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APPENDIX

A. Covariate Effects in Discrimination - Simulation Example

To help illustrate the improvement in discrimination ability that results from examining the

distribution of covariate adjusted feature values, we consider a brief simulated example using

bivariate normal feature and covariate data in two groups. Specifically, we assume that our feature

variable and covariate of interest in the ith group (i = 1, 2), denoted by (Yi, X) , are jointly normal

with mean µY,X;1 = (10, 0) in group 1 and µY,X;2 = (8, 0) in group 2, and covariance matrix

ΣY,X =

(
4 1
1 0.3

)
that is common to both groups. In this example, we note that unlike in

Figure 1a of Tu and others (1997), the distribution of covariate X does not depend on group.
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Based on these assumed distributions for (Yi, X), the conditional distribution of Yi given X =

x is normal with mean µY |X;1 = 10 + (10/3)x in group 1 and µY |X;2 = 8 + (10/3)x in group 2,

and variance ΣY |X = 2/3 in each group. As described in Section 4.2 of the main paper, we let

Ỹi = Yi − (10/3)x for a given x denote the adjusted feature variable in the ith group. We then

have that Ỹ1 and Ỹ2 are normal with means 10 and 8, respectively, and a common variance of

2/3. Therefore, we observe that the group mean difference is 2 for both the unadjusted feature

variable Y and the adjusted feature variable Ỹ , but that the variance of Ỹ is smaller than that

of Y . In each group, we used these distributions to simulate 20 observed feature and covariate

values, which we then used to generate 20 adjusted feature values.

In Figure 1, we examine the distributions of the observed feature values (on the center line of

Figure 1(a)) and the adjusted feature values (on the center line of Figure 1(b)) in both groups. In

doing so, we see that even though the group mean difference is the same among the observed and

adjusted feature values, the adjusted feature values have much lower variation, thereby making

it easier to correctly distinguish between the 2 groups.

B. Decrease of Node Impurity Upon Splitting

Proposition 1 Let φ(p1, . . . , pg) be a strictly concave function such that pi > 0 (i = 1, . . . , g) and∑g
i=1 pi = 1. In addition, suppose G is defined as a random variable denoting group membership

for a particular subject with measurement values for a random feature vector Y. For M(t) =

φ (P (1|t), . . . , P (g|t)), where P (G = i|Y ∈ t) = P (i|t),

M(t)− PLM(tL)− PRM(tR) > 0, (B.1)

where PL = P (Y ∈ tL|Y ∈ t) and PR = P (Y ∈ tR|Y ∈ t). Equality in (B.1) holds if and only if

P (i|tL) = P (i|tR) = P (i|t) (i = 1, . . . , g). If Y is continuous, the inequality in (B.1) is strict.
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Proof. Since φ is strictly concave,

PLM(tL) + PRM(tR) = PL φ (P (1|tL), . . . , P (g|tL)) + PR φ (P (1|tR), . . . , P (g|tR))

6 φ (PLP (1|tL) + PRP (1|tR), . . . , PLP (g|tL) + PRP (g|tR)) ,

(B.2)

with equality holding in (B.2) if and only if P (i|tL) = P (i|tR) = P (i|t) (i = 1, . . . , g). Since

PL =
P (Y ∈ tL,Y ∈ t)

P (Y ∈ t)
=
P (Y ∈ tL)

P (Y ∈ t)
(tL ⊂ t) and

PR =
P (Y ∈ tR,Y ∈ t)

P (Y ∈ t)
=
P (Y ∈ tR)

P (Y ∈ t)
(tR ⊂ t),

it follows that

PLP (i|tL) + PRP (i|tR) =
[P (G = i,Y ∈ tL) + P (G = i,Y ∈ tR)]

P (Y ∈ t)

=
P (G = i,Y ∈ t)

P (Y ∈ t)

= P (i|t).

