented the most frequently occurring voxels (those which occur more than 60% of the time) 

associated with the permuted cognitive scores, as shown in Fig. S5b. Note that the permuted null model 

of spatial patterns is different from the triple network as identified in Fig. 3-4, confirming that the 

observed pattern as presented in our results, including GM_SAN, FA_CC, fALFF_PFC and 

fALFF_pDMN are specific to the cognitive measures but not a random null pattern.” 

 

Figure S5. (a) The covarying pattern for the original cognitive scores. (b) The most frequently occurring (voxels 

with more than 60% occurrences) covarying pattern associated with 1000 times permuted cognitive scores. 

The identified original multimodal brain networks also show significant correlation with all 

CMINDS cognitive domain scores, as listed in Supplementary Table 7. In addition, two-sample t-tests 

between HC and SZ show significant group differences for GM_SAN (p=6.8 × 10−9∗ ), FA_CC 

(p=0.001) and fALFF_PFC (p=7.0× 10−9∗) respectively. The effect size for separating groups was 

also computed with Cohen's d = 0.698, 0.487, 0.623 for GM_SAN, FA_CC and fALFF_PFC 



respectively. More importantly, the multimodal features we identified, can predict individualized 

cognition for independent cohort and for multiple cognitive domains. While the null patterns are not 

correlated with CMINDS cognitive domains scores nor group discriminative between patients and 

controls, neither predictive. 

We have added the above contents in the Supplementary “Validating the specificity of the 

nueromarker to cognition” section. 

3. I found the generalization of the derived model to be underwhelming. Evidence for generalization 

came from two forms, 1) the spatial similarity of the IC maps defined separately in the two datasets, 

and 2) application of the regression model derived from one dataset to the other: 

3.1 Spatial similarity: The spatial maps derived from the two datasets were correlated to ~0.5, however 

the details of how the spatial correlation was performed are not fully explained. Were the spatial maps 

masked to exclude white matter voxels? For instance, in the GM correlation in Fig 3, were all voxels 

included in the final correlation analysis, or was the correlation restricted to the GM voxels? If the 

former, this would inflate the correlations. More information about the spatial correlation would be 

welcome.  

Thank you for the comments. We also modified our testing approach to incorporate a permutation 

analysis. “Here, take GM as an example. We now calculated the spatial correlation of the identified 

target component between two cohorts with only voxels masked at |Z|>T (threshold). First, the spatial 

maps were transformed into Z scores and masked at |Z|>2. Then we obtained two masks from FBIRN 

(mask_FBIRN) and UNM (mask_UNM) respectively, which were used to perform the voxel selection. 

Only voxels that fell in the union of the masks (mask_FBIRN ∪ mask_UNM) were used to calculate 

the cross-cohort correlation. Thus total number of voxels in calculating the spatial correlation is greatly 

reduced, e.g., from 𝑛= 153594 (whole brain voxels) to 𝑚=1936 (T=2). Spatial correlation was finally 

performed on these commonly identified voxels (𝑚=1936) between two cohorts.” 

“In addition, we also performed a permutation test to calculate the significance for the cross-

cohort spatial correlation. We do this by randomly shuffling Y (UNM_ICref) across voxels and re-

running the correlation analyses (between X [FBIRN_ICref] and Y) 10000 times in order to obtain an 

empirical null distribution. We then record the number of times the correlation exceeds the obtained 

sample correlation. Take GM component for example (Fig. 3), the observed correlation between 

FBIRN_ICref and UNM_ICref was 0.51, while 8 of the 10000 permutations obtained correlations falling 

out the range of [-0.51, 0.51], thus the probability of p=8.0× 10−4 was estimated for cross-cohort 

correlation of r=0.51 between GM maps by chance.” 

We have updated Fig. 3 by replacing p values with the permuted p, and we have added the above 

contents in Supplementary “Spatial correlation” section.  



3.2 Regression model: The high p values in Figs 1 and 7 and Table 1 suggest that there is a large degree 

of overfitting happening in the training dataset. Hence the frequent reporting of p-values from the 

training dataset is misleading as the real test of the model’s validity is its generalizability to the 

replication dataset (i.e. Figure 7c). Here, the model fit is not very good (r=0.2, p=0.04), and to my eye 

there is no clear relationship between True and Predicted values. It looks to me like the slope is 

influenced by the red data point at the top right of the plot, and I would need to see the same plot with 

outliers removed before I could be convinced of any relationship.  

  

In response to the reviewer, we 

calculated the correlation after removing 

the red point, as shown in the right 

figure. After removing the red point, the 

correlation between the true and the 

predicted values remains significant 

(r=0.209, p=0.044). Note that the red 

data point at the top right is not an outlier, but is very 

close to the diagonal line, though looks different 

from others.  

Moreover, we performed permutation test for 

the correlations between the predicted value and true 

value of Fig. 7c. By randomly shuffling Y (the 

predicted cognitive scores) across participants 

estimating correlations (between X [true values] and 

Y) 1000 times, we recorded the number of times a 

correlation coefficient between X and Y exceeding 

the original correlation (r=0.231). Significance 

cutoffs were determined as shown in Fig. S6. 

Namely, 32 of the 1000 randomizations exceeded 

r=0.231. This analysis quantifies the probability p=0.032 of obtaining a particular r=0.231 between 

true value and predicted value by chance. 

Furthermore, the model generalization from CMINDS to MCCB work well not only for 

composite score, but also for most cognitive domains (see Table 1 below), implicating the appreciable 

generalizability of the cognition-predictive models. Reminder that CMINDS and MCCB are two 

similar but not identical cognitive measurement systems10; therefore, the cross-cohort generalization 

is a powerful evidence to validate the predictability of the identified neuromarkers.” 

 

Figure S6. Permutation test for the correlation 

between true value and predicted cognitive scores of 

UNM cohort (1000 times). The black dotted line 

indicates ±0.231. 



