SUPPLEMENTAL DATA

Shear-induced integrin signaling in platelet phosphatidylserine exposure, microvesicle release and coagulation

Short title: $G\alpha_{13}$ and integrin signaling facilitates clotting

Aiming Pang^{*1,6}, Yujie Cui^{*1,7}, Yunfeng Chen^{2,4,#}, Ni Cheng¹, M. Keegan Delaney^{1,5}, Minyi Gu⁵, Aleksandra Stojanovic-Terpo¹, Cheng Zhu^{2,3,4} and Xiaoping Du¹ ¹Department of Pharmacology, University of Illinois at Chicago. Chicago, IL 60612, ²Woodruff School of Mechanical Engineering, ³Coulter Department of Biomedical Engineering, and ⁴Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, ⁵Dupage Medical Tehcnology, Inc. Willowbrook, IL 60527, ⁶Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China 300020,⁷School of Medical Laboratory, Tianjin Medical University, Tianjin, China 300203

* Equal contribution first authors

[#]Current address: Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA

Supplemental Methods

Preparation of mouse platelets

Eight- to 12-week-old mice were anesthetized with isofluorane, fresh blood was drawn from mouse inferior vena cava using ACD (85mM trisodium citrate, 83mM dextrose, and 21mM citric acid) as anticoagulant^{1,2}. Blood from 5-6 mice of either genotype was pooled. After adding final concentrations of 1 U/mL apyrase and 0.1 µg/mL PGE1 to blood. Platelets were isolated and washed as described previously³, and resuspended in modified Tyrode's buffer⁴ (12 mM NaHCO₃, 138 mM NaCl, 5.5 mM glucose, 2.9 mM KCl, 0.42 mM NaH₂PO₄, 10 mM N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES), pH 7.4, containing 1 mM CaCl₂ and 1 mM MgCl₂), and allowed to rest for at least 1 hour at room temperature before use.

Peptide micellar formulation.

As previously described⁵, PEG2000-DSPE (Avanti Polar Lipids Inc. Alabaster, AL), L-α-phosphatidylcholine (egg PC, Type XI-E, Sigma-Aldrich, St. Louis, MO), and peptides were mixed in methanol, and allowed to form a dry thin film using a rotary evaporator (Buchi, Rotavapor R-215). The dry thin film was rehydrated to form micellar nanoparticles in 0.15M NaCl as previously described⁵.

Preparation for Dual biomembrane force probe assay

Following an Institutional Review Board approved protocol at Georgia Tech, 8-10 µL of human blood was collected from finger prick and centrifuged to isolate RBCs. The RBCs were biotinylated by incubating with Biotin-PEG3500-NHS (JenKem) solution⁶⁻⁸, and swollen by incubating with nystatin (Sigma-Aldrich)^{6.8}. Glass beads (Distrilab Particle Technology) were thiolated and incubated with Streptavidin–Maleimide (SA-MAL) overnight, washed with and resuspended in phosphate buffer (27.6 g/L NaH₂PO₄ • H₂O, 28.4 g/L Na₂HPO₄) to make SA beads. To make FN or Annexin V beads, the SA beads were further incubated with soluble biotinylated FN (a gift from Dr. Andres Garcia, Georgia Tech) or Annexin V (BD Biosciences, CA) for 3 hours, washed with and resuspended in phosphate buffer.

Bone marrow transplantation

As described in our previous publications^{5,9}, bone marrow stem cells were isolated from femur and tibias of 8-week-old Integrin $\beta_3^{-/-}$ mice using the MACS lineage cell depletion kit (Miltenyi Biotec, Germany). Stem cells were subsequently infected twice with concentrated lenti-virus containing shRNA or cDNA constructs to be transfected with wild-type or AAA mutant β_3 as described previously⁵. The recipient Integrin $\beta_3^{-/-}$ mice were irradiated for 5Gy. The transfected stem cells were retro-orbitally injected with 27 1/2G needle's syringe into recipient mice (1 x 10⁶ cells per recipient mouse) 24 hours after irradiation. Retro-orbital injection provides similar haematopoietic reconstitution as compared to IV injection¹⁰.

Flow cytometric analysis of platelet-derived MV.

Platelet MV release and PS exposure were analyzed by flow cytometry as described previously¹¹. Washed human platelets with or without thrombin stimulation were subjected to shear. The platelets were then labeled with phycoerythrin (PE)-conjugated IgG control or anti-integrin α_{IIb} antibody and analyzed via flow cytometry to determine whether the MV were derived from platelets. The MV and platelets were distinguished according to their light scattering pattern as previously described^{12,13}.

Recalcification time

Human platelet-rich plasma (PRP) and platelet-poor plasma (PPP) were isolated from blood anti-coagulated with 1/10 volume of 3.8% citrate¹¹. Recalcification time of citrated PRP was the time from addition of 20 mM CaCl₂ to the formation of a fibrin clot, which was monitored either in a cone-and-plate rheometer (Thermo Scientific Haake) or a turbidometric lumi-aggregometer (Chrono-Log) as described previously¹¹. For the cone-and-plate rheometer method, 150 μ L of mice platelet suspension in human PRP was pipetted onto a 60 x 15mm polystyrene dish and 6000 s⁻¹ shear was applied at 37°C. Coagulation was indicated by a sharp increase in viscosity. The test was stopped for samples that failed to coagulate after 1 hour. For the turbidometric aggregometer method, PRP was used as the baseline reference (100% light transmittance). Clotting was detected by turbidity change following addition of 20 mM CaCl₂ at 37°C with stirring (1200 rpm).

