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Supplementary Materials: Proofs of the Main Results

S1 Verification of the weight function vi(t) for the length-

biased sampling scheme

Here, we provide the justification of (11) which is introduced in Section 3. Observe that

fT̃ ,∆(t,∆ = 1 | A,Z) = P{T̃ ∈ (t, t+ dt),∆ = 1 | A,Z}/dt

= I(t ≥ A)fA,V (A, t− A | Z)Sc(t− A | Z)

= I(t ≥ A)f(t | Z)Sc(t− A | Z)× 1

µ(Z)

= I(t ≥ A)P (T ∗ ∈ (t, t+ dt), C∗ > t | Z)/dt× 1

µ(Z)

= I(t ≥ A)fT̃ ∗,∆∗(t,∆ = 1 | Z)× 1

µ(Z)
,

fT̃ ,∆(t,∆ = 0 | A,Z) = P (T̃ ∈ (t, t+ dt),∆ = 0 | A,Z)/dt

= I(t ≥ A)

∫ ∞
t

fA,V (A, s− A|Z)ds× gc(t− A|Z)

= I(t ≥ A)

∫ ∞
t

f(s | Z)ds× gc(t− A | Z)
1

µ(Z)

= I(t ≥ A)P{T ∗ > t,C∗ ∈ (t, t+ dt) | Z}/dt× 1

µ(Z)

= I(t ≥ A)fT̃ ∗,∆∗(t,∆ = 0 | Z)× 1

µ(Z)
.
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It follows that that

vi(t) =
fT̃ ∗,∆∗(T̃i,∆i | Zi)

fT̃ ,∆(T̃i,∆i | Zi)
×

fT̃ ,∆(t, 1 | Zi)

fT̃ ∗,∆∗(t, 1 | Zi)
= I(Ai ≤ t).

S2 Proof of Theorems 1 and 2

For the biased samplings introduced in Sections 2.2 and 3, let fT̃ (t | Z) be the conditional

density function of T̃ , i.e., fT̃ (t | Z) =
∑

δ∈{0,1} fT̃ ,∆(t, δ | Z), where fT̃ ,∆(t, δ | Z) is defined

in (8) of Section 2.2. For a vector a, let a⊗2 denote aa>, and ‖a‖ denote the Euclidean norm

of a. For b ∈ Rp, define

m(b) = E
{

ZN(eZ
>b)
}
,

m̃(b) = E
{

Zv(eZ
>b)Y (eZ

>b)
}
,

mn(b) =
1

n

n∑
i=1

{
ZiNi(e

Z>i b)
}
,

m̃n(b) =
1

n

n∑
i=1

{
Zivi(e

Z>i b)Yi(e
Z>i b)

}
,

B(b) = E
{

Z⊗2fT̃ ,∆(eZ
>b, 1 | Z) exp(Z>b)

}
,

J(b) = −E
{

Z⊗2v(eZ
>b)fT̃ (eZ

>b | Z) exp(Z>b)
}
.

For d > 0, define the set B(d) as

B(d) =

{
b ∈ Rp : inf

τ∈(0,τu]
‖m(b)−m(β0(τ))‖ ≤ d

}
,

where β0(τ) is the true parameter value, τ ∈ (0, τu]; and τu satisfies Condition C4 below.
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Furthermore, consider the setting in Section 3.2. For b ∈ Rp, define

m∗(b) = E
{

Z⊗ψ(T̃ )N(eZ
>b)
}
,

m̃∗(b) = E
{

Z⊗ψ(eZ
>b)v(eZ

>b)Y (eZ
>b)
}
,

m∗n(b) =
1

n

n∑
i=1

Zi ⊗ψ(T̃i)Ni(e
Z>i b),

m̃∗n(b) =
1

n

n∑
i=1

Zi ⊗ψ(eZ
>
i b)vi(e

Z>i b)Yi(e
Z>i b),

B∗(b) = E
{

[Z⊗ψ(eZ
>b)]Z>fT̃ ,∆(eZ

>b, 1 | Z) exp(Z>b)
}
,

J∗(b) = −E
{

[Z⊗ψ(eZ
>b)]Z>v(eZ

>b)fT̃ (eZ
>b | Z) exp(Z>b)

}
.

