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Patients with colon cancer are often faced a high risk of disease
recurrence within 5 years of treatment that is the major cause
of cancer mortality. Reliable molecular markers were required
to improve the most effective personalized therapy. Here, we
identified a recurrence-associated six-lncRNA (long non-coding
RNA) signature (LINC0184, AC105243.1, LOC101928168, ILF3-
AS1,MIR31HG, andAC006329.1) that can effectively distinguish
between high and low risk of cancer recurrence from389 patients
of a discovery dataset, and validated its robust performance in
four independent datasets comprising a total of 906 colon cancer
patients. We found that the six-lncRNA signature was an inde-
pendent predictive factor of disease recurrence in multivariate
analysis and was superior to the performance of clinical factors
andknowngene signature. Furthermore, in silico functional anal-
ysis showed that the six-lncRNA-signature-associated coding
genes are significantly enriched inproliferationandangiogenesis,
cell death, as well as critical cancer pathways that could play
important roles in colon cancer recurrence. Together, the six-
lncRNA signature holds great potential for recurrence risk assess-
ment and personalized management of colon cancer patients.
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INTRODUCTION
Colon cancer is one of the most common cancers and remains one of
the leading causes of cancer death worldwide, with more than 2.2
million new cases and 1.1 million deaths by 2030.1,2 In China, a sig-
nificant upward trend in the incidence rate and mortality of colon
cancer was observed especially in younger patients in recent years.3

The colectomy combined with chemotherapy and radiation therapy
is a current standard treatment for colon cancer. Despite continuous
developments in treatment, earlier detection, and management lead-
ing to reductions in the incidence and mortality overall and improve-
ment in overall survival of colon cancer, about�30%–50% of patients
relapsed within 5 years of treatment.4,5 Thus, reliable and robust mo-
lecular markers in addition to the current clinical and pathological
factors for determining the risk of recurrence is urged to improve
the most effective personalized therapy for patients with colon cancer.

Long non-coding RNAs (lncRNAs) were arbitrarily defined as
ncRNA transcripts of greater than 200 nt with no or little protein-
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coding potential.6,7 Studies about ncRNA biology have shown that
lncRNAs are involved in numerous biological processes by function
as an important player of the gene regulatory network on transcrip-
tional, posttranscriptional, and epigenetic levels.8–10 Growing evi-
dence shows that lncRNAs are an emerging hallmark of cancer,11

and their aberrant expression contributes to the cancer occurrence,
progression, and prognosis.12,13 Several known lncRNAs ofHOTAIR,
CCAT, MALAT-1, and H19 have been found to be involved in the
diagnosis, invasion, metastasis, and prognosis of colon cancer.14

Several studies have already reported lncRNA-focus expression signa-
ture for predicting overall survival of patients with colon cancer. For
example, Hu and colleagues15 identified a six-lncRNA signature to
improve prognosis prediction of colorectal cancer. Another two-
lncRNA signature also was identified to predict survival of patients
with colon adenocarcinoma.16 However, the predictive significance
of lncRNAs in risk assessment of recurrence has not already been per-
formed on large patient cohorts.

In this study, we performed a systematic analysis of lncRNA expres-
sion profiles and clinical data on a large colon cancer cohort of 1,480
patients to identify a robust and reproducible lncRNA expression
signature predictive for colon cancer recurrence.
RESULTS
Identification of Recurrence-Associated lncRNAs in Patients

with Colon Cancer

Here, the GSE39582 dataset from the Marisa et al.40 study, which is
the largest patient dataset enrolled in this study, contains 179
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Figure 1. Identification of the Six-lncRNA Signature

for Recurrence Risk Prediction in the Discovery

Dataset

(A) Unsupervised clustering of patients based on the

expression pattern of 82 differentially expressed lncRNAs.