(B.3)

From (B.3), the right hand side of the inequality in (B.2) is equal to φ (P (1|t), . . . , P (g|t)) =

M(t) and, thus, M(t)−PLM(tL)−PRM(tR) > 0. Equality holds if and only if P (i|tL) = P (i|tR)

= P (i|t) (i = 1, . . . , g). If Y is continuous, this condition will never hold and M(t)−PLM(tL)−

PRM(tR) will be positive. �

C. Monotone Invariance Property

Result 1 For a chosen GOS criterion, let T ′ be the classification tree based on the prior

probabilities π1, . . . , πg and the distribution functions FY|1(�), . . . , FY|g(�) (g > 2). Further, let

Z = (Z1, . . . , ZP )′ = (ζ1(Y1), . . . , ζP (YP ))
′ ≡ ζ(Y), where ζp(Yp) is a strictly increasing function

of Yp (p = 1, . . . , P ). Let T ′Z be the classification tree based on the priors π1, . . . , πg and the

distribution functions GZ|1(�), . . . , GZ|g(�). Then, T ′ and T ′Z have the same structure, i.e., the

set of splitting variables for T ′, YT ′ , are related to those of T ′Z, ZT ′
Z

, by ZT ′
Z

= ζ(YT ′) and the

set of cutpoints for T ′, cT ′ , are related to those of T ′Z, cT ′
Z

, by cT ′
Z

= ζ(cT ′).

Proof. Suppose Yν and cν are chosen to split the root node t0 into descendant nodes tL and

tR, such that the selected GOS criterion defined by the split Yν 6 cν is maximized. Recall that
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both the impurity measure based GOS criterion and the twoing criterion can be expressed as

functions of πi (i = 1, . . . , g), P (Y ∈ t0) = 1, P (Yi ∈ tL) = P (Yi,ν 6 cν) = P (ζν(Yi,ν) 6 ζν(cν))

= P (Zi,ν 6 ζν(cν)), and P (Yi ∈ tR) = P (Yi,ν > cν) = P (ζν(Yi,ν) > ζν(cν)) = P (Zi,ν > ζν(cν)).

For example, based on the Gini index MG(t), we seek to minimize

2π1π2

{
FYν |1(cν)FYν |2(cν)

π1FYν |1(cν) + π2FYν |2(cν)
+

F̄Yν |1(cν)F̄Yν |2(cν)

π1F̄Yν |1(cν) + π2F̄Yν |2(cν)

}
= 2π1π2

{
GZν |1 (ζν(cν))GZν |2 (ζν(cν))

π1GZν |1 (ζν(cν)) + π2GZν |2 (ζν(cν))
+

ḠZν |1 (ζν(cν)) ḠZν |2 (ζν(cν))

π1ḠZν |1 (ζν(cν)) + π2ḠZν |2 (ζν(cν))

}

in the case of two groups, where FY |i(c) = P (Yi 6 c), GZ|i(ζ(c)) = P (Zi 6 ζ(c)), F̄Y |i(c) =

1− FY |i(c), and ḠY |i(ζ(c)) = 1−GY |i(ζ(c)). Therefore, if Yν and cν are first chosen to split the

feature space Y in the construction of tree T ′, then Zν and ζν(cν) are first chosen to split Z, the

monotonic transformation of Y, in the construction of tree T ′Z.

Suppose now that we are in a step of the algorithm where there are m descendant nodes or

subsets of {Y : Yν 6 cν} in T ′ and {Z : Zν 6 ζν(cν)} in T ′Z, as well as the m′ descendant subsets

of {Y : Yν > cν} in T ′ and {Z : Zν > ζν(cν)} in T ′Z. By the induction setup, we assume that if

the split Yυ 6 cυ is used for a particular node t in T ′, then the split Zυ 6 ζυ(cυ) is used for the

corresponding node tZ in T ′Z.

Let Yκ and cκ be chosen to split the (m + 1)st descendant node t of {Y : Yν 6 cν}, into

daughter nodes tL and tR, such that the selected GOS criterion defined by the split Yκ 6 cκ is

maximized. Using the same procedure as that used to split t0, we can conclude that if Yκ and

cκ are chosen to split the (m+ 1)st descendant node of {Y : Yν 6 cν} in the construction of tree

T ′, then Zκ and ζκ(cκ) are chosen to split the (m+ 1)st descendant node of {Z : Zν 6 ζν(cν)} in

the construction of tree T ′Z. The same result holds if we wish to split the (m′ + 1)st descendant

node of {Y : Yν > cν}.

Thus, by induction, we have that ZT ′
Z

= ζ(YT ′) and cT ′
Z

= ζ(cT ′). �
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D. Linear Invariance Property

Result 2 Let Yi and Yx,i have CDFs FY|i(�) and FY|x,i(�), respectively, in the ith group.