We assume the following conditions for theoretical derivation.

C1: Z is uniformly bounded, i.e., supi ‖Zi‖ <∞ and the matrix E(Z⊗2) is positive definite.

C2: m{β(τ)} is a Lipschitz continuous function of τ ∈ (0, τu], and fT̃ (t | z) and fT̃ ,∆(t, 1 | z)

are bounded above and continuous uniformly in t and z.

C3: There exists d0 > 0 such that for b ∈ B(d0) and any Z, fT̃ ,∆(eZ
>b, 1 | Z) > 0 and

‖J(b)B(b)−1‖ is uniformly bounded.

C4: infτ∈[τl,τu] eigmin B{β0(τ)} > 0 for any τl ∈ (0, τu], where eigmin(·) denotes the mini-

mum eigenvalue of a matrix.

C5: The class of weight functions {(Z,A, T̃ ,∆)→ v(eZ
>b, A, T̃ ,∆, Z); b ∈ Rd} is Glivenko-

Cantelli and uniformly bounded; and {(Z,A, T̃ ,∆) → v(eZ
>b, A, T̃ ,∆, Z); b ∈ B(d0)}

belongs to a Donsker class.

C6: The weight function ψ(t) is positive, bounded and differentiable; {(Z,A, T̃ ,∆) →

ψ(eZ
>b, A, T̃ ,∆, Z); b ∈ Rd} is Glivenko-Cantelli and {(Z,A, T̃ ,∆)→ ψ(eZ

>b, A, T̃ ,∆, Z);

b ∈ B(d0)} belongs to a Donsker class. MatrixW (β0, τ) is nonsingular, inft∈[τl,τ ] eigmin B∗{β0(t)}>

3



W (β0, τ)−1B∗{β0(t)} > 0 for any τl ∈ (0, τ ] and ‖J∗(b){B∗(b)>W (β0, τ)−1B∗(b)}−1‖

is uniformly bounded for b ∈ B(d0).

Conditions C1–C4 are mild assumptions concerning the covariates Z, the underlying

regression quantile parameter process β(τ), and the density functions associated with the

observed data (T̃ ,∆). The boundedness assumption of covariates in C1 are often assumed

in survival models although it can be further relaxed with extra technical complexity. For

Conditions C2 and C3, the boundedness and uniform continuity assumption of fT̃ (t | z) and

fT̃ ,∆(t, 1 | z) is reasonable in many biased sampling problems. For instance, it is satisfied

for case-cohort study if the density functions of survival and censoring times are bounded

and uniformly continuous. Similarly, for the length-biased sampling introduced in Section 3,

this is satisfied if the density functions of T and C̃ are bounded and uniformly continuous.

Under these conditions, it can been verified that m(b) and m̃(b) are differentiable and

B(b) = ∂m(b)/∂b and J(b) = ∂m̃(b)/∂b are well defined. As in Peng and Huang (2008),

Condition C4 is assumed to ensure the identifiability of β0(τ). The regularity of the weight

function assumed in Condition C5 is satisfied for all the sampling schemes introduced in

Section 3. In particular, for the case-cohort type designs (Examples 3 and 4), the weight

function v does not depend on β and satisfies C5. For length-biased sampling with weight

function in the form (14), {v(eZ
>b),b ∈ B(d0)} is a VC class, which implies C5 (Theorems

2.6.7 and 2.5.2 in van der Vaart and Wellner, 1996). Condition C6 is similar as conditions

C3-C5 and is satisfied for many weight functions. It is assumed to ensure the asymptotic

normality of the efficient estimator.

Proof of Theorem 1 The proof follows closely that in Peng and Huang (2008) and we

only present the key steps. We should note that, however, their results cannot be directly

applied due to the associated random weight functions in the estimating equation. Let

α0(τ) = m{β0(τ)}, α̂(τ) = m{β̂(τ)}, and A(d) = {m(b) : b ∈ B(d)}. Following the

argument in Peng and Huang (2008), m is a one-to-one mapping from B(d0) to A(d0). There
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exists an inverse function κ : B(d0)→ A(d0) such that κ{m(b)} = b, for any b ∈ B(d0).