(B) Kaplan-Meier estimates of the recurrence-free survival

of patients in the two sample clusters are based on 82

differentially expressed lncRNAs. (C) Boxplot of the pre-

dicted accuracy of each combination constructed by a

specific number of recurrence-associated lncRNAs. (D)

Receiver operating characteristic (ROC) curves for the six-

lncRNA signature and other six-minus-one lncRNA sig-

natures.
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patients with recurrence and 395 recurrence-free patients. In order
to identify lncRNAs with close associations with cancer recurrence,
179 patients with recurrence and 210 recurrence-free patients (alive
>5 years without any evidence of recurrence) in the Marisa et al.40

dataset were selected to form a discovery dataset (n = 389). Then,
lncRNA expression profiles of 179 patients with recurrence and
210 recurrence-free patients in the discovery dataset were compared
to determine whether there was a significant difference in lncRNA
expression pattern between patients with and without recurrence.
In total, 317 lncRNAs with their coefficient of expression variation
greater than 0.1 were identified as variant lncRNAs. Using signifi-
cance analysis of microarrays (SAM) method with a false discovery
rate (FDR)-adjusted p value <0.05 for these 317 variant lncRNAs, 82
lncRNAs were differentially expressed between patients with and
without recurrence. Of them, 49 lncRNAs were found to be down-
regulated and 33 to be upregulated in recurrent patients. We con-
ducted unsupervised hierarchical clustering analysis on 389 samples
of discovery dataset using the set of 82 differentially expressed
lncRNAs. As showed in Figure 1A, there was the distinctive expres-
sion pattern for 82 differentially expressed lncRNAs that distin-
guished recurrent patient samples from non-recurrent patient
samples (p < 0.0001, c2 test; Figure 1A). Kaplan-Meier analysis
and log rank test revealed the significant difference in recur-
rence-free survival (RFS) time between the two sample clusters
(p < 0.0001, log rank test; Figure 1B). Therefore, these differentially
expressed lncRNAs were considered as candidate recurrence-associ-
ated lncRNAs.
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Random forest supervised classification algo-
rithm was applied for further analysis for these
candidate recurrence-associated lncRNAs. Af-
ter five iteration procedures, 17 lncRNAsmostly
related to the recurrence classification were
identified according to the permutation impor-
tant score and were selected as recurrence-asso-
ciated lncRNAs. Clustering analysis of the 17
recurrence-associated lncRNAs clearly sepa-
rated 389 samples of discovery dataset into the
recurrence-like patient cluster and non-recur-
rence-like patient cluster (p < 0.0001, c2 test;
Figure S1A). Furthermore, there was a signifi-
cant difference in RFS time between the recurrence-like patient clus-
ter and non-recurrence-like patient cluster (p < 0.0001, log rank test;
Figure S1B).

Development of a lncRNA Signature for Recurrence Risk

Stratification in the Discovery Dataset

To obtain an optimal lncRNA combination for recurrence risk
stratification by considering a balance between classification accu-
racy and the number of lncRNAs, we used a support vector ma-
chine (SVM) and 5-fold cross-validation to access the classification
accuracies for each combination of 131,054 combinations con-
structed by specific number of recurrence-associated lncRNAs
(k = 2, 3, ., 17) in the discovery dataset. The above-mentioned
analysis revealed that the combination of six lncRNAs
(LINC0184, AC105243.1, LOC101928168, ILF3-AS1, MIR31HG,
and AC006329.1) provided the greatest predictive ability with the
highest accuracy rate of 72.2% and an area under the curve
(AUC) of 0.724 (Figures 1C and 1D). Hierarchical clustering of
six lncRNAs clearly separated patients of discovery dataset into
two major patient groups with significantly different recurrence
risk status (p < 0.0001, c2 test) and RFS (p < 0.0001, log rank
test) (Figures S2A and S2B). Moreover, we found that all of the
six lncRNAs are significantly associated with the patient’s RFS
by univariate Cox proportional hazard regression in the discovery
dataset (Table 1). Therefore, the combination containing six
lncRNAs was selected as the final lncRNA signature for predicting
the risk of recurrence.
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Table 1. List of Six lncRNAs in the Signature Predictive of Recurrence in the Discovery Dataset