Suppose that Yx,i is equal in distribution to Yi + ξ(x) (i.e., Yx,i
d
= Yi + ξ(x)), where ξ(x) =

(ξ1(x), . . . , ξP (x))′ is a known function of x that does not depend on group. For a chosen GOS

criterion, let T
′(xa) be the classification tree based on FY|xa,1(�), . . . , FY|xa,g(�) for covariate value

xa and T
′(xb) be the classification tree based on FY|xb,1(�), . . . , FY|xb,g(�) for covariate value xb.

Then, T
′(xa) and T

′(xb) have the same set of splitting variables and the set of cutpoints for T
′(xa),

cT ′(xa) , are related to those of T
′(xb), cT ′(xb) , by cT ′(xb) = cT ′(xa) − ξ(xa) + ξ(xb).

Proof. For a given xa and xb, Yxb = Yxa − ξ(xa) + ξ(xb), regardless of group. In other words,

Yxb = ζ(Yxa) is an increasing linear function of Yxa , i.e., a monotonic transformation of Yxa ,

where ζ(Y) = Y− ξ(xa) + ξ(xb). It now directly follows from the monotone invariance property

(Result 1) that T
′(xa) and T

′(xb) have the same set of splitting variables and that cT ′(xb) =

cT ′(xa) − ξ(xa) + ξ(xb). �

E. COVACT Properties under Non-Identifiable Parameters

Suppose we obtain two LS estimates of Θ, namely, Θ̂a and Θ̂b (Θ̂a 6= Θ̂b), such that ξ(xij ; Θ̂a)

= (ξ1(xij |θ̂1,a), . . . , ξP (xij |θ̂P,a))′ and ξ(xij ; Θ̂b) = (ξ1(xij |θ̂1,b), . . . , ξP (xij |θ̂P,b))′. Consider the

covariate adjusted trees T
′adj(x)
a and T

′adj(x)
b constructed using the two adjusted data sets ˆ̃yij,a =

yij − ξ(xij ; Θ̂a) and ˆ̃yij,b = yij − ξ(xij ; Θ̂b), respectively, where ˆ̃yij,b = ˆ̃yij,a + ξ(xij ; Θ̂a) −

ξ(xij ; Θ̂b). Based on the linear invariance property, the following facts hold: (1) the same set of

features is chosen for T
′adj(x)
a and T

′adj(x)
b ; (2) the split Ỹν,a 6 c̃ν,a in T

′adj(x)
a (ν ∈ (1, 2, . . . , P )) is

equivalent to the split Ỹν,b 6 c̃ν,a+ξν(x|θ̂ν,a)−ξν(x|θ̂ν,b) in T
′adj(x)
b for any given covariate value

x. In other words, the observations that fall in the left descendant node of the split Ỹν,a 6 c̃ν,a

are identical to those that fall in the left descendant node of the split Ỹν,b 6 c̃ν,a + ξν(x|θν,a)−

ξν(x|θν,b) and likewise for the right descendant nodes, so that T
′adj(x)
a and T

′adj(x)
b yield the same
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classification results.

F. Application to Post-Mortem Tissue Data

In our application of COVACT to the biomarker data examined by Sweet and others (2003, 2004,

2007, 2008), we first use SAS PROC REG (SAS Institute Inc., 2014) to adjust each biomarker

for the effects of age at death, gender, PMI, and brain tissue storage time, all of which are

assumed to not depend on diagnostic group. For each subject, storage time varied across the

four studies and, thus, storage time values are averaged across the four studies to obtain a single

storage time for each subject. As a preliminary analysis, we verified the joint normality of the

adjusted biomarker data using the approach of Kankainen and others (2007). We also fit an

analysis of covariance model to each biomarker, controlling for the effects of group, the included

covariates, and the interactions between group and each covariate. For each biomarker, none of the

interactions involving group are significant at the 0.05 level. We then apply COVACT by applying

the traditional approach by Breiman, Friedman, Olshen, and Stone (Breiman and others, 1984)

(denoted as BFOS) to the covariate adjusted biomarkers. For comparative purposes, we also

apply (1) LDA to the covariate adjusted biomarkers and (2) the traditional BFOS approach to

the unadjusted biomarkers. While LDA is implemented using SAS PROC DISCRIM, COVACT

and the unadjusted classification trees are constructed using Salford Systems CART R© software,

based on the Gini index and assuming equal priors. When constructing each tree, 15-fold cross

validation (CV) is used to implement the minimal cost complexity pruning procedure (see BFOS

for more details), which determines the set of feature variables, splits, and misclassification rate

for the final tree. We also used 15-fold CV to compute the misclassification rate for LDA to help

ensure that it could be compared with the misclassification rates for our classification trees.
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G. Simulation Study