Uniform Convergence Let ξn,k = mn{β̂(τk)}−
∫ τk

0
m̃n{β̂(u)}dH(u). According to the esti-

mating equation taking the general form of (10), we have supk ‖ξn,k‖ = O(1) supi ‖Zi‖/n =

O(n−1). From m{β0(τk)} −
∫ τk

0
m̃{β0(s)}dH(s) = 0, we have the following decomposition:

m{β̂(τk)} −m{β0(τk)}

= −
[
mn{β̂(τk)} −m{β̂(τk)}

]
+

k−1∑
j=0

∫ τj+1

τj

[
m̃{β̂(s)} − m̃{β0(s)}

]
dH(s)

+

∫ τk

0

[
m̃n{β̂(s)} − m̃{β̂(s)}

]
dH(s) + ξn,k. (S1)

Under the condition that Z is uniformly bounded, {ZiN(eZ
>
i b); b ∈ Rp} and {ZiYi(e

Z>i b); b ∈

Rp} are Glivenko-Cantelli. By Condition C5 and Theorem 3 in van der Vaart and Wellner

(2000), {Zivi(e
Z>i b)Yi(e

Z>i b); b ∈ Rp} is also Glivenko-Cantelli. Then, we have the following

results: supb∈Rp ‖m(b) − mn(b)‖ → 0 and supb∈Rp ‖m̃(b) − m̃n(b)‖ → 0 almost surely.

This implies that the first and third terms in (S1) are ignorable. Denote cn,0 := supk ‖ −

[mn{β̂(τk)}−m{β̂(τk)}]+
∫ τk

0
[m̃n{β̂(s)}−m̃{β̂(s)}]dH(s)‖, and it follows that cn,0 = op(1).

Under condition C2, there exists c1 such that ‖m{β0(τ)} −m{β0(τ ′)}‖ < c1|τ − τ ′| for

any τ, τ ′ ∈ (0, τu]. For 0 = τ0 ≤ τ < τ1, since m{β̂(0)} = 0, we have supτ0≤τ<τ1 ‖m{β̂(τ)} −

m{β0(τ)}‖ = supτ0≤τ<τ1 ‖m{β0(τ)}‖ ≤ bn,0 := c1‖SL(n)‖. Then for large enough n, we know

bn,0 < d0 and β̂n(τ) ∈ B(d0) for τ ∈ [τ0, τ1). Thus, we can write supτ0≤τ<τ1 ‖m̃{β̂(τ)} −

m̃{β0(τ)}‖ = supτ0≤τ<τ1 ‖m̃[κ{α̂(τ)}] − m̃[κ{α(τ)}]‖. Under Condition C3, there exists

α̃(τ) between α0(τ) and α̂(τ) such that

sup
τ0≤τ<τ1

‖m̃{β̂(τ)}−m̃{β0(τ)}‖ = sup
τ0≤τ<τ1

‖J [κ{α̃(τ)}]B[κ{α̃(τ)}]−1{α̃(τ)−α0(τ)}‖ ≤ c2bn,0,
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where c2 is some constant. Next consider τ1 ≤ τ < τ2. We have

sup
τ1≤τ<τ2

‖m{β̂(τ)} −m{β0(τ)}‖ ≤ ‖m{β̂(τ1)} −m{β0(τ1)}‖+ sup
τ1≤τ<τ2

‖m{β0(τ1)} −m{β0(τ)}‖.

We know supτ1≤τ<τ2 ‖m{β0(τ1)}−m{β0(τ)}‖ ≤ c1‖SL(n)‖. Further from the decomposition

(S1) that gives an upper bound for ‖m{β̂(τ1)} −m{β0(τ1)}‖, we have:

sup
τ1≤τ<τ2

‖m{β̂(τ)} −m{β0(τ)}‖ ≤ bn,1 := cn,0 + c3n
−1 + c2bn,0(1− τu)−1SL(n) + c1‖SL(n)‖,

where c3 is some big constant. Note that b1,n → 0 and it is smaller than d0 for large enough

n. This implies β̂n(τ) ∈ B(d0) for τ ∈ [τ1, τ2). Then an induction argument similarly to the

Proof of Theorem 1 in Peng and Huang (2008) gives

sup
τk≤τ≤τk+1

‖m{β̂(τ)}−m{β0(τ)}‖ ≤ bn,k := cn,0 +c3n
−1 +c2

k−1∑
i=1

bn,i(1−τu)−1SL(n) +c1‖SL(n)‖.