Table 1. Prediction of CMINDS domains using the 4 neuromarkers and their generalization to MCCB domains 

Predicted measures 
CMINDS (FBIRN) MCCB* (UNM) 

r p r p 

Cognitive composite 0.463 2.8e-15 0.231 0.04 

Speed of processing 0.470 4.8e-16 0.206 0.05 

Attention/vigilance 0.332 3.5e-08 0.231 0.038 

Working memory 0.402 8.0e-12 0.218 0.05 

Verbal learning 0.371 3.8e-10 0.230 0.04 

Reasoning/problem solving 0.330 3.5e-08 0.193 0.08 

*Prediction of MCCB domain scores using the same model trained for corresponding CMINDS 

domain scores in FBIRN cohort. 

We have added more explanation of the above details in mansucript, see page 19. 

… “The model generalization from CMINDS to MCCB work well not only for composite score, 

but also for most cognitive domains (see Table 1 below), implicating the appreciable generalizability 

of the cognition-predictive models. Reminder that CMINDS and MCCB are two similar but not 

identical cognitive measurement systems10; therefore, the cross-cohort generalization is a powerful 

evidence to validate the predictability of the identified neuromarkers. As shown in Fig. 7c, a correlation 

of r = 0.231 was achieved between estimated MCCB composite scores and its true values after 

performing 1000 permutations, resulting in the probability of p=0.032, validating the excellent 

robustness of the proposed prediction model. 

 

4. On a similar note, if the composite cognitive scores were used as a reference for the definition of 

the components, how informative is it to report a p value for the correlation between component 

loadings and composite cognition scores in Figure 1? Is it surprising that there is a good fit of the 

loadings to the scores?  

As discussed in our original paper, not all components obtained from MCCAR+jICA22 are 

correlated with the reference. Usually, there will be one or more component identified to be correlated 

with the referred signal. In our case, 24 components were derived for each modality in FBIRN data, 

among which one joint component shows significant correlations with the referred CMINDS cognitive 

composite. Therefore, it is not surprising to discover a good fit of the loadings of one IC to the cognitive 

score, since our goal is to identify the most correlated brain components. However, the ICref is selected 

only when it is both correlated with the reference and group discriminative between schizophrenia and 

healthy controls.  

5. As a general point, I found the motivation of the study slightly muddled. The stated aim is to unearth 

markers of cognitive ability, however the authors also study cognitive impairment in schizophrenia. 

Why are these two aims carried out in the same datasets? Does the inclusion of schizophrenic patients 



determine the results? And if so, doesn’t this make the identified markers less generalizable indicators 

of normal cognitive ability? Although the authors did test that the model holds when patients were 

excluded, the model was still derived using both patients and controls. 

Thanks for this suggestion. Note that the aim and topic of this paper is to extract multimodal 

features that are associated with cognition as well as group discriminating between HC and SZ, that is, 

we are interested in identifying cognitive biomarkers that may also separating groups. This is consistent 

with the scope of the research domain criteria (RDoC) project proposed by NIMH, which aims to 

identifying dimensional measures that may help separate or redefine patient subtypes and controls14. 

If we analyze each group separately and then compare, this will bias the results as the algorithm will 

be given information about the group membership. Indeed, this is one of the major advantages of 

computing the 𝑪𝑘 and 𝑨𝑘 from a joint decomposition. Another approach is to train the model to 

identify networks on a separate healthy dataset and then identify specific predictive networks using 

independent patient and control data. As this would require yet more patient/control data, and would 

represent a substantially different approach, we plan to explore this in future work. We now mention 

this in the revised manuscript. 

Other points: 

6. Abstract: 

6.1 The term “neuromarker” is defined in the introduction, after being mentioned in the abstract. 

    As the abstract word limit is 150 words, we initially defined the term “neuromarker” in the 

introduction section but not in the abstract. We have now revised the abstract as suggested, see page 3. 

6.2 The inclusion of schizophrenic patients in the dataset is not mentioned in the abstract. 

    Thank you for the suggestion. We have revised the abstract as follows.  

“Our ultimate goal was to identify multimodal neuromarkers that can be used to predict cognitive 

performance in schizophrenia patients using multivariate data mining.”  

7. Introduction: 

7.1 P3 > Definition of “neuromarker”: The term “neurocognitive” seems misplaced here. 

    Thank you for the suggestion. We have changed the definition of “neuromarker” as follows.  

“Here a “neuromarker” is defined as a brain measure that is associated with a cognitive or behavioral 

outcome and which is predictive of individual performance23.” 

7.2 P3 > Grammar: ‘For example, Rosenberg et al., demonstrate that a set of whole-brain functional 

network strength’ 

    Thank you for pointing this out. We have changed to“Rosenberg et al. demonstrated that whole-

brain functional connectivity strength may serve as a neuromarker of sustained attention for both 

healthy and disease assessments.” in the new revised paper, see page No. 3.  



7.3 P3 > “Cognitive Composite ability” – Please explain how this composite measure is defined. 

    “The CMINDS-based10 cognitive domains, based on comparable tests to those assessed by the 

MCCB, were as follows: (1) Speed of Processing. This domain score was based on the mean of (a) the 

log-transformed, negated (worse performance is lower) elapsed time (in seconds) during Trails A, (b) 

the number of correct in set responses in 60 seconds on trial 1 of the Category Fluency Test –Animals, 

and (c) the number of correct responses during the Symbol Digit Association Test z-scores; (2) 

Attention/Vigilance. This domain score was based on the d-prime across blocks A–C of the Continuous 

Performance Test z -scores; (3) Working Memory. This domain score was based on the mean of (a) the 

sum of the number of correct on the Visual Spatial Sequencing Test – Forward and Backward condition, 

and (b) the total correct on the Letter Number Span z -scores; (4) Verbal Learning. This domain score 

was based on the total number of correctly recalled target words for all three trials on the Semantic 

Verbal Learning Test z-scores; (5) Visual Learning. This domain score was based on the square-

transformed total of the Visual Figure Learning Test z-scores, and (6) Reasoning/Problem Solving. 