Ensembl or RefSeq ID Gene Symbol Genomic Location (GRCh38) Coefficient
Hazard
Ratio 95% CI p Value

ENSG00000251169 LINC01843
chromosome 5: 134,506,552-134,509,229
forward strand

�0.488 0.614 0.465–0.81 0.001

ENSG00000261780 AC105243.1
chromosome 18: 73,324,941-73,349,878
forward strand

0.249 1.283 1.091–1.51 0.003

NR_120523.1 LOC101928168
chromosome 7: 29,125,033-29,128,172
forward strand

�0.249 0.780 0.668–0.91 0.002

ENSG00000267100 ILF3-AS1
chromosome 19: 10,651,862-10,653,844
reverse strand

�0.254 0.776
0.639–
0.942

0.010

ENSG00000171889 MIR31HG
chromosome 9: 21,455,642-21,559,669
reverse strand

0.545 1.724
1.431–
2.076

<0.001

ENSG00000232445 AC006329.1
chromosome 7: 101,308,346-101,310,985
forward strand

�0.605 0.546 0.398–0.75 <0.001
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To further test whether all of the six lncRNAs in the final lncRNA
signature are essential for its predictive ability, we constructed all
possible six-minus-one lncRNA signatures by deleting one lncRNA
at a time and performed comparison analysis of predictive ability
for original six-lncRNA signature and other six-minus-one lncRNA
signatures using the SVM and 5-fold cross-validation in the discovery
dataset. The comparison showed that none of the six-minus-one
lncRNA signatures had a higher predictive accuracy and AUC than
the original six-lncRNA signature (Figure 1D). This indicates that
all six lncRNAs were essential for the final lncRNA signature for
recurrence risk stratification. Finally, a recurrence risk score model
was developed from the six-lncRNA signature (hereafter referred to
as RRLnc6 score) using a linear combination of the expression level
of six lncRNAs, weighted by the regression coefficients derived
from the multivariate Cox regression as follows: RRLnc6 score =
(�0.13066) * LINC01843 + (0.00474) * AC105243.1 + (�0.20691) *
LOC101928168 + (�0.04769) * ILF3-AS1 + (0.23582) * MIR31HG +
(�0.35645) * AC006329.1.

Predictive Performance of the Six-lncRNA Signature for

Recurrence Risk in the Discovery Dataset and GSE39582

Dataset

To investigate the effectiveness of the six-lncRNA signature for clin-
ical recurrence risk prediction, we calculated the RRLnc6 score for
each patient in the discovery dataset and compared it between
recurrent patients and non-recurrent patients. The RRLnc6 score dis-
tribution is significantly different between recurrent patients and
non-recurrent patients in the discovery dataset and GSE39582 data-
set, and the median RRLnc6 score was significantly higher among
patients who developed recurrence compared with patients who did
not (0.226 versus �0.092, p < 0.0001 for discovery dataset; 0.226
versus �0.013, p < 0.0001 for GSE39582 dataset, Mann-Whitney
U test) (Figures 2A and 2B).