This implies that supτ0≤τ≤τu ‖m{β̂(τ)} − m{β0(τ)}‖ p−→ 0 and for τ0 ≤ τ ≤ τu and large

enough n, β̂(τ) ∈ B(d0). Thus supτ ‖α̂(τ) − α0(τ)‖ = supτ ‖m{β̂(τ)} − m{β0(τ)}‖ p−→ 0.

Take Taylor’s expansion of m{β̂(τ)} around α0(τ), and we have

sup
τ∈[τl,τu]

‖β̂(τ)− β0(τ)‖ ≤ sup
τ∈[τl,τu]

‖B{β0(τ)}−1{α̂(τ)−α0(τ)}‖+ sup
τ∈[τl,τu]

‖ε∗n(τ)‖,

where ε∗n(τ) is the remainder term of the Taylor expansion and supτ∈[τl,τu] ‖ε∗n(τ)‖ → 0. By

Condition C4, we have supτ∈[τl,τu] ‖B{β0(τ)}−1{α̂(τ)−α0(τ)}‖ = O{α̂(τ)−α0(τ)} and this

implies the uniform consistency.
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Weak Convergence Following Lemma B.1 of Peng and Huang (2008), we have

sup
τ∈(0,τu]

∥∥∥∥n−1/2

n∑
i=1

Zi

{
Ni(e

Z>i β̂(τ))−Ni(e
Z>i β0(τ))

}
− n1/2

[
m{β̂(τ)} −m{β0(τ)}

]∥∥∥∥ = op(1)

(S2)

and

sup
τ∈(0,τu]

∥∥∥∥n−1/2

n∑
i=1

Zi

{
I
(
T̃i ≥ eZ

>
i β̂(τ)

)
− I
(
T̃i ≥ eZ

>
i β0(τ)

)}
− n1/2

[
m̃{β̂(τ)} − m̃{β0(τ)}

]∥∥∥∥ = op(1). (S3)

In addition, for the grid size chosen in Theorem 1, Sn(β̂, τ) = op(1) uniformly in τ ∈ (0, τu].

Then, the following equations hold uniformly in τ ∈ (0, τu],

−Sn(β0, τ) =n1/2
[
m{β̂(τ)} −m{β0(τ)}

]
−
∫ τ

0

n1/2
[
m̃{β̂(u)} − m̃{β0(u)}

]
dH(u) + op(1)

=n1/2
[
m{β̂(τ)} −m{β0(τ)}

]
−
∫ τ

0

n1/2
[
J{β0(u)}B{β0(u)}−1 + op(1)

] [
m{β̂(u)} −m{β0(u)}

]
dH(u) + op(1).

A discrete version of the above equation

−Sn(β0, τ) =n1/2
[
mn{β̂(τ)} −mn{β0(τ)}

]
−
∫ τ

0

n1/2
[
m̃n{β̂(u)} − m̃n{β0(u)}

]
dH(u) + op(1)
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leads to the following recursive formula:

− {Sn(β0, τk)− Sn(β0, τk−1)}

= n1/2
[
mn{β̂(τk)} −mn{β0(τk)}

]
− n1/2

[
m̃n{β̂(τk−1)} − m̃n{β0(τk−1)}

]
{H(τk)−H(τk−1)}

− n1/2
{
mn(β̂(τk−1))−mn(β0(τk−1))

}
= B{β0(τk)}n1/2{β̂(τk)− β0(τk)}

− [B{β0(τk−1)}+ J{β0(τk−1)}{H(τk)−H(τk−1)}]n1/2{β̂(τk−1)− β0(τk−1)}+ op(1).