This domain score was based on the square transformed Maze Solving Test total score z-scores. Finally, 

the CMINDS Composite Score was defined as the mean of all six normalized domain scores.”  

We have added the above contents to the Supplementary “CMINDS scores” section. 

7.4 Aim 1 – Given the multimodal nature of the analysis, how do the authors know a priori that the 

“identified multimodal neuromarker” will be a ‘network’, classically defined based on anatomical 

connectivity, or spontaneous correlations between brain regions, or perhaps even distributed regions 

showing similar task activation profiles? The authors need to define what they mean by terms like 

‘network’ and ‘neuromarker’ more carefully. For instance, in the Results section the term “multimodal 

neuromarker network” is introduced. Are these ‘networks’ only definable by a confluence of imaging 

techniques? How does this then relate to the “brain networks” as defined classically? 

    Sorry for the lack of clarity. Based on the triple network theory8, we hypothesized that the salience 

network (SAN), central executive network (CEN), and default mode network (DMN) would play 

pivotal roles in cognitive deficits. Here a “neuromarker” is defined as a brain measure that is associated 

with a cognitive or behavioral outcome and can further predict individual performance23. While the 

“network” is defined as a map whose regions exhibit similar subject-wise covariation, which is the 

same definition of network as laid out in24. So, in our paper, the term “multimodal neuromarker 

network” represents multimodal covarying and modality-specific brain regions that can jointly predict 

cognitive performance for new individuals. We now have added such a definition in introduction. 

“ Aberrant organization and functioning of the salience network (SAN), central executive network 

(CEN), and default mode network (DMN) are prominent features of several major psychiatric and 

neurological disorders and are also fundamental mechanisms underlying cognitive dysfunction in 

many psychiatric disorders25. Based on the triple network theory8, we hypothesized that SAN, CEN 



and DNM would play privitol roles in cognitive deficit in schizophrenia26 , which may consist a 

multimodal neuromarker network that is defined as modality-specific brain regions exhibiting similar 

subject-wise covariation that can jointly predict cognitive performance for unseen individuals.” 

 

7.5 Aim 2 – Similarly, “What are the neuromarker networks associated with specific representative 

cognitive domains?” > By the authors definition aren’t the “neuromarker networks” defined by their 

association with cognitive domains? Perhaps remove the word “neuromarker”? 

    Thank you for the suggestion. We have removed the word “neuromarker” and changed to “What 

are the brain networks associated with specific representative cognitive domains?” in Aim 2. Our goal 

is to investigate the association between the identified multimodal brain networks and multiple 

cognitive domains (attention, working memory and verbal learning).  

7.6 Aim 3 – What is a “cognitive domain discrepancy”?  

We now rephrased the word in revised manuscript. “cognitive domain discrepancy” refers to brain 

regions that differentiate between cognitive domains (i.e., less similarity in Fig. 5e). For example, Fig. 

6 illustrates the fALFF components associated with different cognitive domains. Besides the 

commonly shared prefrontal regions, each domain corresponds to its specific fALFF maps. We now 

change the corresponding contents in the revised manuscript on page 15-16.  

 

 

“We found that structural brain measures (GM/FA) 

express more similarity and are highly consistent across 

multiple cognitive domains, whereas the fALFF 

functional measure is more sensitive to differences 

between cognitive domains (Fig. 5e). With respect to 

fALFF (Fig. 6), pDMN was identified only for the 

cognitive composite and working memory domains, 

while other subcortical and cortical regions such as 

thalamus, hippocampus, STG and visual cortex occur 

differently depending on different domains. …”  

Figure 6. Spatial maps of fALFF maps associated 

with four CMINDS cognitive domains: 

composite, working memory, attention and verbal 

learning domain respectively. 



 

Figure 5 Comparison of the multimodal “neuromarker networks” associated with cognitive composite and 

three domain scores. The spatial maps of the neuromarker network obtained under the guidance of reference (a) 

composite (red), (b) working memory (green), (c) attention (cyan) and (d) verbal learning (magenta) are displayed 

in different color mapping. (e) indicates the pair-wise, cross-domain, spatial correlation among brain maps of 

FBIRN_ICref_composite, FBIRN_ICref_memory, FBIRN_ICref_attention, and FBIRN_ICref_learning for GM, FA and fALFF 

respectively. The darker blue and larger shading denotes higher correlation. Note that GM and FA maps demonstrate 

more consistent patterns across cognitive domains (r>0.6), while fALFF maps exhibit more variance (r<0.5 but still 

significant). This suggests that a functional measure such as fALFF may differentiate between cognitive domains 

more sensitively, whereas structural brain patterns (GM/FA) are more consistent across cognitive domains.  

 

7.7 Given that the central hypothesis of the study follows from the Triple Network Theory proposed 

by Vinod Menon, it would be useful to have a summary of this in the introduction, particularly in 

regards to the roles of the three networks in question, and schizophrenia. 

    Thank you for the suggestion. We have added the following contents in introduction in the revised 

manuscript, see page No. 4.  

    “...we searched for multimodal neuromarkers that can be used to quantify and predict cognitive 

performance, especially impaired in schizophrenia, by successive multivariate data mining and model 

generalization.” 

“We hypothesized that the multimodal covarying and modality-specific salience network (SAN), 

central executive network (CEN), and posterior default mode network (pDMN) would play pivotal 

roles in cognitive deficits, based on the triple network theory8. Aberrant organization and functioning 

of the CEN, SAN and DMN are prominent features of several major psychiatric and neurological 

disorders and are also fundamental mechanisms underlying cognitive dysfunction in many psychiatric 

disorders25. Furthermore, patients with schizophrenia show both structural and functional deficits in 

all three networks26.” 



7.8 P4 > “…each of the four cognitive domains…” > the domains being referred to have not yet been 

defined. 

