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Simulation

Both MLASSO and MEnet produce weights that reflect importance/relevance of the associated covariates.
However, reliability of these weights completely depend upon correct model specification. If the model is
misspecified the weights are not reliable indicators of variable importance. We offer a simple simulation
study below to illustrate our point.

We generate the feature matrix, X, independently from N (0, 1) and use 3 signals and 997 spurious
features (m = 0.003M). Marginally, both responses share the same set of features as follows:

Yj = 3X1 + 2X2
1 + 4X2 + 3X2

2 + 8X3 + ε, j = 1, 2

where ε ∼ N (0, 1). Dependence between Y1 and Y2 are induced by a Gumbel copula with ν = 2.

We allow ntrain = 400 and ntest = 100 for each of five folds and for SMuRFS, we fix q = 5 and
α = 0.05. The training set is again evenly splitted into a secondary training set and a secondary test set.
We select variables on the secondary training set and build the predictive random forest on the secondary
test set. We then compute the prediction error on the primary test. Table 1 shows the selection accuracy
of competing algorithms.

All the algorithms correctly identify the signals. Next, we check whether estimates of regression
coefficients obtained from MLASSO and MEnet correctly identified the variable importance in Table 2.
Note that, the regularization algorithms need a pre-specified feature matrix. If one suspects polynomial
functions of features are important, one needs to include those polynomials manually. Consider the
simulation example we offer in the main manuscript where the right hand side of the data generating
model has a linear component and a logistic component. How many polynomial terms need to be
included in that case? In general, when dealing with huge feature set, expanding the feature matrix
to accommodate polynomial terms increases computational burden considerably. Such polynomial terms
are not customarily included in standard regularization methods. We also have not included the quadratic
terms when fitting MLASSO and MEnet in this simulation. Admittedly, we are fitting a misspecified
model, but then again, in real data it is almost impossible to rule out model misspecification. Regardless
of the misspecification both MLASSO and MEnet correctly identified the signals!

Observe that, in some folds, both MLASSO and MEnet correctly identify variable importance only
for the linear terms (X3 dominates both X1 and X2 only in the linear terms). The presence of the
quadratic terms of X1 and X2 leads to misidentification in couple of folds. Furthermore, the spurious
features appearing for MLASSO and MEnet in Table 1 imply the existence of several non-zero β associate
with spurious features. Ordering of these spurious features is meaningless. Although, we do observe

1



Table 1: Table showing the selection accuracy of competing algorithms

Method Fold Number of Number of Number of spurious
true signal signals identified features selected

SMuRFS

Fold 1 3 3 0
Fold 2 3 3 2
Fold 3 3 3 0
Fold 4 3 3 1
Fold 5 3 3 0

MLASSO

Fold 1 3 3 26
Fold 2 3 3 7
Fold 3 3 3 21
Fold 4 3 3 12
Fold 5 3 3 33

MEnet

Fold 1 3 3 216
Fold 2 3 3 139
Fold 3 3 3 191
Fold 4 3 3 112
Fold 5 3 3 335

that, across all the folds, weights of the spurious features are smaller than the weights associated with
X1, X2 and X3 (last column of Table 2). Regardless, it seems that weights estimated from MLASSO
and MEnet may give a distorted picture of relative importance and relevance of features under model
misspecification. This demonstration suggests that both MLASSO and MEnet are more robust in terms
of identifying important features as compared to ranking features.

Instead, we contend that it is safer to label the features as statistically significant or not.

Finally, we use the secondary test set to generate the predictive multivariate conditional RF. The
predictive performances in the primary test sets (across the folds) are shown in Table 3.
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Table 2: Table showing the Rank Ordering ability of MLASSO and MEnet for the synthetic data. In
each case, βi is the estimated regression coefficient associated with Xi.