The above recursive equation gives the following approximation result

B{β0(τk)}n1/2{β̂(τk)− β0(τk)}

= − {Sn(β0, τk)− Sn(β0, τk−1)}

− [I + J{β0(τk−1)}B−1{β0(τk−1)}{H(τk)−H(τk−1)}]× {Sn(β0, τk−1)− Sn(β0, τk−2)}

− · · ·

−
k∏

h=2

[I + J{β0(τh−1)}B−1{β0(τh−1)}{H(τh)−H(τh−1)}]× {Sn(β0, τ1)− Sn(β0, τ0)}

+ op(1). (S4)

Using the product integration theory (Gill and Johansen, 1990; Andersen et al., 1993 II.6),

we can write the above decomposition as

n1/2[m{β̂(τ)} −m{β0(τ)}] = φ{−Sn(β0, τ)}+ op(1), (S5)

where φ is functional defined as follows. For any g ∈ G = {g : [0, τu]→ Rp, g is left-continuous

with right limit, g(0) = 0} and product integral I(s, t) =πu∈(s,t][Ip+J{β0(u)}B{β0(u)}−1]dH(u)
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with π the product integral notation, φ(g)(τ) is defined as

φ(g)(τ) =

∫ τ

0

I(s, τ)dg(s). (S6)

Note that {ZiNi(e
Ziβ0(τ)), τ ∈ [τl, τu]} is a Donsker class and uniformly bounded. From

Condition C5, the class {Zivi(e
Z>i β0(s))Yi(e

Z>i β0(s)), s ∈ [τl, τu]} is also Donsker (see Example

2.10.8 in Section 2.10 of van der Vaart and Wellner, 1996). Since
∫ τ

0
vi(e

Z>i β0(s))Yi(e
Z>i β0(s))dH(s)

is Libschitz in τ , from the permanence properties of the Lipschitz transformation of the

Donsker class (Theorem 2.10.6, van der Vaart and Wellner, 1996), we can show that

{
ZiNi(e

Ziβ0(τ))− Zi

∫ τ

0

vi(e
Z>i β0(s))Yi(e

Z>i β0(s))dH(s), τ ∈ [τl, τu]

}

is a Donsker class. Then the Donsker theorem implies that Sn(β0, τ) converges weakly to a

Gaussian process U(τ) living on τ ∈ [τl, τu] with mean 0 and covariance matrix Σ(s, t), where

Σ(s, t) = E{ui(s)ui(t)>} with ui(τ) = ZiNi(e
Ziβ0(τ)) − Zi

∫ τ
0
vi(e

Z>i β0(s))Yi(e
Z>i β0(s))dH(s).

Furthermore, since φ is a linear operator, φ{−Sn(β0, τ)} converges weakly to φ{−U(τ)} and

φ{−U(τ)} is also a Gaussian process (Römisch, 2005). From (S5), apply Taylor’s expansion

and we have

B{β0(τ)}n1/2{β̂(τ)− β0(τ)} = φ{−Sn(β0, τ)}+ op(1).

Then n1/2{β̂(τ) − β0(τ)} converges weakly to the Gaussian process B{β0(τ)}−1φ{−U(τ)}

with covariance matrix B{β0(τ)}−1Σ∗[B{β0(τ)}−1]>, where Σ∗(τ) denotes the limiting co-

variance matrix of φ{−Sn(β0, τ)}.

Proof of Theorem 2 Next we prove the weak convergence of
√
n{β̂eff(τ)−β0(τ)}. From

the above definitions, we can write η(β, τ) and η∗(β, τk) in (18) and (20) as

η(β, τ) = n1/2m∗n{β(τ)} −
∫ τ

0

n1/2m̃∗n{β(u)}dH(u)
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and

η∗(β, τk) = n1/2m∗n{β(τk)} − n1/2

k−1∑
j=0

m̃∗n{β̂eff(τj)}{H(τj+1)−H(τj)}.

By the proposed estimation method for β̂eff(τ), the sequential estimator β̂(τk), 1 ≤ k ≤ L∗,

minimizes

n−1η∗(β, τk)
>W (β̂int, τ)−1η∗(β, τk).

Since β̂int is taken as a consistent estimator of β0, it can be shown that W (β̂int, τ)−1 →

W (β0, τ)−1 in probability. Further note that

B∗(b) =
∂m∗(b)

∂b>
and J∗(b) =

∂m̃∗(b)

∂b>
.