    Sorry for the lack of clarity. We have added the explanation of the four cognitive domains in the 

new revised paper (page 4). The revised text follows: 

“After discovering the “neuromarker network” associated with each of four cognitive domains 

(Computerized Multiphasic Interactive Neuro-cognitive System [CMINDS]10 composite, attention, 

working memory and verbal learning), we compared them in two ways: 1) across domains——to 

reveal the commonality and uniqueness of the domain-specific “neuromarker networks”; 2) across 

modalities——to evaluate which imaging modality is more sensitive to cognitive domain.” 

7.9 P4 > Grammar: “Remarkably, these models were successful in predicting for new individuals in 

an independent cohort on the corresponding cognitive metrics. This validates the generalizability of 

the identified modality” > “Remarkably, these models were successful in predicting the corresponding 

cognitive metrics for new individuals in an independent cohort”. 

    Thank you for helping improve this sentence. We have used the suggested text (page 5) and also 

carefully checked the entire manuscript. 

8. Methods:  

8.1 P25 > Typo: “we can obtained” 

We have made this correction (page 28). 

8.2 P25 > Please state explicitly what Aj denotes in equation 3. 

According to blind source separation theory27, independent component analysis (ICA) describes 

how the observed data (𝑿) are generated by a process of mixing (𝑨) the components (𝑪), that is 𝑿 =

𝑨𝑪. In our supervised fusion analysis, there are 3 multimodal datasets 𝑿𝑘, and each is a linear mixture 

of components 𝑪𝑘  with a nonsingular mixing matrix 𝑨𝑘, 𝑘 = 1,2,3, denoting the modality. Namely, 

𝑿𝑘 = 𝑨𝑘𝑪𝑘 , where 𝑿𝑘  is a subjects-by-voxels feature matrix (fALFF, FA or GM) and 𝑨𝑘  is a 

subjects by number of components (M) mixing matrix. 

max ∑ {‖corr(𝑨k, 𝑨j)‖
2

2
+ 2λ ∙ ‖corr(𝑨k, 𝑟𝑒𝑓)‖2

2}3
k,j=1                 (3) 

    So 𝑨k and 𝑨j in equation (3) are mixing matrix for different modalities (fALFF, FA and GM). 

8.3 P25 > Please provide more details about how the target ICref is defined. Is the component that has 

highest correlation with the ref selected? 

    ICref is the selected component both correlated with the reference and group discriminating 

between patients and controls. Take fALFF_ICref_composite as an example, it means that this component 

of fALFF is significantly correlated with CMINDS composite cognitive scores and group 

discriminating between schizophrenia and healthy controls. In most cases, ICref has the highest 

correlation with reference, but there is still another consideration that we selected group discriminative 



component.  

8.4 P26 > Typo: “After defined”. 

We have made this correction. 

8.5 P26 > The section titled: “Predictive neuromarker extraction” was hard to follow. At one point we 

are referred to Figure 7a for explanation of the methods.  

    Sorry for the lack of clarity. We have rewritten this section to make it clearer. See manuscript 

pages No. 28. 

“After identifying the neuromarker networks of four CMINDS cognitive domains from the 

FBIRN data (Fig. 5), we extracted the brain regions which were consistently involved within each 

modality as potential neuromarkers. Take the feature extraction of GM as an example. After converting 

component GM_ICref into Z scores and thresholding at |Z| >=2, masks of GM_ICref for each of the four 

cognitive domains (composite, attention, working memory and verbal learning) were generated. A map 

of regions included in each of these four GM masks reveals the common ROIs across the four cognitive 

domains. The final GM mask of GM_SAN is shown in Fig. 7a. This mask of GM was then used to 

extract ROI features from every subject. The mean of the voxels within the obtained ROI was 

calculated for each subject, generating a 𝑁𝑠𝑢𝑏𝑗 × 1 feature vector for GM_SAN. The other modalities 

(dMRI and fMRI) were processed in the same way to get the FA_CC and fALFF_PFC feature vectors. 

The fourth fALFF_pDMN feature was extracted from fALFF_ICref_composite from the FBIRN data. The 

resulting regions were those included in the triple network hypothesis8. Finally, we formed a feature 

matrix in dimension of 𝑁𝑠𝑢𝑏𝑗 × 4 for the FBIRN data. For the UNM cohort, the ROI features of each 

modality were extracted by applying the four masks generated from the FBIRN to the UNM data. 

Following this, the mean of each ROI was calculated for each subject, resulting in a 𝑁𝑠𝑢𝑏𝑗 × 4 feature 

matrix for the UNM cohort.” 

9. Figures: 

9.1 Fig 1: Typo: “congnition”. 

    We have made this correction.  



 
Figure 1. The identified joint components that are both significantly correlated with CMINDS composite 

scores and group-discriminating in all modalities. (a) The spatial maps visualized at |Z|>2; the positive Z-values 

(red regions) means HC>SZ and the negative Z-values (blue regions) means HC<SZ. (b) Correlations between 

loadings of component and CMINDS composite scores (HC: the red dots, SZ: the blue dots); thus SZ corresponds to 

worse cognitive performance and lower loading weights compared to HC. (c) Boxplot of the loading parameters of 

FBIRN_ICref_composite that were adjusted as HC>SZ on the mean of loadings for each modality, with the p values of 

two sample t-tests between HC and SZ shown bottom. The gray regions in (b) indicate a 95% confidence interval.  
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Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors have given a detailed response to my queries. I find that the current version is 
satisfactorily written to recommend its publication.  
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors have answered nearly all concerns with an excellent revision. One question remains: if 
lambda is tuned separately for each fold (and also in the separate test set), does this mean that 
different models are created in each fold? How did the authors integrate feature weights across 
folds? Finally, was lambda tuned similarly in the permutation testing for the null model?  
 
 
 
Reviewer #3 (Remarks to the Author):  
 
Second review of Sui et al. for Nature Communications  
 
Sui and colleagues have conducted a series of additional analyses to bolster the validity of their 
multimodal biomarkers that predict cognitive ability and classify schizophrenic and control 
individuals. Notably they have used permutation testing at several instances to develop null 
models and have tested for the influence of head motion more rigorously. I also appreciate their 
efforts to clarify the text, though the language used is still hard to follow in many places.  
 