By using the median value (0.046) of the RRLnc6 score distribu-
tion in the discovery as risk cutoff, those patients with an RRLnc6
score of 0.046 or higher were included in the group of patients at
520 Molecular Therapy: Nucleic Acids Vol. 12 September 2018
high risk of disease recurrence (hereafter referred to as high-risk
group), and those with an RRLnc6 score lower than 0.046 were
included in the group at low risk of disease recurrence (hereafter
referred to as the low-risk group). When the six-lncRNA signature
was applied to the discovery dataset, we classified 389 patients of
the discovery dataset into the high-risk group (n = 195) and
low-risk group (n = 194) based on risk cutoff. The predicted
low-risk group had significantly longer RFS than the predicted
high-risk group (5-year RFS 69.6% versus 41.5%; p < 0.0001, log
rank test) (Figure 2C). The same risk cutoff derived from the dis-
covery dataset classified 574 patients of the GSE39582 dataset into
the high-risk (n = 291) and low-risk groups (n = 283) with signif-
icantly different RFS (5-year RFS 56.5% versus 77.1%, p < 0.0001,
log rank test) (Figure 2D). Furthermore, the univariate Cox regres-
sion analyses also showed that the hazard ratios (HRs) of the pre-
dicted high-risk group versus low-risk group for RFS were 2.461
(p < 0.0001; 95% confidence interval [CI]: 1.807–3.353) in the
discovery dataset and 2.300 (p < 0.0001; 95% CI: 1.689–3.132) in
the GSE39582 dataset (Table 2).

External Validation of the Six-lncRNA Signature for Predicting

Recurrence Risk with Three Independent Microarray

Datasets

The robustness and reproducibility of the six-lncRNA signature for
determining the risk of recurrence were further examined using
three independent microarray datasets from GEO database. We
first evaluated the association of RRLnc6 score with the RFS in
the univariate analysis and found that the RRLnc6 score remained
highly associated with RFS in all tested GEO independent datasets
(HR 1.767, 95% CI: 0.997–3.134, p = 0.051 for GSE14333; HR
1.831, 95% CI: 1.067–3.141, p = 0.028 for GSE17538; HR 3.173,
95% CI: 1.130–8.906, p = 0.028 for GSE33113) (Table 2). In addi-
tion, the distribution of the RRLnc6 score varied significantly be-
tween recurrent patients and non-recurrent patients, and patients
who developed recurrence had significantly higher RRLnc6 score
than those who did not in all tested independent datasets (median
0.187 versus �0.053, p = 0.048 for GSE14333; 0.125 versus �0.046,



Figure 2. Performance Assessment of the Six-

lncRNA Signature in the Discovery and GSE39582

Datasets

Distribution of RRLnc6 score in recurrent patients and

non-recurrent patients in the discovery dataset (A) and the

GSE39582 dataset (B). Kaplan-Meier estimates of the

recurrence-free survival of patients with low or high risk

predicted by the six-lncRNA signature in the discovery

dataset (C) and the GSE39582 dataset (D).
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p = 0.058 for GSE17538; 0.131 versus �0.127, p = 0.025 for
GSE33113, Mann-Whitney U test) (Figures 3A–3C).

To confirm that the six-lncRNA signature had similar predictive
value in independent datasets, we applied the same recurrence risk
score model and risk cutoff derived from the discovery dataset to
three independent GEO datasets, classifying patients of each indepen-
dent dataset into high-risk and low-risk groups. As for the discovery
dataset, RFS was significantly different between the high-risk group
and the low-risk group (p = 0.048 for GSE14333; p = 0.027 for
GSE17538; p = 0.021 for GSE33113, log rank test) (Figures 3D–3F).
The 5-year RFS rate of the high-risk group was 70.9%, 63.4%, and
66.1% in the GSE14333 dataset, GSE17538 dataset, and GSE33113 da-
taset, respectively, whereas the corresponding rates in the low-risk
group were 81.4%, 76.5%, and 87.4%, respectively. Moreover, there
are significantly more patients with recurrence in the high-risk group
than in the low-risk group in all three independent datasets (29.2%
versus 15.8%, p = 0.024 for GSE14333; 35.5% versus 20.6%,
p = 0.028 for GSE17538; 31.7% versus 10.4%, p = 0.026 for
GSE33113, c2 test).