Method Fold Response β1 β2 β3 max |βj |1000j=4

MLASSO

Fold 1
Y1 2.25 4.11 6.48 0.56
Y2 2.25 4.08 6.45 0.57

Fold 2
Y1 3.03 2.26 6.06 0.42
Y2 3.01 2.25 6.09 0.43

Fold 3
Y1 2.59 1.50 5.61 1.20
Y2 2.58 1.53 5.67 1.21

Fold 4
Y1 3.65 3.60 6.44 0.41
Y2 3.60 3.66 6.42 0.42

Fold 5
Y1 3.75 3.56 6.16 1.11
Y2 3.73 3.55 6.19 1.08

Enet

Fold 1
Y1 1.30 1.86 2.94 0.72
Y2 1.31 1.84 2.93 0.70

Fold 2
Y1 1.60 1.03 2.74 0.61
Y2 1.59 1.02 2.76 0.62

Fold 3
Y1 1.35 0.75 2.35 0.57
Y2 1.34 0.77 2.38 0.57

Fold 4
Y1 1.70 1.54 2.62 0.48
Y2 1.67 1.55 2.62 0.48

Fold 5
Y1 2.18 1.64 3.32 1.13
Y2 2.14 1.65 3.34 1.11

Table 3: Prediction performance on the test set for training full

Method Variable NMSPE NMAPE

SMuRFS
Y1 0.2464 0.3180
Y2 0.3070 0.3476

MLASSO
Y1 0.4300 0.4684
Y2 0.4730 0.4793

MEnet
Y1 0.7419 0.6480
Y2 0.7642 0.6471
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Results on drug pairs SC1 and SC2

Table 4: Enrichment analysis for SMuRFS, strong-SMuRFS strong, MLASSO and MEnet methods for
whole genome statistical background with 0.4 confidence interval for drug pairs SC1 and SC2 obtained
from GDSC dataset

Method SMuRFS strong-SMuRFS MLASSO MEnet

AZD-0530 & Erlotinib

Feature size 791 235 171 172

Number of Nodes 607 180 151 153

Number of edges 2111 220 108 113

Average node degree 6.96 2.44 1.43 1.48

Avg Local clustering coeff 0.438 0.363 0.264 0.269

Expected Number of Edges 1368 110 66 70

PPI enrichment p-value 0 0 1.19e-6 1.32e-6

Ratio of Observed to expected edges 1.54 2 1.63 1.61

Pathway Gene Count 6 3 0 0

AZD6244 & PD-0325901

Feature size 1825 214 222 227

Number of Nodes 1301 181 202 207

Number of edges 10832 238 155 163

Average node degree 16.7 2.63 1.53 1.57

Avg Local clustering coeff 0.333 0.361 0.317 0.324

Expected Number of Edges 7022 127 116 122

PPI enrichment p-value 0 0 2.73e-4 2.38e-4

Ratio of Observed to expected edges 1.54 1.87 1.33 1.33

Pathway Gene Count 30 7 4 1

Nutlin-3a & PD-0332991

Feature size 837 222 431 439

Number of Nodes 657 176 374 381

Number of edges 2287 265 512 539

Average node degree 6.96 3.01 2.74 2.83

Avg Local clustering coeff 0.35 0.362 0.337 0.332

Expected Number of Edges 1733 160 426 451

PPI enrichment p-value 0 2.29e-14 3.8e-5 2.9e-5

Ratio of Observed to expected edges 1.32 1.65 1.2 1.2

Pathway Gene Count 14 11 8 8
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Table 5: Prediction performances of competing methods for drug set SC1

