SUPPLEMENTARY RESULTS, METHODS and REFERENCES

Contents
Fibroblasts from The Progeria Research FOundation..............cccoccuieriieiiieeciie st 1
Isolation and culture of cells for ex Vivo eXPerimMentS.........cccccverierierienienierieste sttt sieeteesaeeeeebeeeeenee 2
Normalization of DNA methylation data.............ccvevieiiieiiieiieiieieeie ettt ae e esveennes 2
Estimation of blood cell counts based on DNAM LEVEIS.......ccceerieriiiriieriieiieieeieeieeie e 2
Blood methylation data from large epidemiological CONOTLS .........ccvevuieriieriieriieiiieieee et 2
StatiStICAl METNOAS ......eivieiieieeie ettt ettt et e et e et e et eeebeeabeesaeseaesseesseessaesseesssesssesssessaesseesseenseenses 4
R SOTEWATE COUE. ..ottt ettt ettt et ettt et e bt e bt e bt et e e bt e bt enbeenbeenseensean 4

Fibroblasts from The Progeria Research Foundation

Human primary dermal fibroblast cell lines were
obtained from The Progeria Research Foundation (PRF)
Cell and Tissue Bank (www.progeriaresearch.org). The
fibroblast cell lines originated from cases with classic
mutations, non-classic mutations and parental controls
as detailed in Table 2. The following citations provide
additional details on cases carrying the specific variants:
LMNA  c.1968+1G>A  heterozygote[1], = LMNA
c.1968+2T>C heterozygote[2], LMNA p.Met540Thr
homozygotes [3] and compound heterozygotes of
ZMPSTE24 p.Pro248Leu and p.Trp450* [4]. As
detailed in Table 2, we generated DNA methylation
data from the following cell lines that are described on
the PRF webpage (https://www.progeriaresearch.org/):

PSADFN086, PSADFN257, PSADFN317,
PSADFN318, PSADFN392, HGADFN003,
HGADFN169, HGADFN 143, HGADFN167,
HGADFN271, HGADFN 164, HGADFN178,
HGADFN122, HGADFN127, HGADFNI155,
HGADFN188, HGADFN367, HGFDFN369,
PRF319P8, PSFDFN319, PSFDFN327, PSFDFN394,
PSFDFN319, HGMDFNO090, HGMDFN368,
PSMDFN320, HGMDFN368, PSMDFN320,
PSMDFN326, PSMDFN346, PSMDFN393,
HGFDFNDNA168.

Control samples

To avoid batch effect in the DNA methylation data, we
generated control fibroblast samples for concurrent
assays with fibroblasts from patients with HGPS. The
control fibroblasts have been described in [5].
Fibroblast lines ranging in age from three days to 96
years were obtained from the NIA Aging Cell Reposito-

ry at the Coriell Institute for Medical Research. The
Coriell ID designations were:, RRID#: AGO08498,
RRID:CVCL_1Y51, AGO07095, RRID:CVCL_ON66,
AG11732, RRID:CVCL _2E35, AG04060,
RRID:CVCL 2A45, AG04148, RRID:CVCL 2AS5S5,
AG04349, RRID:CVCL_2A62, AG04379,
RRID:CVCL _2A72, AGO04056, RRID:CVCL 2AA43,
AG04356, RRID:CVCL _2A69, AG04057,
RRID:CVCL_2A44, AGO04055, RRID:CVCL_2A42,
AG13349, RRID:CVCL_2G05, AG13129,
RRID:CVCL 2F55, AGI12788, RRID:CVCL L632,
AGO07725, RRID:CVCL_2C46, AG04064,
RRID:CVCL_L624, AGO04059, RRID:CVCL_L623,
AG09602, RRID:CVCL_L607, AG16409,
RRID:CVCL_V978, AG06234, RRID:CVCL_2B66,
AG04062, RRID:CVCL_2A47, AG08433,
RRID:CVCL_L625, AG16409, RRID:CVCL V978,
GMO00302, RRID:CVCL 7277, AGO1518,
RRID:CVCL_F696, AG06234, RRID:CVCL_2B66.