Further Validation of the Six-lncRNA Signature for Predicting

Recurrence Risk with an Independent RNA-Sequencing Dataset

The predictive performance of the six-lncRNA signature was further
tested in the independent RNA-sequencing (RNA-seq) dataset based
on the Illumina HiSeq platform from The Cancer Genome Atlas
(TCGA) database. Unfortunately, we found that only five lncRNAs
(LINC0184, AC105243.1, ILF3-AS1, MIR31HG, and AC006329.1) of
the six-lncRNA signature of the discovery dataset were covered in
Molecular Therapy
TCGA dataset. So, the recurrence risk score
model based only on these five lncRNAs
without re-estimating parameters was used to
predict recurrence risk and RFS for TCGA
dataset, which perhaps reduces the predictive
power. As shown in Figure 4A, risk score of
recurrent patients are marginally significantly
higher than non-recurrent patients (median
0.135 versus 0.004, p = 0.069, Mann-Whitney
U test). The median risk score cutoff point
obtained from TCGA dataset classified 391 pa-
tients into the high-risk group (n = 196) and the
low-risk group (n = 195). Patients in the high-
risk group had marginally significantly shorter RFS compared
with those in the low-risk group (5-year RFS 55.7% versus 65%;
p = 0.059, log rank test) (Figure 4B). The HR of predicted high-risk
group versus low-risk group for RFS was 1.499 (p = 0.061; 95%
CI: 0.981–2.289).

Independence of the Six-lncRNA Signature from Other Clinical

Factors

To assess whether the predictive power of the six-lncRNA signature is
independent of other clinical factors, we included the RRLnc6 score in
a multivariate Cox regression analysis together with age, gender
(male/female), and stage (IV/II). After multivariable adjustment by
clinical factors, we found that both the RRLnc6 score (HR 2.043,
95% CI: 1.488–2.806, p < 0.0001 for the discovery dataset; HR
1.933, 95% CI: 1.410–2.650, p < 0.0001 for GSE39582; HR 1.673,
95% CI: 0.943–2.968, p = 0.079 for GSE 14333; HR 1.816, 95% CI:
1.052–3.132, p = 0.032 for GSE17538) and tumor stage (HR 2.210,
95% CI: 1.609–3.035, p < 0.0001 for the discovery dataset; HR
2.398, 95% CI: 1.749–3.287, p < 0.0001 for GSE39582; HR 3.455,
95% CI: 1.893–6.304, p = 0.0001 for GSE 14333; HR 1.650, 95% CI:
0.959–2.836, p = 0.070 for GSE17538) maintained significant or
marginally significant correlation with RFS in four datasets (Table 2).
In the testing dataset GSE33113, the RRLnc6 score (HR 3.499, 95%
CI: 1.228–9.975, p = 0.019) still was significantly associated with
RFS even if the tumor stages III and IV were missing (Table 2).

Then the stratification analysis was performed based on tumor stage.
When stratified by tumor stage, patients of all datasets were stratified
into two subgroups where stages I and II were included in the
: Nucleic Acids Vol. 12 September 2018 521
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Table 2. Univariate and Multivariate Cox Proportional Hazard Regression Analysis of Recurrence-free Survival in Each Dataset

Variables

Univariate Analysis Multivariate Analysis

HR 95% CI p Value HR 95% CI p Value

Discovery Dataset (n = 389)

RRLnc6 score (high/low) 2.461 1.807–3.353 <0.0001 2.043 1.488–2.806 <0.0001

Age 1.002 0.990–1.014 0.746 1.003 0.991–1.016 0.593

Gender (male/female) 1.281 0.950–1.729 0.105 1.316 0.975–1.776 0.073

Stage (III, IV/I, II) 2.588 1.900–3.524 <0.0001 2.210 1.609–3.035 <0.0001

GEO: GSE39582 Dataset (n = 574)

RRLnc6 score (high/low) 2.300 1.689–3.132 <0.0001 1.933 1.410–2.650 <0.0001

Age 0.999 0.988–1.010 0.921 1.001 0.990–1.013 0.828

Gender (male/female) 1.287 0.953–1.737 0.099 1.330 0.985–1.797 0.063

Stage (III, IV/I, II) 2.714 1.994–3.696 <0.0001 2.398 1.749–3.287 <0.0001

GEO: GSE14333 Dataset (n = 226)