Although I am sympathetic to the manuscript's aims and technicity, I remain underwhelmed by the 
key analysis, which is the cross-validation of the model in the independent dataset (Figure 7c). 
With the outlier excluded, the significance of the model fit is borderline (p=0.044, r=0.209). The 
authors may argue that this is impressive in itself (though "indicating excellent generalizability" is 
going too far), however, given the recent drive for reproducibility in psychology, I would feel much 
more at ease with this manuscript being published in an NPG journal if the authors were able to 
reproduce the result in another dataset, e.g. the Human Connectome Project Data (which also has 
cognitive measures and pre-processed structural and diffusion MR data). Otherwise, unfortunately 
as it stands my opinion is that this work would be better suited to a more specialized journal. I am 
unconvinced that the identified 'neuromarkers' will be clinically useful or inform us about brain 
function and cognitive ability.  
 
Other points -  
 
In the null analysis where cognitive scores were permuted before the supervised fusion analysis, it 
is not clear why the authors chose to report voxels that appear in more than 60% of the maps, 
rather than show the actual maps that came out of this analysis. The useful comparison would be 
to see an example spatial map, e.g. from one of those permutations. Do any of the permuted 
maps look like the reference maps obtained using the cognitive scores? Do any of the permuted 
maps look like biologically plausible networks? If so, then to my mind that would indicate serious 
problems for the analysis.  
 
Also - why does supervised fusion using the permuted scores give us a near perfect delineation of 
the lateral ventricles? Something odd is happening here, highlighting that inserting junk into the 
pipeline seems to produce seemingly interesting spatial patterns.  
 
I am concerned that the permutation analysis used to calculate the significance of the cross-cohort 
spatial correlation does not provide an adequate null model for the spatial correlations. As I've 



understood it, the ICref maps were calculated from smooth data which has some degree of spatial 
autocorrelation between neighboring voxels - due in part to neural signal, but also to non-neural 
factors (e.g. Kriegeskorte et al., 2008). If the voxels in the ICref map are randomly shuffled, this 
obliterates all spatial relationships, including these artefactual ones due to spatial proximity. In 
other words, the permutation null model has no proximity-related correlations whereas the cross-
cohort correlations do, and comparing the two is not valid. The problem here is that the 
autocorrelations will inflate the cross-cohort correlation, even if the ICref map contained no 
biologically meaningful spatial patterns.  
 
Artifactual time-course correlations in echo-planar fMRI with implications for studies of brain 
function. Kriegeskorte, N., Bodurka, J., & Bandettini, P. (2008) International Journal of Imaging 
Systems and Technology, 18, 345-349.  
 
Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Eklund, 
A., Nichols, T.E., & Knutsson, H. (2016) PNAS 113, 7900-7905.  
 
I appreciate the effort to clarify the terms in the manuscript. Some aspects are still confusing 
though, for instance, the "multimodal neuromarker network" seems to be comprised of three 
networks, the DMN, SAN and CEN. Is there not a separate term that the authors could use for the 
identified marker than the word "network"? Such as, a 'signature' or just a 'multimodal marker' or 
'imaging correlate' etc? 
 
Similarly, the authors have a very specific definition of the term 'neuromarker': "Here a 
"neuromarker" is defined as a brain measure that is associated with a cognitive or behavioral 
outcome and can further predict individual performance". If the authors don't want to define 
"neuromarker" in the abstract, they should use a different term instead. For instance, the term 
"biomarker" is commonly used in the field. The first sentence of abstract doesn't make sense 
without the term 'neuromarker' being defined.  



 

Reviewer #1 (Remarks to the Author): 

1.1 The authors have given a detailed response to my queries. I find that the current version is 

satisfactorily written to recommend its publication. 

Thank you for your comments. 

Reviewer #2 (Remarks to the Author): 

2.1 The authors have answered nearly all concerns with an excellent revision. One question remains: 

if lambda is tuned separately for each fold (and also in the separate test set), does this mean that 

different models are created in each fold? How did the authors integrate feature weights across folds? 

Finally, was lambda tuned similarly in the permutation testing for the null model? 

    Sorry for the unclearness of the lambda tuning. For each five-fold cross-validation, lambda is 

the same for all folds, not tuned separately for each fold. The difference between folds is only 

because the 4/5 training data and the remaining 1/5 test data were different; Therefore, the 

IC_ref extracted by MCCAR+jICA are slightly different at each fold, which was used for projecting 

in the test data and obtaining the corresponding loadings. Thus 4/5 of the data was trained by 

MCCAR+jICA and then decomposed, i.e., 𝑿𝑡𝑟𝑎𝑖𝑛 = 𝑨𝑡𝑟𝑎𝑖𝑛 × 𝑺𝑡𝑟𝑎𝑖𝑛, where 𝑺𝑡𝑟𝑎𝑖𝑛 is further used 

for the remaining 1/5 of testing data to obtain 𝑨𝑡𝑒𝑠𝑡 (𝑨𝑡𝑒𝑠𝑡 = 𝑿𝑡𝑒𝑠𝑡 × 𝑝𝑖𝑛𝑣(𝑺𝑡𝑟𝑎𝑖𝑛)). The loadings of

IC_ref in 𝑨𝑡𝑒𝑠𝑡  were then correlated with the reference at each fold, and the mean of their 

correlations of all folds were compared. As shown in Supplementary Fig. 1, for lambda ranging in 

[0.1:0.1:1], lambda=0.5 was selected, since the correlation between target IC and the reference is 

maximum among all choices. 



 

Finally, in the permutation testing for the null model, the lambda tuning (five-fold cross 

validation) was the same as mentioned above. Namely, when we permuted the reference vector 

(cognitive scores) in the supervised fusion analysis, the goal is to compute the null model of spatial 

patterns that are observed by chance. To do this, we hold imaging variables (e.g. [𝑿1, 𝑿2, 𝑿3]) 

constant, and permute the reference (global cognitive scores) against them. Thus, each Xi is randomly 

paired with a permuted reference and we ran MCCAR+jICA 1000 times (corresponding to 1000 

specific reference). For every one of the 1000 permuted references, we performed similar five-fold 

cross validation (1000 times as in Supplementary Fig. 1) to determine the lambda in each specific 

MCCAR+jICA.  