Mycoplasma contamination is routinely ruled out for all
cell cultures using LINE and PCR-based techniques.
None of the cell lines we have used are among those
listed the International Cell Line Authentication
Committee (ICLAC) as commonly misidentified cell
lines. Fibroblast cell lines were cultured and expanded
in DMEM media (high glucose, Invitrogen) supple-
mented with 10% or 15% fetal bovine serum (Gibco),
sodium pyruvate, non-essential amino acids, GlutaMAX
(Invitrogen), Pen/Strep solution, and Beta-mercapto-
ethanol. Fibroblast cell lines were expanded to a
population doubling level (PDL) of ~19-21. The
formula used to calculate PDL was PDL = 3.32*log
(cells harvested/cells seeded) + previous PDL. Cell
aliquots of early passages of all cell lines were kept
frozen at —150°C in the above culture medium with
additional 40% FBS and 10% DMSO.
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Isolation and culture of cells for ex vivo experiments

Informed consent was obtained prior to collection of
human skin samples with approval from the Oxford
Research Ethics Committee; reference 10/H0605/1.
Primary human skin keratinocytes, fibroblasts and
microvascular endothelial cells were isolated from
neonatal foreskin and adult facial/neck skin. The tissue
was cut into small pieces and digested overnight at 4 °C
with 0.5 mg/ml Liberase DH in CnT-07 keratinocyte
medium (CellnTech) supplemented with 2x penicillin/
streptomycin (Sigma) and 2x gentamycin/amphotericin
(Life Tech). Following digestion, the epidermis was
peeled from the dermal layer, a single-cell suspension
obtained by mechanical dissociation in trypsin-EDTA
and seeded on collagen/fibronectin coated plates in CnT-
07 medium. To isolate fibroblasts, dermal pieces were
grown from explants in DMEM supplemented with 10%
FBS. The remaining dermal tissue was digested in 2.5
mg/ml collagenase in HBSS (with calcium and
magnesium) at 37 °C with frequent agitation for 1 h,
passed through a 70 um cell strainer and selected using
CD31 magnetic Dynabead positive selection (Life
Technologies, 11155D). Selected microvascular endo-
thelial cells were then seeded on a gelatin-coated flask in
Endothelial Cell Growth Medium MV (PromoCell, C-
22020). All cells were maintained in a 37 °C, 5% CO2
humidified environment.

Normalization of DNA methylation data

The Illumina BeadChips measures bisulfite-conversion-
based, single-CpG resolution DNAm levels at different
CpG sites in the human genome. These data were
generated by following the standard protocol of
[llumina methylation assays, which quantifies methyl-
tion levels by the B value using the ratio of intensities
between methylated and un-methylated alleles.
Specifically, the B value is calculated from the intensity
of the methylated (M corresponding to signal A) and
un-methylated (U corresponding to signal B) alleles, as
the ratio of  fluorescent signals B =
Max(M,0)/[Max(M,0)+Max(U,0)+100]. Thus, B value

range from O (completely un-methylated) to 1
(completely methylated). For WHI we used background
corrected beta values, while InCHIANTI and the JHS
data were normalized using the NOOB method [6].

Estimation of blood cell counts based on DNAm
levels

We estimated blood cell counts using two different
software tools. First, Houseman's estimation method [7]
was used to estimate the proportions of CD8+ T cells,
CD4+ T, natural killer, B cells, and granulocytes
(mainly neutrophils). Second, the Horvath blood cell

estimation method, implemented in the advanced
analysis option of the epigenetic clock software [8, 9],
was used to estimate the percentage of exhausted CD8+
T cells (defined as CD28-CD45RA-), the number
(count) of naive CD8+ T cells (defined as
CD45RA+CCR7+) and plasma blasts cells. We and
others have shown that the estimated blood cell counts
have moderately high correlations with corresponding
flow cytometric measures [7, 10].

Blood methylation data from large epidemiological
cohorts

Women's Health Initiative (WHI), Framingham Heart
Study, Jackson Heart Study, and InCHIANTI were used
for evaluating the predictive accuracy for mortality and
morbidity analyses. All but one epidemiological cohort
used the Illumina Infinium 450K platform. However,
the data from the Jackson Heart Study were generated
on the EPIC array.

InCHIANTT included longitudinal (two time-points—
1998 and 2007) phenotypic and DNAm data on n=456
male and female participants, ages 21-91 in 1998, and
30-100 in 2007.

Women's Health Initiative

Two separate subsamples were aggregated for our study
within the WHI (BA23 and AS315). Both had baseline
blood specimens collected after an overnight fast in
EDTA tubes and stored at -70C. These samples were
processed at the WHI core laboratory and select nutrient
and cardiovascular biomarkers were measured including
lycopene, alpha- & beta-carotene, alpha- & gamma-
tocopherol, C-reactive protein, triglycerides, total, LDL,
and HDL cholesterol.