G.1 Description

To more extensively compare the classification performances of COVACT and the traditional

BFOS approach, we conduct a simulation study based on data settings that mimic those examined

by Sweet and others. Specifically, we generate feature values using the six biomarkers measured

across these studies and covariate values using the values for subject’s age at death, PMI, and

brain tissue storage time (averaged across all four studies). In conducting our study, we are

interested in evaluating how the degree of correlation between features and covariates impacts

classification accuracy for COVACT relative to traditional classification trees and, thus, only

consider the continuous covariates of subject’s age at death, PMI, and brain tissue storage time.

We conduct our study by implementing seven different simulation scenarios. In scenario 1,

we first generate J xind covariate values from a normal distribution using the sample mean

and pooled sample variance (denoted by Σ̂XX) for subject’s age at death, where we consider

J = 30, 60, 240. Next, we compute the vector of sample means for P = 6 biomarkers in each of

the control and schizophrenia diagnostic groups (denoted by µ̂Y,1 and µ̂Y,2), along with the pooled

sample covariance matrix Σ̂Y Y for all six biomarkers and the vector of pooled sample covariances

Σ̂Y X = (σ̂Y X,1, . . . , σ̂Y X,P )′ between each biomarker and age at death. We then generate J

feature values by simulating each feature observation yind = (yind,1, . . . , yind,P ) from a conditional

normal distribution with mean µ̂Y,i + Σ̂Y Y Σ̂−1XXxind and covariance Σ̂Y Y − Σ̂Y XΣ̂−1XXΣ̂′Y X in

group i (i = 1, 2), where assignment into group i is randomly determined. In addition, we consider

subsets of P = 2, 3, 4 biomarkers, where the biomarkers in each subset have estimated correlations

with age at death that are highest in magnitude. For each P = 2, 3, 4, we simulate J = 30, 60, 240

feature values as we did for P = 6, except that the elements in µ̂Y,i, Σ̂Y Y , and Σ̂Y X now

correspond to the subset of P biomarkers whose correlations with age at death are highest in

magnitude. In scenarios 2 and 3, we use the same simulation scheme as in scenario 1, except that
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we replace age at death with PMI in scenario 2 and brain tissue storage time in scenario 3.

For the remaining scenarios, we base our simulations on subsets of the covariate set of age

at death, PMI, and brain tissue storage time. In scenario 4, we first generate J xind covariate

values from a normal distribution using the sample mean vector and pooled sample covariance

matrix Σ̂XX for age at death and PMI. We also compute the vectors of sample means µ̂Y,1, µ̂Y,2

for P = 6 biomarkers in each diagnostic group, the pooled sample covariance matrix Σ̂Y Y for all

six biomarkers, and the matrix of pooled sample covariances Σ̂Y X between each biomarker and

age at death, and between each biomarker and PMI. These mean and covariance estimates are

then used to generate J yind feature values from a conditional normal distribution as in scenarios

1-3. In addition, we consider subsets of P = 2, 3, 4 biomarkers where the biomarkers in each

subset have the highest R2 values when linearly regressed on age at death and PMI. For each

P = 2, 3, 4, we simulate J feature values as we did for P = 6, except that the elements in µ̂Y,i,

Σ̂Y Y , and Σ̂Y X now correspond to the subset of P biomarkers with the highest R2 values when

linearly regressed on age at death and PMI. In scenarios 5 through 7, we use the same simulation

scheme as in scenario 4, except that we consider the covariate subsets of (age at death, brain

tissue storage time) in scenario 5, (PMI, brain tissue storage time) in scenario 6, and (age at

death, PMI, brain tissue storage time) in scenario 7.

In each scenario, we generate 10,000 data sets, where each contains the J simulated covari-

ate and feature observations xind and yind = (yind,1, . . . , yind,P ) (J = 30, 60, 240;P = 2, 3, 4, 6).