Drug Name Fold Feature Selection Number of NMSPE NMAPE
Algorithm Features

AZD-0530

1

strong-SMuRFS 8 1.0239 0.8274
SMuRFS 279 1.0652 0.8568
MLASSO 25 1.3220 0.8793

MEnet 26 1.1345 0.8769

2

strong-SMuRFS 82 1.0070 0.6666
SMuRFS 240 1.0145 0.6677
MLASSO 108 1.0421 0.6761

MEnet 108 1.0332 0.6725

3

strong-SMuRFS 118 1.0197 0.5597
SMuRFS 349 1.0011 0.5579
MLASSO 32 1.0084 0.5539

MEnet 32 1.0115 0.5528

4

strong-SMuRFS 78 0.9984 0.6516
SMuRFS 317 0.9929 0.6512
MLASSO 15 0.9204 0.6658

MEnet 15 0.9217 0.6628

5

strong-SMuRFS 78 0.9031 0.5894
SMuRFS 279 0.8906 0.5850
MLASSO 9 0.9375 0.6123

MEnet 9 0.9308 0.6123

Erlotinib

1

strong-SMuRFS 8 0.8293 0.6472
SMuRFS 17 0.8124 0.6737
MLASSO 25 0.8892 0.7705

MEnet 25 0.8986 0.7773

2

strong-SMuRFS 82 0.7769 0.5658
SMuRFS 240 0.7927 0.5764
MLASSO 108 0.8831 0.5863

MEnet 108 0.8811 0.5927

3

strong-SMuRFS 118 0.8935 0.6567
SMuRFS 349 0.8643 0.6497
MLASSO 32 0.8507 0.6644

MEnet 32 0.8685 0.6672

4

strong-SMuRFS 78 0.8181 0.6365
SMuRFS 317 0.8479 0.6409
MLASSO 15 0.8728 0.6614

MEnet 15 0.8785 0.6648

5

strong-SMuRFS 78 0.8434 0.5193
SMuRFS 279 0.8423 0.5181
MLASSO 9 0.8718 0.5264

MEnet 9 0.8640 0.5285
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Table 6: Prediction performances of competing methods for drug set SC2

Drug Name Fold Feature Selection Number of NMSPE NMAPE
Algorithm Features

AZD-6244

1

strong-SMuRFS 92 0.8298 0.6162
SMuRFS 1308 0.8429 6188
MLASSO 75 0.8390 0.6250

MEnet 76 0.8390 0.6250

2

strong-SMuRFS 55 0.8444 0.6242
SMuRFS 279 0.8983 0.7121
MLASSO 34 0.8813 0.7039

MEnet 32 0.8835 0.7071

3

strong-SMuRFS 64 0.7822 0.7148
SMuRFS 529 0.7953 0.7241
MLASSO 41 0.8196 0.7473

MEnet 43 0.8223 0.7486

4

strong-SMuRFS 27 0.8200 0.6688
SMuRFS 92 0.8061 0.6672
MLASSO 71 0.8574 0.7078

MEnet 71 0.8504 0.7046

5

strong-SMuRFS 81 0.8665 0.6798
SMuRFS 669 0.8711 0.6832
MLASSO 48 0.8909 0.6870

MEnet 50 0.8928 0.6848

PD-305901

1

strong-SMuRFS 92 0.7668 0.6623
SMuRFS 1308 0.7849 0.6747
MLASSO 75 0.8104 0.6803

MEnet 76 0.8174 0.6840

2

strong-SMuRFS 55 0.7261 0.6410
SMuRFS 279 0.7227 0.6485
MLASSO 34 0.7501 0.6612

MEnet 32 0.7534 0.6651

3

strong-SMuRFS 64 0.8530 0.5916
SMuRFS 529 0.8524 0.5960
MLASSO 41 0.8438 0.6209

MEnet 43 0.8469 0.6205

4

strong-SMuRFS 27 0.6788 0.6344
SMuRFS 92 0.6751 0.6322
MLASSO 71 0.6804 0.6406

MEnet 71 0.6834 0.6415

5

strong-SMuRFS 81 0.7867 0.6699
SMuRFS 669 0.7919 0.6741
MLASSO 48 0.8208 0.6905

MEnet 50 0.8210 0.6906
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Pseudocode for SMuRFS algorithm

Inputs: ntree, mtry, alpha, prop.test, data

For i = 1:ntree

{

select mtry covariates without replacement from remaining covariates

select a bootstrp sample of size n_data from the data

grow a conditional inference tree using mtry covariates

find the minimum p-value among the covariates across all nodes

select the covariates with Bonferroni corrected p-values > alpha

from training data obtain a sample of size prop.test * n_data without replacement

conduct a permuation test for each of the selected covariate

delete the covariates with Bonferroni corrected p-value > alpha

}

return(remaining covariates)
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