For the first subsample (BA23) consisting of 2098
samples, DNA methylation levels were measured using
the Illumina Infinium HumanMethylation450 BeadChip
at the HudsonAlpha Institute of Biotechnology. This
platform uses bisulfite conversion to quantify methyl-
tion levels at 485,577 specific CpG sites genome-wide.
Samples were prepared according to the standard
[llumina protocol, and P methylation values were
calculated from the intensity ratio between methylated
and total (methylated and unmethylated) probe fluo-
rescence intensities. Methylation data was processed as
described in [8]. In order to test the quality of these
array measurements, we perform correlation measures
with duplicates within this dataset and with a "gold"
standard which is an average of many samples
previously collected. Correlation between duplicates
and with the gold standard were high (r>0.9), indicative
of high quality measurements.
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The second WHI data set is described in the following.
WHI-EMPC Description

The Women’s Health Initiative — Epigenetic
Mechanisms of PM-Mediated CVD (WHI-EMPC,
AS315) is an ancillary study of epigenetic mechanisms
underlying associations between ambient particulate
matter (PM) air pollution and cardiovascular disease
(CVD) in the Women’s Health Initiative clinical trials
(CT) cohort. The WHI-EMPC study population is a
stratified, random sample of 2,200 WHI CT participants
who were examined between 1993 and 2001; had
available buffy coat, core analytes, electrocardiograms,
and ambient concentrations of PM; but were not taking
anti-arrhythmic medications at the time. As such, WHI-
EMPC is representative of the larger, multiethnic WHI
CT population from which it was sampled: n = 68,132
participants aged 50-79 years who were randomized to
hormone therapy, calcium/vitamin D supplementation,
and / or dietary modification in 40 U.S. clinical centers
at the baseline exam (1993-1998) and re-examined in
the fasting state one, three, six, and nine years later [11].
[lumina Infinium HumanMethylation450 BeadChip
data from the Northwestern University Genomics Core
Facility for WHI-EMPC participants sampled in stages
la (800 participants), 1b (1200 participants), and 2 (200
participants x 2 samples each) was quality controlled
and batch adjusted. Batch adjustment involved applying
empirical Bayes methods of adjusting for stage and
plate as implemented in ComBat [12].

Lifestyle factors and dietary assessment in the
Women's Health Initiative (WHI)

Participants were selected from the WHI, a national
study that began in 1993 and enrolled postmenopausal
women between the ages of 50-79 years into either
randomized clinical trials (RCTs) or into an
observational study [13]. Participants completed self-
administered questionnaires at baseline which provided
personal information on a wide range of topics,
including sociodemographic information (age, educa-
tion, race, income), and current health behaviors
(recreational physical activity, tobacco and alcohol
exposure, and diet). Participants also visited clinics at
baseline where certified Clinical Center staff collected
blood specimens and performed anthropometric
measurements including weight, height, hip and waist
circumferences, and systolic and diastolic blood
pressures; body mass index and waist to hip ratio were
calculated from these measurements (Supplementary
Table 3).

Dietary intake levels were assessed at baseline using the
WHI Food Frequency Questionnaire [14]. Briefly,

participants were asked to report on dietary habits in the
past three months, including intake, frequency, and
portion sizes of foods or food groups, along with
questions concerning topics such as food preparation
practices and types of added fats. Nutrient intake levels
were then estimated from these responses. For current
drinker, we use the threshold of more than one serving
equivalent (14g) within the last 28 days.

Jackson Heart Study

The JHS is a large, population-based observational
study evaluating the etiology of cardiovascular, renal,
and respiratory diseases among African Americans
residing in the three counties (Hinds, Madison, and
Rankin) that make up the Jackson, Mississippi
metropolitan area [15]. Data and biologic materials have
been collected from 5306 participants, including a
nested family cohort of 1,498 members of 264 families.
The age at enrollment for the unrelated cohort was 35-
84 years; the family cohort included related individuals
>21 years old. Participants provided extensive medical
and social history, had an array of physical and
biochemical measurements and diagnostic procedures,
and provided genomic DNA during a baseline
examination  (2000-2004) and two  follow-up
examinations (2005-2008 and 2009-2012). The study
population is characterized by a high prevalence of
diabetes, hypertension, obesity, and related disorders.
Annual follow-up interviews and cohort surveillance are
ongoing.

In our analysis, we used Illumina EPIC array data from
n=1756 African Americans (n=1203 women and n=653
men) that were generated as part of project JHS
ancillary study ASNO0104. The blood samples were
collected at the baseline of the study (visit 1). At the
time of the blood draw, the individuals ranged from 22
to 93 (median age 57). At the time of the last follow up,
282 individuals were known to be deceased. The
median number of years of follow up (time to death or
last follow up) was 12.2 years (ranging from 0.14 to
14.5 years).