Based on the generation of each feature using a conditional normal distribution, where all covari-

ate effects are linear and do not differ by group, we have that the generated data satisfies the

main assumption of COVACT. Using the Gini index and assuming equal priors, we apply COV-

ACT and the traditional BFOS construction approach to each data set, using the tree package

(Ripley, 2014) in R software version 3.1.2 (R Core Team, 2014).
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G.2 Conclusions

We present the estimated means and standard deviations (SDs) for the observed misclassification

rates (computed across simulations) for COVACT and the traditional BFOS approach across

the seven scenarios and J = 30, 60, 240 values for P = 2, 3 features in Table 1 and for P = 4, 6

features in Table 2. In examining these estimates, we do see that across the different scenarios and

numbers of observations and features considered, the mean misclassification rates for COVACT

and the traditional BFOS approach are fairly close in magnitude. We note that for the data

measured across the four Sweet and others studies, which served as the basis for our simulation

study, the estimated linear regression coefficients for age at death, PMI, and brain tissue storage

time were quite small for each of the six biomarkers. Across the four studies, these coefficients

ranged in magnitude from 0.000002 for age with respect to SP-IR puncta density for BA 41 to

0.01 for age with respect to somal volume for BA 42. Therefore, the relatively close magnitudes of

the misclassification rates for COVACT and the traditional BFOS approach may be explained by

minimal effects of the observed covariates. However, it still remains evident that the means and

SDs for these misclassification rates are generally lower for COVACT relative to the traditional

BFOS approach, regardless of which scenario or which number of observations and features we

consider. We note that this also holds when we examine only control subjects (results in Tables 3

and 4) and schizophrenia subjects (results in Tables 5 and 6) across simulations, thereby indicating

that COVACT is generally less conservative than the traditional BFOS approach.

For each approach, we have that misclassification rates, on average, decrease as the number

of features P increases. In comparing these rates for scenarios 1-3 (adjusting for the effect of one

covariate) with those for scenarios 4-6 (adjusting for the effects of two covariates) and scenario

7 (adjusting for the effects of three covariates), we see, for each J and P , that the decrease

in misclassification rates for COVACT relative to the traditional BFOS approach becomes more

pronounced as we increase the number of covariates. Therefore, it is evident in this study that the
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more covariate effects we account for in applying COVACT, the more of an advantage COVACT

displays with respect to classification accuracy compared with the traditional BFOS approach.

Among all of the scenarios and combinations of J and P considered, the results for scenario

7 when there are J = 30 observations for P = 6 features are most analogous to those for the

Sweet and others biomarker data application. The fact that the mean observed misclassification

rate for this simulation scenario is lower for COVACT helps to lend additional support to the

increase in classification accuracy shown by COVACT over the traditional BFOS approach.
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Fig. 1. Diagrams of feature data y and covariate data x, which are linearly related with slope 10/3. The
circles and triangles on the center line denote the observed feature values y for groups 1 and 2 in the top
diagram (Figure 1(a)) and the adjusted feature values yadj in the bottom diagram (Figure 1(b)). In both
diagrams, the circles and triangles not on the center line denote the joint (x, y) values.
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Table 1. Means and SDs for Observed Misclassification Rates among All Subjects for P = 2, 3

P Scenario Approach J=30 J=120 J=240
Mean SD Mean SD Mean SD

2 1 COVACT 0.17 0.10 0.19 0.06 0.20 0.06
Unadjusted 0.17 0.11 0.19 0.07 0.20 0.07

2 COVACT 0.16 0.10 0.17 0.06 0.18 0.06
Unadjusted 0.19 0.12 0.21 0.08 0.22 0.07

3 COVACT 0.13 0.09 0.14 0.05 0.15 0.05
Unadjusted 0.17 0.10 0.18 0.07 0.20 0.06

4 COVACT 0.16 0.10 0.17 0.06 0.18 0.06
Unadjusted 0.19 0.12 0.21 0.08 0.22 0.08

5 COVACT 0.13 0.08 0.14 0.05 0.15 0.05
Unadjusted 0.17 0.10 0.19 0.07 0.20 0.06

6 COVACT 0.15 0.10 0.16 0.06 0.17 0.06
Unadjusted 0.20 0.12 0.21 0.08 0.22 0.08

7 COVACT 0.15 0.10 0.16 0.06 0.17 0.06
Unadjusted 0.20 0.12 0.21 0.08 0.22 0.07

3 1 COVACT 0.16 0.11 0.18 0.07 0.20 0.06
Unadjusted 0.17 0.11 0.18 0.07 0.20 0.07

