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Supplemental Figure S1. Quantitation of differential alternative splicing events controlled by hnRNPA1 and DDXS5 using MISO.
(S1A) Left panel: MISO splicing analysis revealed 3,111 differential splicing events over 1,742 genes upon hnRNPA1 knockdown. Pairwise comparison of
differential splicing levels was computed between nonspecific control scr siRNA and hnRNPA1 siRNA knockdown samples (Bayes factor = 10). Events were
filtered based on the significance and order of magnitude of expression change (AX). Right panel: The overlap in total number of splicing changes upon
hnRNPA1 knockdown between MISO and JUM splicing targets are shown in a Venn diagram. (S1B) Left panel: Upon DDX5 knockdown, a total of 5,294
statistically significant differential splicing events over 2,514 genes were detected using MISO. Right panel: The overlap in total number of splicing changes
upon DDX5 knockdown between MISO and JUM splicing targets are shown in a Venn diagram.

Note: We also detected splicing targets that are unique to either JUM or MISO. There are several reasons for this finding. There are differences in the
statistical methods and algorithms underlying JUM and MISO that account for some of the differences in calling splicing event changes. Even for initial
mapping of the short RNA-seq reads to the human genome, different tools were used (Tophat for MISO; STAR for JUM, see methods). Most importantly,
MISO requires the use of a pre-annotated library of splice junctions, so splicing events existing in the RNA-seq data, but missing from the splice junction
library, will be overlooked during the analysis. JUM does not require a previously annotated library of splice junctions and so JUM can identify novel and more
complex splicing events, which are put into the “composite” category. JUM also only utilizes splicing junctions that are detected in all experimental replicates
and requires that splice junction reads appear in each and every experimental replicate (with 5 junction reads per replicate), resulting in higher confidence
detection of differential splice junction use.
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Supplemental Figure $S2. RT-PCR validation of several pre-mRNA splicing target cassette exon events confirms splicing
changes in hnRNPA1-dependent, alternative splicing events detected in RNA-seq data analysis. K562 cells were electroporated with
nonspecific control siRNAs (scr si) or hnRNPA1 duplex siRNA duplexes. After a second round of siRNA transfection, the cells were harvested for total RNA
isolation and subjected to RT-PCR analysis. Replicate RT-PCR reactions for cassette exons were separated on Agilent Bioanalyzer chips and ratios of the
skipped or included exons were calculated (plotted at the left of the electrophoresis traces). Cassette exons from the KIF23, ZFAND1, NUMB, hnRNPD,
TNIK, ATP4B, EFCAB14 and ALAS genes are shown as examples. Table at the bottom shows coordinates of splice junctions tested and the PSI/ values
determined from the MISO and JUM analyses.
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Supplemental Figure S$3. DDX5 differentially spliced transcripts with nuclear eCLIP peaks in human K562 cells. (S3A) The overlap between the

differential splicing target RNAs and transcripts with nuclear DDX5 eCLIP tag clusters in K562 cells. (S3B) List of common differential splicing target pre-mRNAs that contain
nuclear DDX5 eCLIP targets. (S3C) Gene Ontology (GO) enrichment of DDX5 splicing target RNAs containing eCLIP tags revealed that these target RNAs are involved in cellular