As in the proof of Theorem 1, m∗n(b) and m̃∗n(b) converge to m∗(b) and m̃∗(b) uniformly in

probability; then the sequential estimators β̂eff(τk) satisfy n−1/2B∗{β̂eff(τk)}>W (β0, τ)−1 ×

η∗(β̂eff, τk) = op(1). Then from a similar argument as in the proof of Theorem 1 for the

consistency of β̂(·), we have that β̂eff(t) is uniformly consistent in 0 ≤ t ≤ τ . Similarly as

Lemma B.1 of Peng and Huang (2008), we have for β̃(t) such that supt ‖β̃(t)− β0(t)‖ → 0

in probability,

sup
t∈(0,τ ]

‖[m∗n{β̃(t)} −m∗n{β0(t)}]− [m∗{β̃(t)} −m∗{β0(t)}]‖ = op(−n1/2)

and

sup
t∈(0,τ ]

‖[m̃∗n{β̃(t)} − m̃∗n{β0(t)}]− [m̃∗{β̃(t)} − m̃∗{β0(t)}]‖ = op(n
−1/2).

Then we can write

η∗(β̃, τk) = n1/2B∗{β0(τk)}{β̃(τk)− β0(τk)}+ op(1)

+n1/2m∗n{β0(τk)} − n1/2

k−1∑
j=0

m̃∗n{β̂eff(τj)}{H(τj+1)−H(τj)}.
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This implies the sequential estimator β̂eff(τk) satisfies

B∗{β0(τk)}>W (β0, τ)−1η∗(β̂eff, τk) = op(1),

uniformly in probability, and furthermore, uniformly in t, B∗{β0(t)}W (β0, τ)−1η(β̂eff, t) =

op(1). This equation plays a similar role in the current proof as that of the unweighted

estimating equation Sn(β̂, t) = op(1) in the proof of Theorem 1 for the weak convergence of

β̂. The weak convergence of β̂eff then follows from a similar argument.

S3 Resampling method

An alternative Resampling method A commonly used resampling method is the perturbation-

based approach proposed by Jin et al. (2003) for the AFT model; its modified version for

the quantile regression was adopted in Peng and Huang (2008) under unbiased sampling.

This approach can be easily extended to the biased sampling case. In particular, consider

the following stochastic perturbation of the observed estimating equations

S̃n(β, τ) = n−1/2

n∑
i=1

ζiZi

{
Ni(e

Z>i β(τ))−
∫ τ

0

vi(e
Z>i β(s))Yi(e

Z>i β(s))dH(s)

}
= 0. (S7)

where ζi’s are i.i.d. from a known nonnegative distribution with mean 1 and variance 1,

such as the exponential distribution with rate 1. The above estimation can be implemented

in the same fashion as discussed in Section 2.3. Conditional on the observed data, we

independently generate the variates (ζ1, . . . , ζn) Mb times, with Mb being a big number, and

obtain the corresponding Mb estimates β̂
∗
(τ) by solving (S7).

The resampling method described above is consistent. Following the proof of Theorem 3

below, conditional on {Zi,∆i, T̃i}ni=1, we have S̃n(β̂, τ) has the same asymptotic distribution
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as Sn(β0, τ) in probability; moreover, for τ uniformly in (0, τu], we have

n1/2{β∗(τ)− β̂(τ)} = B(β0(τ))−1φ{−S̃n(β̂, τ)}+ op(1), (S8)

where function φ is defined as in (S6). Therefore, conditional on the observed data, n1/2{β̂
∗
(τ)−

β̂(τ)} converges weakly to the same limiting process of n1/2{β̂(τ) − β0(τ)} for τ ∈ [τ`, τu],

where τ` ∈ (0, τu).

Proof of Theorem 3 We first show that, conditional on the observed data, S̃n(β̂, τ)

has the same asymptotic distribution as Sn(β0, τ) in probability. Consider the weighed

summation defined in (S7)

S̃n(β, τ) = n−1/2

n∑
i=1

ζiZi

{
Ni(e

Z>i β(τ))−
∫ τ

0

vi(e
Z>i β(s))Yi(e

Z>i β(s))dH(s)

}
.