Framingham Heart Study Offspring Cohort (FHS)
The Framingham Heart Study (FHS) Offspring Cohort
began enrollment in 1971 and included 5,124 offspring
and spouses of the offspring of the FHS original cohort.
Participants were eligible for the current study if they
attended the eighth examination cycle (2005-2008) and
consented to having their DNA to be used for genetic
research. All participants provided written informed
consent at the time of each examination visit. The study
protocol was approved by the Institutional Review
Board at Boston University Medical Center (Boston,
MA). The FHS data are available in dbGaP (accession
number "phs000724.v2.p9").
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Statistical Methods

As for the multi-tissue DNAm age estimator (Horvath
2013) [8], the dependent variable, chronological age,
was transformed before carrying out an elastic net
regression analysis. Toward this end, the following
function F for transforming age was used:

= F(age)=log(age+1)-log(adult.age+1) if
age<=adult.age.

= F(age)=(age-adult.age)/(adult.age+1) if
age>adult.age.

The parameter "adult.age" was set to 20. Note that F

satisfies the following desirable properties: it

= 1) is a continuous, monotonically increasing
function (which can be inverted),

= ii) has a logarithmic dependence on age until
adulthood (here set at 20 years),

= 1iii) has a linear dependence on age after adulthood
(here set to 20),

= iv) is defined for negative ages (i.c. prenatal
samples) by adding 1 (year) to age in the logarithm,

= v) it has a continuous first derivative (slope
function). In particular the slope at age=adult.age is
given by 1/(adult.age+1).

An elastic net regression model (implemented in the
glmnet R function) was used to regress a transformed
version of age on the beta values in the training data. The
glmnet function requires the user to specify two para-
meters (alpha and beta). Since I used an elastic net
predictor, alpha was set to 0.5. But the lambda value of
was chosen by applying a 10 fold cross validation to the
training data (via the R function cv.glmnet). The elastic
net regression results in a linear regression model whose
coefficients by, by, . . ., byg relate to transformed age as
follows:

F(chronological age)=by+b,CpG+. . .
+b39 1 CpG391+error

The coefficient values can be found in Supplementary
Dataset 2. Based, on the coefficient values from the
regression model, DNAmAge is estimated as follows
DNAmAge=inverse.F(by+b,CpGi+ . .. +b391CpGio1)
where inverse.F(.) denotes the mathematical inverse of
the function F(.) and is specified as follows.

= anti.F(x)= (1+adult.age)*exp(x)-1 if x<0
= anti.F(x)= (1+adult.age)*x+adult.age if x>=0
= and the parameter adult.age was chosen to be 20.

Thus, the regression model can be used to predict to
transformed age value by simply plugging the beta
values of the selected CpGs into the formula.

R software code

Assume that dat0 is a data frame of beta values whose
first columns contains the cg numbers (probe identi-
fiers) and whose columns contain the beta values.

We recommend that you generate the beta values using
a software tool that avoids missing values. For example,
the R function "preprocessNoob" in the minfi R
package or "preprocessQuantile" in the minfi package.

#R functions for transforming age
adult.agel=20

trafo= function (x,adult.age=adult.agel)
{x=(x+1)/ (1+adult.age); y=ifelse (x<=1,
log( x),x-1);y }

anti.trafo=

function (x,adult.age=adult.agel) {
ifelse (x<0, (l+adult.age)*exp(x)-1,
(1+adult.age) *x+adult.age) }

datClock=read.csv ("path/datSkinClock.cs
V")

selectCpGsClock=is.element (datO[,1],
as.character (datClock[-1,1]))

datMethClockO=data.frame (t (datO[selectC
pGsClock ,-1] ))

colnames (datMethClockQ) =
as.character (dat0O[selectCpGsClock ,11 )

# Reality check: the following output
should only contain numeric values.

# Further, the column names should be
CpG identifiers (cg numbers).

datMethClock0[1:5,1:5]

datMethClock= data.frame (datMethClockO[
as.character (datClock[-1,11)1)

# The number of rows should equal the
number of samples (Illumina arrays)

dim (datMethClock)

#Output DNAm age estimator for the skin
& blood clock

DNAmAgeSkinClock=as.numeric (anti.trafo (
datClockS$Coef[1l]+as.matrix (datMethClock
)%$*% as.numeric (datClockS$Coef[-11)))
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