RRLnc6 score (high/low) 1.767 0.997–3.134 0.051 1.673 0.943–2.968 0.079

Age 0.981 0.961–1.001 0.069 0.988 0.968–1.009 0.251

Gender (male/female) 1.101 0.629–1.924 0.737 0.965 0.543–1.718 0.905

Stage (III, IV/I, II) 3.683 2.032–6.675 <0.0001 3.455 1.893–6.304 0.0001

GEO: GSE17538 Dataset (n = 200)

RRLnc6 score (high/low) 1.831 1.067–3.141 0.028 1.816 1.052–3.132 0.032

Age 0.980 0.962–0.999 0.043 0.979 0.959–0.999 0.038

Gender (male/female) 0.750 0.441–1.276 0.289 0.645 0.368–1.130 0.125

Stage (III ,IV/I, II) 1.612 0.945–2.749 0.080 1.650 0.959–2.836 0.070

GEO: GSE33113 Dataset (n = 89)

RRLnc6 score (high/low) 3.173 1.13–8.906 0.028 3.499 1.228–9.975 0.019

Age 0.980 0.946–1.015 0.254 0.971 0.936–1.007 0.118

Gender (male/female) 0.978 0.386–2.480 0.963 0.893 0.347–2.300 0.815
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early-stage subgroup (n = 662) and stages III and IV included in the
late-stage subgroup (n = 423). Patients with early-stage disease (I, II)
had substantially lower RRLnc6 score compared with those with late-
stage disease (III, IV) (median �0.036 versus 0.110; p < 0.0001,
Mann-Whitney U test) (Figure 5A). Furthermore, there is a good cor-
relation between the RRLnc6 score and tumor stage. The RRLnc6
score among patients with the different stage is also significantly
different (median �0.168 for stage I, �0.006 for stage II, 0.092 for
stage III, and 0.140 for stage IV; p < 0.0001, Kruskal-Wallis test) (Fig-
ure 5B). Further investigation showed that the RRLnc6 score of pa-
tients without recurrence was significantly lower than those with
recurrence in both stage subgroups (median �0.111 versus 0.205,
p < 0.0001 for early-stage subgroup; 0.051 versus 0.213, p = 0.002
for late-stage subgroup, Mann-Whitney U test) (Figures 5C and
5D). When the same recurrence risk score model and risk cutoff
derived from the discovery dataset were applied to patients with
early-stage disease and late-stage disease, the six-lncRNA signature
could classify patients into high-risk and low-risk groups with signif-
icantly different RFS in both stage subgroups (5-year RFS 70.5%
versus 85.7%, p < 0.0001 for early-stage subgroup; 49.5% versus
64.2%, p = 0.003 for late-stage subgroup, log rank test) (Figures 5E
522 Molecular Therapy: Nucleic Acids Vol. 12 September 2018
and 5F). Taken together, these results demonstrated that the six-
lncRNA signature was an independent prognostic factor associated
with disease recurrence and RFS of patients with colon cancer.

Comparison with Other Clinical Factors and Known Gene

Signatures

To compare the predictive value of the six-lncRNA signature with
that of clinical factors and known gene signatures used for recurrence
risk stratification including age, gender, stage, and 13-mRNA signa-
ture, which is the latest mRNA-based signature that outperformed
other gene classifiers (herein after referred to as 13mSig),17 we per-
formed receiver operator characteristic (ROC) curves analysis on all
patients of four datasets. As shown in Figure 6A, the AUC of the
six-lncRNA signature was 0.634, which was significantly larger than
that of age (AUC = 0.550; p = 0.003) and gender (AUC = 0.518;
p < 0.0001). When compared with the stage and 13mSig, the AUC
of the six-lncRNA signature was much the same as that of the
stage (0.634 versus 0.631; p = 0.850) and 13mSig (0.634 versus
0.645; p = 0.638). Further comparison of Kaplan-Meier survival
curves showed that high-risk patients predicted by the six-
lncRNA signature had a worse prognosis compared with those with



Figure 3. Independent Validation of the Six-lncRNA Signature in Three Independent Datasets

The distribution of RRLnc6 scores for recurrent patients and non-recurrent patients in the GSE14333 dataset (A), the GSE17538 dataset (B), and the GSE33113 dataset (C).