 

Reviewer #3 (Remarks to the Author): 

Second review of Sui et al. for Nature Communications. 

3.1 Sui and colleagues have conducted a series of additional analyses to bolster the validity of their 

multimodal biomarkers that predict cognitive ability and classify schizophrenic and control 

individuals. Notably they have used permutation testing at several instances to develop null models 

and have tested for the influence of head motion more rigorously. I also appreciate their efforts to 

clarify the text, though the language used is still hard to follow in many places. 

    Thank you for the comments. 

3.2 Although I am sympathetic to the manuscript's aims and technology, I remain underwhelmed by 

the key analysis, which is the cross-validation of the model in the independent dataset (Figure 7c). 

With the outlier excluded, the significance of the model fit is borderline (p=0.044, r=0.209). The 

authors may argue that this is impressive in itself (though "indicating excellent generalizability" is 

going too far), however, given the recent drive for reproducibility in psychology, I would feel much 

more at ease with this manuscript being published in an NPG journal if the authors were able to 

reproduce the result in another dataset, e.g. the Human Connectome Project Data (which also has 

cognitive measures and pre-processed structural and diffusion MR data). Otherwise, unfortunately as 

it stands my opinion is that this work would be better suited to a more specialized journal. I am 

Supplementary Figure 1. When λ is 0.5, the 

mean correlation between estimated target IC 

and composite cognitive scores of all modalities 

reaches its maximum value. The black line, 

yellow patch and blue line represent mean, 

standard error of the loading correlations 

between targeted IC in test data and the 

composite scores. 

 



unconvinced that the identified 'neuromarkers' will be clinically useful or inform us about brain 

function and cognitive ability. 

    Thank you for the suggestion. In response to the reviewer, we have added a third data cohort for 

validation, i.e., COBRE (Center for Biomedical Research Excellence) data, including 88 subjects (46 

SZ patients and 42 HCs) with all 3 MRI modalities and the cognitive measures recorded by MCCB, 

who were collected via COBRE project from the University of New Mexico. Unsurprisingly, the 

prediction model of cognitive composite trained from FBIRN data was also able to predict MCCB 

composite scores for COBRE cohort, please see the updated manuscript and analyses below.  

 

Figure 7. Identified multimodal neuromarkers and its predictability on composite cognitive scores cross 

three cohorts. (a) Four identified modality-specific brain networks from FBIRN cohort that were used as 

regressors to predict individual cognitive scores. (b) Prediction of CMINDS composite scores based on linear 

regression of the four regressors (mean ROI values in (a)). A correlation of r = 0.463 was achieved between the 

estimated CMINDS composite scores and its true values. (c) Generalization of the CMINDS prediction model in (b) 

to UNM cohort (41HCs/37SZs) to predict MCCB, r=0.231 (d) Generalization of the CMINDS prediction model in 

(b) to COBRE cohort (42HCs/46SZs) to predict MCCB, r =0.406. In both (c) and (d), good generalizability of the 

proposed prediction model was validated, where the four mean ROI values extracted by masks in (a) were used as 

regressors in Eq (1). The gray regions in (b-d) indicate a 95% confidence interval was achieved between the 

estimated MCCB composite scores and its true values. 

 

“The multimodal MRI data in COBRE (Center for Biomedical Research Excellence) study were 

preprocessed using the same pipeline for FBIRN and UNM cohorts. Based on the same linear 

regression model (Equation 1) trained by FBIRN and the four extracted multimodal biomarkers 

(GM_SAN, FA_CC, fALFF_PFC, and fALFF_pDMN, as shown in Fig. 7a), we calculated the 

predicted MCCB scores for both UNM and COBRE cohorts. As shown in Fig. 7d and c, Pearson 



correlation of r = 0.406 and r=0.236 were achieved between the estimated MCCB composite scores 

and its true values for COBRE (42HCs/46SZs) and UNM (41HCs/37SZs) respectively, suggesting 

good generalizability of the proposed cognition-prediction model. Note that the prediction models in 

Fig. 7b-d are the same, namely, Eq(1), which was trained in FBIRN cohort to predict CMINDS 

composite.  

𝐂𝐌𝐈𝐍𝐃𝐒 𝐜𝐨𝐦𝐩𝐨𝐬𝐢𝐭𝐞 = −0.8 + 𝐆𝐌_𝐒𝐀𝐍 × 0.34 + 𝐅𝐀_𝐂𝐂 × 0.19 + 𝐟𝐀𝐋𝐅𝐅_𝐏𝐅𝐂 × 0.12 + 𝐀𝐋𝐅𝐅_𝐩𝐃𝐌𝐍 × 0.13  (1) 

Furthermore, we also revised Fig. 9 on the corresponding flowchart of the cognition-directed 

multimodal fusion and prediction analyses, by adding the third COBRE cohort prediction panel.  

 
Figure 9. Flowchart of our cognition-directed multimodal fusion and prediction analyses. First, cognitive 

scores of (a) CMINDS composite score and (b) MCCB composite score were set as the reference to guide the 

three-way MRI fusion for the discovery cohort and replication cohort respectively. (c) To test the similarity of the 

identified neuromarker between cohorts, we compared the permuted spatial correlation between brain maps, and 

summarized the most affected cognitive domains related to schizophrenic deficit. (d) Furthermore, cognitive 

domain scores of attention, working memory, and verbal learning were used as reference to guide the three-way 

MRI fusion respectively, aiming to identify the domain-specific neuromarkers. (e) Finally, after extracting the 

neuromarker maps across multiple domains, we built multiple linear regression models to predict individualized 

cognitive scores of FBIRN cohort. The achieved models were further successfully generalized to predict 

corresponding cognitive measures in two independent cohorts (UNM and COBRE). The resulted figures of each 

step are listed below. 