2 COVACT 0.13 0.09 0.14 0.06 0.15 0.06
Unadjusted 0.16 0.11 0.17 0.07 0.18 0.06

3 COVACT 0.13 0.09 0.13 0.06 0.14 0.05
Unadjusted 0.16 0.11 0.18 0.07 0.19 0.07

4 COVACT 0.13 0.09 0.14 0.06 0.15 0.05
Unadjusted 0.16 0.11 0.17 0.07 0.18 0.06

5 COVACT 0.12 0.09 0.13 0.05 0.14 0.05
Unadjusted 0.16 0.11 0.17 0.07 0.19 0.06

6 COVACT 0.12 0.09 0.13 0.05 0.14 0.05
Unadjusted 0.16 0.11 0.17 0.07 0.18 0.06

7 COVACT 0.12 0.09 0.12 0.05 0.13 0.05
Unadjusted 0.16 0.11 0.17 0.07 0.19 0.06
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Table 2. Means and SDs for Observed Misclassification Rates among All Subjects for P = 4, 6

P Scenario Approach J=30 J=120 J=240
Mean SD Mean SD Mean SD

4 1 COVACT 0.15 0.11 0.16 0.07 0.18 0.06
Unadjusted 0.15 0.11 0.16 0.07 0.18 0.07

2 COVACT 0.14 0.10 0.14 0.06 0.15 0.06
Unadjusted 0.16 0.12 0.17 0.07 0.18 0.06

3 COVACT 0.13 0.10 0.13 0.06 0.14 0.05
Unadjusted 0.16 0.12 0.17 0.07 0.19 0.07

4 COVACT 0.13 0.10 0.14 0.06 0.15 0.06
Unadjusted 0.16 0.12 0.17 0.07 0.18 0.06

5 COVACT 0.12 0.09 0.13 0.06 0.14 0.05
Unadjusted 0.15 0.11 0.17 0.07 0.18 0.07

6 COVACT 0.11 0.08 0.11 0.05 0.12 0.05
Unadjusted 0.15 0.11 0.15 0.07 0.17 0.06

7 COVACT 0.11 0.08 0.11 0.05 0.12 0.05
Unadjusted 0.14 0.11 0.16 0.07 0.17 0.06

6 1 COVACT 0.13 0.10 0.14 0.07 0.16 0.06
Unadjusted 0.14 0.11 0.15 0.07 0.16 0.06

2 COVACT 0.12 0.10 0.13 0.06 0.14 0.06
Unadjusted 0.14 0.11 0.15 0.07 0.16 0.06

3 COVACT 0.12 0.09 0.11 0.06 0.12 0.05
Unadjusted 0.14 0.11 0.15 0.07 0.16 0.06

4 COVACT 0.12 0.10 0.13 0.06 0.14 0.06
Unadjusted 0.14 0.11 0.15 0.07 0.16 0.06

5 COVACT 0.11 0.09 0.11 0.06 0.12 0.05
Unadjusted 0.14 0.11 0.15 0.07 0.16 0.06

6 COVACT 0.11 0.09 0.11 0.06 0.12 0.05
Unadjusted 0.14 0.11 0.15 0.07 0.16 0.06

7 COVACT 0.11 0.09 0.11 0.06 0.11 0.05
Unadjusted 0.14 0.11 0.15 0.07 0.16 0.06
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Table 3. Means and SDs for Observed Misclassification Rates among Control Subjects for P = 2, 3

P Scenario Approach J=30 J=120 J=240
Mean SD Mean SD Mean SD

2 1 COVACT 0.15 0.13 0.19 0.11 0.20 0.10
Unadjusted 0.15 0.14 0.19 0.11 0.21 0.10

2 COVACT 0.15 0.13 0.17 0.10 0.18 0.09
Unadjusted 0.17 0.15 0.21 0.13 0.22 0.11

3 COVACT 0.13 0.12 0.14 0.09 0.15 0.07
Unadjusted 0.15 0.14 0.19 0.11 0.20 0.10

4 COVACT 0.14 0.13 0.17 0.10 0.18 0.09
Unadjusted 0.17 0.15 0.21 0.13 0.22 0.11

5 COVACT 0.13 0.12 0.14 0.08 0.15 0.07
Unadjusted 0.16 0.14 0.19 0.11 0.20 0.10

6 COVACT 0.14 0.13 0.16 0.10 0.17 0.09
Unadjusted 0.17 0.15 0.21 0.13 0.22 0.11

7 COVACT 0.14 0.12 0.16 0.09 0.17 0.08
Unadjusted 0.17 0.15 0.21 0.13 0.22 0.11

3 1 COVACT 0.14 0.13 0.18 0.11 0.20 0.10
Unadjusted 0.15 0.13 0.18 0.11 0.20 0.10