Kaplan-Meier estimates of the recurrence-free survival of patients with low or high risk predicted by the six-lncRNA signature in the GSE14333 dataset (D), the GSE17538

dataset (E), and the GSE33113 dataset (F).
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high-risk scores predicted by 13mSig and low-risk patients predicted
by the six-lncRNA signature had a better prognosis compared with
those with low-risk scores predicted by 13mSig (Figure 6B). In
addition, the 5-year RFS rate of high-risk patients predicted by the
six-lncRNA signature is 61.4%, which is lower than that (64%) of
high-risk patients predicted by the 13mSig, whereas the correspond-
ing rates for low-risk group predicted by the six-lncRNA signature is
78.5%, which is higher than that (77.6%) of the low-risk group pre-
dicted by the13mSig. These results indicated that the six-lncRNA
signature had an equivalent or better predictive ability than stage
and 13mSig.

Functional Implication of the Six-lncRNA Signature

We further investigate the potential functional mechanisms behind
the altered expression of lncRNAs in the signature using “guilt by as-
sociation.” We first measured the expression correlation between
lncRNAs in the signature and protein-coding genes (PCGs), and ob-
tained lncRNA-correlated PCGs, which significantly co-expressed
with that of at least one of the six lncRNAs in the signature. Then
function enrichment analysis was performed for lncRNA-correlated
PCGs. Gene Ontology (GO) analysis of lncRNA-correlated PCGs
revealed a number of significantly enriched terms that can be
categorized into four functional clusters including cell proliferation
and angiogenesis, ATP metabolic process, cell death, and leukocyte
differentiation (Figure 7A). Focusing on the biological pathways
involved in lncRNA-correlated PCGs, we found 12 significantly en-
riched pathways, most of which are linked to tumor-promoting func-
tion, including Proteoglycans in cancer, focal adhesion, oxidative
phosphorylation, extracellular matrix (ECM)-receptor interaction,
regulation of actin cytoskeleton, pathways in cancer, cyclic AMP
(cAMP) signaling pathway, and peroxisome proliferator-activated re-
ceptor (PPAR) signaling pathway (Figure 7B). These results indicated
that an altered expression of lncRNAs in the signature may be
involved in colon cancer biology through disrupting the balance of
the lncRNA-related PCGs regulatory network to affect known critical
biological pathways involved in cancer progression.

DISCUSSION
Although recent advances in large-scale sequencing and analyses have
provided novel insights into the biology of colon cancer,18 unfortu-
nately, a large number of patients after curative surgery still faced a
high risk of disease recurrence which is the major cause of cancer
mortality. Colon cancer is a highly heterogeneous disease character-
ized by distinct genetic, epigenetic, and clinical properties.19 Patients
Molecular Therapy: Nucleic Acids Vol. 12 September 2018 523
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Figure 4. Independent Validation of the Six-lncRNA

Signature in the TCGA Dataset

(A) The distribution of RRLnc5 score for recurrent patients

and non-recurrent patients in the TCGA dataset. (B) Ka-

plan-Meier estimates of the recurrence-free survival of

patients with low or high risk predicted by the five-lncRNA

signature in the TCGA dataset.
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with similar clinical and pathologic features often showed different
recurrence risk and diverse clinical outcomes. Thus, traditional prog-
nostic factors based on anatomical and pathological features, such as
TNM staging system, tumor grade, lymphatic and vascular invasion,
and so on, have revealed their limitations and insufficiency in the
recurrence prediction of patients with colon cancer. During the
past years, molecular profiles have demonstrated the potential as
predictive and prognostic biomarkers to improve diagnosis, manage-
ment, and treatment of cancer patients.20–22 Several molecular signa-
tures have been identified to predict recurrence of colon cancer, most
of which are focused on mRNA expression.17,23–25 However, up to
now, whether a lncRNA signature might have similar predictive value
in recurrence risk stratification to that of mRNA-focus expression sig-
natures or patients with colon cancer is not known.