COBRE Subjects 

“42 patients with schizophrenia and 46 age and gender matched healthy controls were included 

in the data set released from the Center for Biomedical Research Excellence (COBRE), University of 

New Mexico. All of the control participants were free of the DSM-IV diagnoses of schizophrenia and 



other mental disorders. None of all participants had neurological diseases, a history of any substance 

dependence, or a history of clinically significant head trauma. Informed consent was obtained from 

all subjects according to institutional guidelines required by the Institutional Review Board. Subjects 

were paid for their participation. The COBRE cohort also includes the MCCB cognitive battery.” 

Supplementary Table 13．Demographics and the MCCB scores of COBRE subjects 

Measure  HC SZ p r 

Number  42 46   

Age  40.0±11.8 39.3±13.2 0.375 0.118 

Gender  10F/32M 11F/35M 0.991 -0.019 

MCCB Composite 50.8±8.7 31.3±14.6 1.7E-10 1 

Speed of processing 53.6±9.0 33.3±11.8 4.0E-14 0.865 

Attention/vigilance 50.2±10.0 36.3±13.5 5.3E-07 0.852 

Working memory 50.3±9.8 39.6±13.6 4.9E-05 0.820 

Verbal learning 45.4±8.4 37.6±8.4 4.4E-05 0.722 

Visual learning 46.4±10.2 36.6±12.4 1.3E-04 0.719 

Reasoning/problem solving 57.2±7.3 44.0±11.9 4.0E-08 0.806 

Social cognition 51.5±10.6 42.3±12.5 3.0E-04 0.598 

We have revised Fig. 7, Fig. 9, Supplementary Fig. 7, Table 1, added Supplementary Table 13, 

as well as rewrote the corresponding contents in the revised manuscript and Supplementary files, see 

page 17-20, 27 and Supplementary file page 10.  

Other points– 

3.3 In the null analysis where cognitive scores were permuted before the supervised fusion analysis, 

it is not clear why the authors chose to report voxels that appear in more than 60% of the maps, 

rather than show the actual maps that came out of this analysis. The useful comparison would be to 

see an example spatial map, e.g. from one of those permutations. Do any of the permuted maps look 

like the reference maps obtained using the 

cognitive scores? Do any of the permuted maps 

look like biologically plausible networks? If so, 

then to my mind that would indicate serious 

problems for the analysis. 

    In order to obtain the null model, we 

permuted the reference vector (cognitive scores) 

1000 times and then used it as reference in the 

supervised fusion analysis. Thus we obtain 1000 

three-way covarying patterns associated with the 

permuted reference. Therefore, it is not 

representative if we only show one example out of 

 
Supplementary Figure 6. Box plot of the 

spatial correlations r between the original 

patterns and 1000 times permutation patterns 

for GM, FA and fALFF.  

 



1000 times.  

    In response to the reviewer, we calculated the spatial similarity between the original pattern and 

the 1000 obtained maps for each modality, as displayed in Supplementary Fig. 6. Note that the 

highest spatial correlation is r=0.024, 0.015, 0.005 for GM, FA and fALFF respectively and the mean 

spatial correlation is r= 0.0117, 0.0077, 0.0026 for GM, FA and fALFF respectively. Therefore, the 

permuted maps are not at all similar to the reference maps obtained using the cognitive scores. 

Moreover, we can also report voxels that appear with other occurring frequency, e.g., >40%, 

instead of >60% of the maps. In response to the reviewer, Supplementary Fig. 5 show the (a) original 

reference maps, (b) null patterns with voxels with >60% occurring frequency, (c) null patterns with 

voxels with >40% occurring frequency, and (d) one random patterns among the 1000 permutations. It 

is clear that the other 3 patterns in (c-d) are significantly different from the reference patterns. Only 

when the permuted reference is in the exact order as we used in the original analysis, are the spatial 

maps the same as in our reference patterns.  

 

Supplementary Figure 5. (a) The covarying reference pattern using the original cognitive scores. (b) Null patterns 

with voxels with >60% occurring frequency. (c) Null patterns with voxels with >40% occurring frequency, and (d) 

one random pattern among the 1000 permutation. 

3.4 Also - why does supervised fusion using the permuted scores give us a near perfect delineation of 

the lateral ventricles? Something odd is happening here, highlighting that inserting junk into the 

pipeline seems to produce seemingly interesting spatial patterns. 

Please see response of point #3.3. We also noticed that for the null model, the most frequently 

occurring voxels happen to be within CSF and white matter, which are mainly artifacts for each 

modality. Since the reference used in permutation is not meaningful, we do not think there is any 



linkage with the identified cognition-associated biomarkers. 

3.5 I am concerned that the permutation analysis used to calculate the significance of the 

cross-cohort spatial correlation does not provide an adequate null model for the spatial correlations. 

As I've understood it, the ICref maps were calculated from smooth data which has some degree of 

spatial autocorrelation between neighboring voxels - due in part to neural signal, but also to 

non-neural factors (e.g. Kriegeskorte et al., 2008). If the voxels in the ICref map are randomly 

shuffled, this obliterates all spatial relationships, including these artefactual ones due to spatial 

proximity. In other words, the permutation null model has no proximity-related correlations whereas 

the cross-cohort correlations do, and comparing the two is not valid. The problem here is that the 

autocorrelations will inflate the cross-cohort correlation, even if the ICref map contained no 

biologically meaningful spatial patterns.  

Artifactual time-course correlations in echo-planar fMRI with implications for studies of brain 

function. Kriegeskorte, N., Bodurka, J., & Bandettini, P. (2008) International Journal of Imaging 

Systems and Technology, 18, 345-349. 

Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Eklund, A., 

Nichols, T.E., & Knutsson, H. (2016) PNAS 113, 7900-7905. 