processes including regulation of gene expression, mRNA metabolic process, protein localization to the endoplasmic reticulum and transcriptional regulation.
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Supplemental Figure S4. The differential icSHAPE profiles between in vivo versus in vitro reactivities (VTD) can be used to map protein
binding sites on target RNAs in conjunction with the eCLIP data. The ‘vivo-vitro difference’ (VTD) of icSHAPE profiles of the RPL7A RNA target near the
nuclear hnRNPA1 (top panel) and DDX5 (bottom panel) eCLIP peak regions are shown. Areas below 0 indicate less reactivity at those sites in the in vivo sample relative
to the in vitro probed RNA. In the plot, red dashed lines indicate eCLIP crosslink sites. hnRNPA1 motifs are indicated by orange lines in the top panel and DDX5 motifs
are indicated in dark green lines in the bottom panel.
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Supplemental Figure S5. Correlating icSHAPE-seq RNA structural information with hnRNPA1/DDX5 binding sites on the alternative
splicing target from the RPS12 mRNA. (S5A) Genome browser shot of the RPS12 gene with RNA-seq data upon hnRNPA1/DDX5 knockdown and nuclear
hnRNPA1/DDX5 eCLIP peak cluster regions shown. Gene annotation at the bottom with exons indicated. eCLIP tag clusters shown in green. (S5B) icSHAPE-con-
strained in vivolin vitro secondary structures for RPS12 generated using VARNA. The nuclear eCLIP cluster/peak region is highlighted in green and the hnRNPA1
crosslink sites are marked with red asterisks and hnRNPA1 binding motifs are indicated by an orange line. The DDX5 crosslinking sites are indicated by blue
crosses and DDX5 binding motifs indicated by green lines. Dotted red rectangles indicate regions of the RNA with secondary structural changes between the in vivo
and in vitro icSHAPE constraint predictions.
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Supplemental Figure S6. The ‘vivo-vitro difference’ VTD plots of icSHAPE profiles for a region of the RPS12 target RNA. Locations of the nuclear
hnRNPA1 eCLIP peak region with hnRNPA1 motifs indicated in orange (top) and DDX5 eCLIP peak region with DDX5 peaks indicated in green (bottom). These differential
icSHAPE profiles between in vivo versus in vitro probing can be used to map protein binding sites on target mRNAs. In the plot, red dash lines indicate eCLIP crosslink
sites. Often, nuclear hnRNPA1/DDX5 eCLIP peak regions reside near areas of negative VTD, indicative of less chemical reactivity, either because the RNA is less
structured in vivo structure compared to in vitro or that there is reduced chemical reactivity in vivo due to protein binding to that region of the RNA.



A

Lee Supplemental_Fig S7A

Scale 2 kbt 1 hg19
chr2: 232,574,000 | 232,574,500 | 232,575,000 | 232,575,500 | 232,576,000 | 232,576,500 | 232,577,000 | 232,577,500 | 232,578,000 |
120992 _ scr_siRNA
scr siRNA l |
1 - 1 ‘ il
120992 _ hnRNPA1 siRNA
hnRNPA1
siRNA l
! i T hnRNPAT1 IP FDR
hnRNPA1 IP merge FDR nRNPA1 1 merge ]
hnRNPA1 Input hnRNPA1 Input
hnRNPA1 no UV IP hnRNAAT no YV/IF
hnRNPA1 A IP E B hnRNPA1 A IP B
hnRNPA1 B IP | ) B n hrIRNPA1 B IR D) Boros] M
hnRNPA1 C 1P B = o hnRNPA1 C IP =
82792 _ scr siRNA 2
scr siRNA ' |
1 A1 € 1 At L ‘ ‘
82792 _ DDX5 siRNA
DDX5 siRNA |
1 | | J L
DDXS5 IP merge FDR 5 = DDX5 IP merge FDR l
DDX5 Input DDX5 Input
DDX5 no UV IP DDX5 no UV IP
DDX5AIP B = 5= DDX5 A IP £ |
DDX5 B IP BE 1 - DDX5 B IP I
DDX5 C IP P B DDX5 C IP
UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tR[IA Comparative Genomj l
A= 5 - ——
PTMA — - = -
Akided d | MIR1244-2 s
efseq Genes j
PTMA il |—m= -— - |
PTMA il i} | | -
MIR1244-1 mmm
MIR1244-2 mum
MIR1244-3 s
I l MIR1244-4 mem
1 hg19
0l 232,576,500 | 232,577,000 | 232,577,500 |
scr siRNA

Intron retention

Intron retention

—

hnRNPA1
siRNA

E

-

DR

o

scr siRNA

DDXS5 siRNA

-



Lee_Supplemental_Fig_S7B
B PTMA- in vivo PTMA - in vitro

OOl
0. ©-© )¢
3 o3
IO O—®
12 0‘_’91 @0 °e°
ang 1190 g ®
T N
g‘:’g Co—a®
21~ S NAY
=AU VUV AEBRBEBEA®
i O-00—® i
1 A 1220