Laser-induced mouse arteriolar thrombosis model and fluorescence intravital microscopy

As described previously¹⁴, Male C57BL/6 mice (6–8 weeks old) were anesthetized with intraperitoneal injection of ketamine and xylazine, and placed on a thermo-controlled blanket (37°C). The mouse cremaster muscle was exteriorized and superfused with thermo-controlled (37°C) bicarbonate-buffered saline for the duration of experiments. After infusion of DyLight 649-labeled anti-mouse GPIb β and Alexa Fluor (AF) 488– labeled monoclonal anti-fibrin antibody (clone 59D8, provided by Dr. Hartmut Weiler, The Blood Research Institute, Milwaukee, WI) into mice, platelet and fibrin accumulation around the site of injury was visualized following laser-induced injury to cremaster arterioles¹⁵.

REFERENCES

1. Li Z, Zhang G, Le Breton GC, Gao X, Malik AB, Du X. Two waves of platelet secretion induced by thromboxane A2 receptor and a critical role for phosphoinositide 3-kinases. *J Biol Chem.* 2003;278(33):30725-30731.

2. Estevez B, Kim K, Delaney MK, et al. Signaling-mediated cooperativity between glycoprotein Ib-IX and protease-activated receptors in thrombin-induced platelet activation. *Blood*. 2016;127(5):626-636.

3. Marjanovic JA, Li Z, Stojanovic A, Du X. Stimulatory roles of nitric-oxide synthase 3 and guanylyl cyclase in platelet activation. *J Biol Chem*. 2005;280(45):37430-37438.

4. Flevaris P, Stojanovic A, Gong H, Chishti A, Welch E, Du X. A molecular switch that controls cell spreading and retraction. *J Cell Biol*. 2007;179(3):553-565.

5. Shen B, Zhao X, O'Brien KA, et al. A directional switch of integrin signalling and a new anti-thrombotic strategy. *Nature*. 2013;503(7474):131-135.

6. Chen Y, Liu B, Ju L, et al. Fluorescence Biomembrane Force Probe: Concurrent Quantitation of Receptor-ligand Kinetics and Binding-induced Intracellular Signaling on a Single Cell. *J Vis Exp*. 2015(102):e52975.

7. Rosetti F, Chen Y, Sen M, et al. A Lupus-Associated Mac-1 Variant Has Defects in Integrin Allostery and Interaction with Ligands under Force. *Cell Rep.* 2015.

8. Ju L, Chen Y, Li K, et al. Dual Biomembrane Force Probe enables single-cell mechanical analysis of signal crosstalk between multiple molecular species. *Sci Rep*. 2017;7(1):14185.

 Gong H, Shen B, Flevaris P, et al. G protein subunit Galpha13 binds to integrin alphallbbeta3 and mediates integrin "outside-in" signaling. *Science*. 2010;327(5963):340-343.

10. Leon-Rico D, Fernandez-Garcia M, Aldea M, et al. Comparison of haematopoietic stem cell engraftment through the retro-orbital venous sinus and the lateral vein: alternative routes for bone marrow transplantation in mice. *Lab Anim.* 2015;49(2):132-141.

11. Delaney MK, Liu J, Kim K, et al. Agonist-induced platelet procoagulant activity requires shear and a Rac1-dependent signaling mechanism. *Blood*. 2014;124(12):1957-1967.

12. Boilard E, Nigrovic PA, Larabee K, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. *Science*. 2010;327(5965):580-583.

13. Lacroix R, Robert S, Poncelet P, et al. Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. *J Thromb Haemost*. 2010;8(11):2571-2574.

 Cho J, Kennedy DR, Lin L, et al. Protein disulfide isomerase capture during thrombus formation in vivo depends on the presence of beta3 integrins. *Blood*. 2012;120(3):647-655.
Atkinson BT, Jasuja R, Chen VM, Nandivada P, Furie B, Furie BC. Laser-induced endothelial cell activation supports fibrin formation. *Blood*. 2010;116(22):4675-4683.

Supplemental Figures

Supplemental Figure 1. An illustration of the biomembrane dual force probe (BFP) analysis of integrin- and outside-in signaling-dependent transduction of mechanical force leading to PS exposure.

Supplemental Figure 2. Staining platelets and platelet-derived MVs with a platelet-specific marker. Washed human platelets with or without thrombin stimulation were subjected to shear. The platelets were then labeled with phycoerythrin (PE) conjugated IgG control or anti- integrin α_{IIb} antibody and analyzed via flow cytometry for MV release and expression of α_{IIb} . (A) Cytograms showing size vs fluorescence. (B) Quantification of the percent of platelets or platelet-derived MVs that were positive for α_{IIb} staining.

Supplemental Figure 3. ADP or TXA2 alone does not induce PS exposure or MV release in the presence of shear. Washed mouse platelets were subjected to shear alone, or stimulated with 20 μM ADP or 1 μM U46619 and subjected to shear (3000/sec). The platelets were then labeled with Annexin V and analyzed via flow cytometry for MV release and PS exposure. (A) SSC vs FSC cytograms. (B) Fluorescence histograms of Annexin V binding.

Supplemental videos for Figure 6:

Supplemental video 1: Saline control

Supplemental video 2: Scambled peptide

Supplemental video 3: mP6

Supplemental videos for Figure 7:

Supplemental video 4: $G\alpha 13^{fl/fl}$ control mice

Supplemental video 5: $G\alpha 13^{fl/fl-PF4cre}$ (platelet specific $G\alpha 13$ knockout mice)