This is a good point and we are sorry for the lack of clarity. To evaluate their relationship, we 

performed the random permutation procedure suggested in the paper mentioned by the reviewer 

“Artifactual time-course correlations in echo-planar fMRI with implications for studies of brain 

function. Kriegeskorte, N., Bodurka, J., & Bandettini, P. (2008) International Journal of Imaging 

Systems and Technology, 18, 345-349”. Our comparison included the small subset of voxels included 

in both cohorts which were above a threshold. To evaluate their similarity, we performed a 

permutation test to calculate the significance for the cross-cohort spatial correlation on the reduced 

voxels. This involved randomly shuffling Y (UNM_ICref) across voxels (𝑚=1936 for GM) and 

re-running the correlation analyses (between X [FBIRN_ICref] and Y) 10000 times in order to obtain 

an empirical null distribution. Take GM component for example (Fig. 3), the observed correlation 

between FBIRN_ICref and UNM_ICref was 0.51, while 8 of the 10000 permutations obtained 

correlations falling out the range of [-0.51, 0.51], thus the probability of p=8.0× 10−4 was estimated 

for cross-cohort correlation of r=0.51 between GM maps by chance. Importantly, the permutation 

testing here is only used to determine the significance (p value) of the corresponding correlation, and 

does not change the correlation value r.  

As suggested by the reviewer, we also performed an additional permutation test by taking the 

local spatial relationships into consideration to avoid autocorrelation within neighboring voxels. 

Namely, we used a brain atlas to categorize brain voxels in component into different clusters, which 



were permuted to calculate the significance further. We tested two kinds of brain atlas for fALFF 

component and GM component and adopted JHU atlas (49 tracts) to segment FA component. Take 

GM component as an example, the effective GM voxels were classified into 87 clusters based on the 

Brainnetome Atlas1(total 246 ROIs). By randomly shuffling Y (UNM_ICref) across 87 clusters and 

re-running its correlation with X (FBIRN_ICref) for 10000 times, 2 of the 10000 permutations fell out 

the range of [-0.51, 0.51], thus the probability of p=2.0× 10−4 was estimated for cross-cohort 

correlation of r=0.51 for GM maps. Similarly, when using AAL atlas, 46 clusters were obtained for 

GM component, resulting in permuted p=4.0× 10−4. For FA component, 24 clusters were obtained 

by using JHU atlas (49 tracts), with the permuted probability of p=5.0× 10−4.  

Finally, we also calculated the cross-cohort correlation by correlating the mean values of 246 

clusters (Brainnetome Atlas) for GM and fALFF, and 49 clusters (JHU Atlas) for FA. The resulting 

correlations were r=0.67 (p=8.1× 10−7), 0.73 (p=2.7× 10−9) and 0.45 (p=1.1× 10−5) for GM, FA 

and fALFF brain maps respectively.  

In sum, all three of the above approaches, designed to address spatial autocorrelation in 

different ways, provided similar results. 

Here, in response to the reviewer, we also added another measure (Dice index, equation (2)) to 

calculate the overlap percentage of the spatial maps between UNM and FBIRN cohorts. Dice index 

is a statistical validation for comparing the spatial similarity of binary images, for example in image 

segmentation accuracy assessment. We calculated the dice index of the identified target component 

between two cohorts using only voxels masked at |Z|>2 (threshold), resulting in two masks from 

FBIRN (mask_FBIRN) and UNM (mask_UNM) respectively. Only voxels that fell in the union of 

the masks (mask_FBIRN ∪ mask_UNM) were used to calculate the cross-cohort similarity as shown 

in equation (2).  

Dice index = 2
V(A∩B)

V(A)+V(B)
                               (2) 

The Dice index for GM, FA and fALFF components are 0.75, 0.78 and 0.62 respectively, 

suggesting that there is high overlap percentage of the spatial maps cross FBIRN and UNM. 

Furthermore, with respect to the reviewer mentioned “Cluster failure: Why fMRI inferences for 

spatial extent have inflated false-positive rates. Eklund, A., Nichols, T.E., & Knutsson, H. (2016) 

PNAS 113, 7900-7905”, we did not perform statistical analyses using SPM, AFNI or FSL. SPM is 

only used for fMRI and sMRI preprocessing, resulting in whole-brain voxel-wise features for further 

supervised fusion analysis. Thus we do not believe the false-positive results highlighted in the cluster 

analysis based on SPM, AFNI and FSL is present in our analysis.  

Combining all the above evidence together, we are confident that the cross-cohort spatial 

similarity is consistent high.  

https://en.wikipedia.org/wiki/Statistic


3.6 I appreciate the effort to clarify the terms in the manuscript. Some aspects are still confusing 

though, for instance, the "multimodal neuromarker network" seems to be comprised of three 

networks, the DMN, SAN and CEN. Is there not a separate term that the authors could use for the 

identified marker than the word "network"? Such as, a 'signature' or just a 'multimodal marker' or 

'imaging correlate' etc? 

    Thank you for the suggestion. We have changed the “multimodal neuromarker network” to 

“multimodal neuromarker signature” throughout the paper.  

3.7 Similarly, the authors have a very specific definition of the term 'neuromarker': "Here a 

"neuromarker" is defined as a brain measure that is associated with a cognitive or behavioral 

outcome and can further predict individual performance". If the authors don't want to define 

"neuromarker" in the abstract, they should use a different term instead. For instance, the term 

"biomarker" is commonly used in the field. The first sentence of abstract doesn't make sense without 

the term 'neuromarker' being defined. 

    Thank you for the suggestion. We have replaced the term “neuromarker” in the abstract with 

“biomarker”, see page No. 2.   

 

1. Fan L, et al. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. 

Cerebral cortex 26, 3508-3526 (2016). 

 

 



REVIEWERS' COMMENTS:  
 
Reviewer #2 (Remarks to the Author):  
 
The authors have answered all my concerns  
 
 
Reviewer #3 (Remarks to the Author):  
 
The authors have addressed my concerns.  



Reviewer #2 (Remarks to the Author): 

2.1 The authors have answered all my concerns. 

Thank you for your comments. 

Reviewer #3 (Remarks to the Author): 

3.1 The authors have addressed my concerns. 

 Thank you for your comments. 