Since E(ζi) = 1 and V ar(ζi) = 1, a similar argument as in the proof of Theorem 1 gives that

sup
τ∈(0,τu]

S̃n(β̂
∗
, τ) = op(1),

where β̂
∗

is the solution of S̃n(β, τ) = 0 using the proposed sequential algorithm. Because

supτ∈(0,τu] Sn(β̂, τ) = op(1) as shown in the proof of Theorem 1, for τ uniformly in (0, τu],

−S̃n(β̂, τ) can be expressed as

−S̃n(β̂, τ) = Sn(β̂, τ)− S̃n(β̂, τ) + op(1) = n−1/2

n∑
i=1

(1− ζi)ûi(τ) + op(1),

where

ûi(τ) = ZiN(eZiβ̂(τ))− Zi

∫ τ

0

vi(e
Z>i β̂(s), T̃i,∆i)Yi(e

Z>i β̂(s))dH(s).
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Then we have for any s, t ∈ [τl, τu],

E

[{
n−1/2

n∑
i=1

(1− ζi)ûi(s)
}{

n−1/2

n∑
i=1

(1− ζi)ûi(t)
}>∣∣∣{Zi,∆i, T̃i}ni=1

]

= n−1

n∑
i=1

ûi(s)ûi(t)
> → Σ(s, t),

in probability as n → ∞, where Σ(·, ·) is the corresponding limiting covariance function

of −Sn(β0, ·) as defined in the proof of Theorem 1. Therefore, by a similar argument as

in Lin, Wei, and Ying (1993), conditional on {Zi,∆i, T̃i}ni=1, S̃n(β̂, τ) has the same limit-

ing covariance matrix and asymptotic distribution as Sn(β0, τ) in probability. From the

decomposition in (S4), then we can show that conditional on the data, φn{−S̃n(β̂, τ)}

has the same asymptotic distribution as φn(−Sn(β0, τ)) in probability. Furthermore, since

n1/2[m{β̂(τ)}−m{β0(τ)}] = φn{−Sn(β0, τ)}+op(1), we obtain that conditional on the data,

φn{−S̃n(β̂, τ)} converges weakly to the limiting distribution of n1/2[m{β̂(τ)} −m{β0(τ)}]

in probability.

Following from Zeng and Lin (2008), we use the perturbation estimators B̂ and Ĵ to

estimate B and J. The consistency property can be established as follows. Following Lemma

B.1 of Peng and Huang (2008), for β̃(t) such that supt ‖β̃(t) − β0(t)‖ → 0 in probability,

the following result holds uniformly in τ

‖n1/2[mn{β̃(τ)} −mn{β0(τ)}]− n1/2[m{β̃(τ)} −m{β0(τ)}]‖ = op(1).

This implies that

n1/2[mn{β̃(τ)} −mn{β0(τ)}] = B{β0(τ)}n1/2{β̃(τ)− β0(τ)}+ op(1).

Therefore, the above approximation holds for β̃(τ) = β̂(τ) + n−1/2γ, where γ follows a p-

dimensional multivariate normal distribution with zero mean and identity covariance matrix.
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For M generated γ’s, let γ be the M × p matrix (γ1, · · · , γM)> and m̃ be the m-dimensional

vector [n1/2mn{β̂(τ) + n−1/2γi} − n1/2mn{β̂(τ)}; i = 1, · · · ,M ]>. Then we have

B{b0(τ)} = (γ>γ)−1γ>m̃ + op(1).

Note that (γ>γ)−1 exist with probability 1 for M > p. Therefore, the slope matrix

estimator given by regressing the perturbed values n1/2mn{β̂(τ) + n−1/2γi} on γi, i.e.,

B̂{β̂(τ)} = (γ>γ)−1γ>m̃, is consistent. Similarly we have the consistency of Ĵ. This implies

that B̂{β̂(τ)}−1φn{−S̃n(β̂, τ)} has the same asymptotic distribution as n1/2{β̂(τ)−β0(τ)}.

This validates the proposed resampling method.
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