2 COVACT 0.12 0.12 0.14 0.09 0.15 0.08
Unadjusted 0.14 0.13 0.17 0.10 0.18 0.09

3 COVACT 0.12 0.12 0.14 0.09 0.15 0.07
Unadjusted 0.14 0.13 0.18 0.11 0.19 0.09

4 COVACT 0.12 0.12 0.14 0.09 0.15 0.08
Unadjusted 0.14 0.13 0.17 0.10 0.19 0.09

5 COVACT 0.11 0.11 0.13 0.08 0.14 0.07
Unadjusted 0.14 0.13 0.17 0.11 0.19 0.09

6 COVACT 0.12 0.11 0.13 0.08 0.14 0.07
Unadjusted 0.14 0.13 0.17 0.10 0.18 0.09

7 COVACT 0.11 0.11 0.12 0.08 0.13 0.07
Unadjusted 0.14 0.13 0.17 0.11 0.19 0.09
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Table 4. Means and SDs for Observed Misclassification Rates among Control Subjects for P = 4, 6

P Scenario Approach J=30 J=120 J=240
Mean SD Mean SD Mean SD

4 1 COVACT 0.13 0.12 0.16 0.10 0.18 0.09
Unadjusted 0.13 0.13 0.17 0.11 0.18 0.09

2 COVACT 0.12 0.12 0.14 0.09 0.15 0.08
Unadjusted 0.14 0.13 0.17 0.11 0.18 0.09

3 COVACT 0.12 0.12 0.14 0.09 0.15 0.08
Unadjusted 0.14 0.13 0.17 0.11 0.19 0.10

4 COVACT 0.12 0.12 0.14 0.09 0.15 0.08
Unadjusted 0.14 0.13 0.17 0.11 0.19 0.09

5 COVACT 0.11 0.11 0.13 0.08 0.14 0.07
Unadjusted 0.13 0.13 0.17 0.10 0.19 0.09

6 COVACT 0.10 0.10 0.11 0.07 0.12 0.06
Unadjusted 0.13 0.12 0.16 0.10 0.17 0.09

7 COVACT 0.10 0.11 0.11 0.07 0.12 0.06
Unadjusted 0.13 0.12 0.16 0.10 0.17 0.09

6 1 COVACT 0.12 0.12 0.15 0.10 0.16 0.08
Unadjusted 0.12 0.12 0.15 0.10 0.17 0.09

2 COVACT 0.11 0.11 0.13 0.09 0.14 0.08
Unadjusted 0.12 0.12 0.15 0.10 0.16 0.09

3 COVACT 0.10 0.11 0.11 0.08 0.12 0.07
Unadjusted 0.12 0.12 0.15 0.10 0.16 0.09

4 COVACT 0.11 0.11 0.13 0.09 0.14 0.08
Unadjusted 0.12 0.12 0.15 0.10 0.16 0.08

5 COVACT 0.10 0.10 0.11 0.08 0.12 0.07
Unadjusted 0.12 0.12 0.15 0.10 0.16 0.08

6 COVACT 0.10 0.11 0.11 0.08 0.12 0.07
Unadjusted 0.12 0.12 0.15 0.10 0.16 0.09

7 COVACT 0.10 0.10 0.11 0.08 0.12 0.07
Unadjusted 0.12 0.12 0.15 0.10 0.16 0.09



REFERENCES 17

Table 5. Means and SDs for Observed Misclassification Rates among Schizophrenia Subjects for P = 2, 3

P Scenario Approach J=30 J=120 J=240
Mean SD Mean SD Mean SD

2 1 COVACT 0.15 0.14 0.19 0.11 0.20 0.10
Unadjusted 0.16 0.14 0.19 0.11 0.21 0.10