FCW
oot
‘gé*e@?‘é

©e62
9996

‘G

g’g -1170
8-
1120~ O’Q

U C

% hnRNPA1 UV crosslinking site
mes - hnRNPA1 motif

Supplemental Figure S$7. Correlating binding of hnRNPA1 with the icSHAPE constrained structure of the Prothymosin alpha (PTMA) pre-mR-
NA. (S7A) Genome browser view of the PTMA gene and its pre-mRNA that was shown to be differentially spliced upon the knockdown of both hnRNPA1 and DDX5, but
these proteins bind to two different regions of PTMA mRNA. The visualized exonic region of PTMA is highlighted in light blue on the genome browser with hnRNPA1 and
DDX5 nuclear eCLIP peak cluster regions indicated by green bars. (S7B) icSHAPE-constrained in vivo and in vitro RNA secondary structures for the PTMA RNA. The
nuclear eCLIP cluster/peak region is highlighted in orange and the hnRNPA1 crosslink sites are marked with red asterisks. Dotted red rectangle indicate regions of the RNA
with secondary structural changes between the in vivo and in vitro icSHAPE constraints.
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Supplemental Figure S$8. The ‘vivo-vitro difference’ VTD of icSHAPE profiles of the VTMA pre-mRNA target near the nuclear
hnRNPA1 eCLIP tag region. Red dash lines indicate eCLIP crosslink sites for hnRNPA1. Nuclear hnRNPA1 eCLIP peak regions reside in the negative
VTD areas, indicative of less chemically reactive regions in the in vivo RNA sample compared to in vitro probed RNA, most likely due to binding of the
hnRNPA1 protein to the VTMA RNA.
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Supplemental Figure $9. The Heat Shock Protein 90 Alpha Family Class B Member 1, HSP90AB1, pre-mRNA cytosolic 90kDa is
differentially spliced upon knockdown of hnRNPA1 and DDX5. (S9A) Genome browser of shot of the HSP90AB1 gene and RNA

transcripts. The hnRNPA1 and DDX5 proteins share 5 common binding sites on the HSP90AB1 pre-mRNA. The region visualized by RNA structure and

Vienna is highlighted in light blue on the genome browser.
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Supplemental Figure S9B. icSHAPE-constrained in vivo and in vitro secondary structures of a region of the HSP90AB1 pre-mRNA. The
nuclear eCLIP cluster region is highlighted in light green. The hnRNPA1 crosslink sites are indicated by red asterisks and the hnRNPA1 binding motifs by orange

lines. The DDX5 crosslink sites are indicated by blue crosses and the enriched GC-rich binding motifs for DDX5 are indicated by dark green lines. Dotted red
rectangle areas indicate regions of the RNA with secondary structural changes between the in vivo and in vitro icSHAPE constraints.
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Supplemental Figure S9C. The differential icSHAPE profiles between in vivo versus in vitro reactivities (VTD) correlate with the
positions of protein binding sites on target RNAs mapped using eCLIP data. The ‘vivo-vitro difference’ (VTD) profiles of icSHAPE reactivi-
ties for the HSP90OAB1 RNA target near the nuclear hnRNPA1 (top panel) and DDX5 (bottom panel) eCLIP peak regions are shown. In the plot, red dashed
lines indicate eCLIP crosslink sites, and hnRNPA1 motifs are indicated by orange lines in the top panel and DDX5 motifs are indicated dark green lines in the
bottom panel.
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Supplemental Figure $10. The Heat Shock Protein 90 Alpha Family Class B Member 1, HSP90AB1, pre-mRNA cytosolic 90kDa
heat-shock protein is common splicing target for hnRNPA1 and DDX5. (S10A) Genome browser of view of HSP90AB1 gene and RNA
transcripts. hnRNPA1 and DDX5 share 5 common binding sites on the HSP90AB1 pre-mRNA. The region visualized by RNA structure and Vienna is highlighted
on the genome browser in yellow for the hnRNPA1 eCLIP region and in blue for the DDX5 eCLIP region.
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Supplemental Figure S10B. icSHAPE-constrained in vivo and in vitro predicted RNA secondary structures for a region of the
HSP90AB1 pre-mRNA. The hnRNPA1 UV crosslinking sites are indicated by red asterisks and the DDX5 UV crosslinking sites are indicated by blue
crosses. The nuclear eCLIP cluster/peak region is indicated by light green shading. The hnRNPA1 binding motifs are indicated by orange lines and for
hnRNPA1 and the DDX5 binding motifs are indicated by green lines. The dotted red rectangles denote regions of the RNA with secondary structural changes

between the in vivo and in vitro icSHAPE constraints.
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Supplemental Figure S10C. The ‘vivo-vitro difference’ (VTD) of icSHAPE profiles of the HSP90AB1 RNA target near the nuclear hnRNPA1 (top
panel) and DDX5 (bottom panel) eCLIP peak regions are shown below. In the plot, red dashed lines indicate eCLIP crosslink sites, and hnRNPA1 motifs are indicated by
orange lines in the top panel and the DDX5 motifs are indicated by dark green lines in the bottom panel. Multiple hnRNPA1 UV crosslinking sites were detected near the 5’
end of the exon, with nearby hnRNPA1 binding motifs indicated by orange lines (top panel). The GC-rich regions resembling DDX5 binding motifs (green line) were detected
near the negative VTD region (bottom panel).
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