2 COVACT 0.14 0.13 0.17 0.10 0.18 0.09
Unadjusted 0.17 0.14 0.21 0.12 0.23 0.11

3 COVACT 0.13 0.12 0.14 0.08 0.15 0.07
Unadjusted 0.15 0.14 0.19 0.11 0.20 0.10

4 COVACT 0.14 0.13 0.17 0.10 0.18 0.09
Unadjusted 0.17 0.15 0.21 0.12 0.22 0.11

5 COVACT 0.12 0.11 0.14 0.09 0.15 0.07
Unadjusted 0.15 0.14 0.19 0.11 0.20 0.10

6 COVACT 0.14 0.12 0.17 0.10 0.17 0.09
Unadjusted 0.17 0.15 0.21 0.12 0.22 0.12

7 COVACT 0.13 0.12 0.16 0.09 0.17 0.08
Unadjusted 0.17 0.14 0.21 0.13 0.22 0.11

3 1 COVACT 0.14 0.13 0.18 0.11 0.20 0.10
Unadjusted 0.15 0.13 0.18 0.11 0.20 0.10

2 COVACT 0.12 0.12 0.14 0.09 0.15 0.08
Unadjusted 0.14 0.13 0.17 0.10 0.18 0.09

3 COVACT 0.12 0.12 0.14 0.08 0.15 0.07
Unadjusted 0.15 0.13 0.18 0.11 0.19 0.10

4 COVACT 0.12 0.12 0.14 0.09 0.15 0.08
Unadjusted 0.14 0.13 0.17 0.10 0.18 0.09

5 COVACT 0.11 0.11 0.13 0.08 0.14 0.07
Unadjusted 0.14 0.13 0.17 0.11 0.19 0.09

6 COVACT 0.12 0.11 0.13 0.08 0.14 0.07
Unadjusted 0.14 0.13 0.17 0.10 0.19 0.09

7 COVACT 0.11 0.11 0.13 0.08 0.13 0.07
Unadjusted 0.14 0.13 0.17 0.11 0.19 0.09
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Table 6. Means and SDs for Observed Misclassification Rates among Schizophrenia Subjects for P = 4, 6

P Scenario Approach J=30 J=120 J=240
Mean SD Mean SD Mean SD

4 1 COVACT 0.13 0.12 0.16 0.10 0.18 0.09
Unadjusted 0.13 0.13 0.16 0.10 0.18 0.09

2 COVACT 0.12 0.12 0.14 0.09 0.16 0.08
Unadjusted 0.14 0.13 0.17 0.11 0.19 0.09

3 COVACT 0.12 0.12 0.13 0.09 0.15 0.08
Unadjusted 0.14 0.13 0.17 0.11 0.19 0.10

4 COVACT 0.12 0.12 0.14 0.09 0.15 0.08
Unadjusted 0.14 0.13 0.17 0.10 0.19 0.09

5 COVACT 0.11 0.11 0.13 0.08 0.14 0.07
Unadjusted 0.13 0.13 0.17 0.10 0.19 0.09

6 COVACT 0.10 0.10 0.11 0.08 0.12 0.06
Unadjusted 0.13 0.12 0.16 0.10 0.17 0.09

7 COVACT 0.10 0.10 0.11 0.08 0.12 0.06
Unadjusted 0.13 0.12 0.16 0.10 0.17 0.09

6 1 COVACT 0.12 0.12 0.15 0.10 0.16 0.09
Unadjusted 0.12 0.12 0.15 0.10 0.16 0.09

2 COVACT 0.11 0.11 0.13 0.09 0.14 0.08
Unadjusted 0.12 0.12 0.15 0.10 0.16 0.09

3 COVACT 0.11 0.11 0.11 0.08 0.12 0.07
Unadjusted 0.12 0.12 0.15 0.10 0.16 0.09

4 COVACT 0.11 0.11 0.13 0.09 0.14 0.08
Unadjusted 0.12 0.12 0.15 0.10 0.17 0.09

5 COVACT 0.10 0.10 0.11 0.08 0.12 0.07
Unadjusted 0.12 0.12 0.15 0.10 0.16 0.09

6 COVACT 0.10 0.10 0.11 0.08 0.12 0.07
Unadjusted 0.12 0.12 0.15 0.10 0.16 0.09

7 COVACT 0.10 0.10 0.11 0.08 0.11 0.06
Unadjusted 0.12 0.12 0.15 0.10 0.17 0.09
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