Consequently, in this study, we identified and validated a novel mo-
lecular signature, consisting of six lncRNAs (LINC0184, AC105243.1,
LOC101928168, ILF3-AS1, MIR31HG, and AC006329.1) that can
distinguish between colon cancer patients with high and low risks
of cancer recurrence. For our predictive lncRNA selection for the
signature, we performed an integrative computational and statistical
strategy. We first determined the altered expression pattern of
lncRNAs between patients with and without recurrence as candidate
recurrence-associated lncRNAs. Then we further employed a random
forest supervised classification algorithm and SVM to identify six
predictive lncRNAs from those candidate recurrence-associated
lncRNAs. Finally, we developed a molecular prognostic signature
for recurrence risk with selected predictive lncRNAs. Moreover, we
were able to validate the predictive value of the six-lncRNA signature
in four additional datasets of patients with colon cancer, and demon-
strated the necessity of all six predictive lncRNAs in the signature for
recurrence risk prediction.

Although the TNM staging system is widely accepted to predict the
prognosis and guide treatment decisions for patients with colon pa-
tients, there are critical limitations for the TNM staging system in
the clinic because of molecular heterogeneity of colon cancer.26
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Our multivariate and stratified analysis sug-
gested that the six-lncRNA signature not
only was independent of clinicopathological
factors, but also showed the ability in predict-
ing recurrence for patients with the similar
clinical stage. More recently, some studies
have reported some mRNA-focus expression
signature to identify patients at high risk of
recurrence. Our comparative analysis demonstrated that the six-
lncRNA signature has an equivalent or better ability in distinguish-
ing patients at low risk versus high risk of tumor recurrence
compared with mRNA-based signature. As previously reported, tu-
mor-specific lncRNA protected from the RNases present in body
fluids are contained in membranous particles released by tumor
cells, and their expression is stable and easily detectable in plasma
or other body fluids by qRT-PCR.27 Moreover, lncRNA expression
may be a better indicator of tumor status relative to mRNAs because
their function is closely associated with their transcript abun-
dance.28,29 Given these advantages, combined with their more
tissue- and cancer-type-specific manner relative to mRNAs, the
six-lncRNA signature may be more easily applicable in clinics,
which need to be evaluated in prospective cohorts and clinical trial.

Despite that increasing research has identified a huge number of
lncRNAs in mammals using high-throughput experimental technol-
ogies, only a very small fraction of lncRNAs were well functionally
characterized, and the functions of most lncRNAs remain largely un-
known.30 Among six lncRNAs in the signature, two lncRNAs (ILF3-
AS1 and MIR31HG) have been validated as potential prognostic
markers in several cancers. lncRNA ILF3-AS1 has been shown to be
upregulated in melanoma, which promotes cell proliferation, migra-
tion, and invasion via negatively regulating miR-200b/a/429.31

A recent study confirmed the oncogenic role of MIR31HG (also
known as LncHIFCAR) by regulating the HIF-1 transcriptional
network, and revealed the potential utility of MIR31HG as an inde-
pendent adverse prognostic predictor for the cancer progression.32

For the remaining four lncRNAs in the signature, to our knowledge,
no associations have been reported between these lncRNAs and
cancer. Therefore, we performed in silica analysis to gain functional
insight of the identified six-lncRNA signature. Functional analysis
of lncRNAs based on co-expressed mRNAs with lncRNAs revealed
a number of highly enriched tumor-promoting-related biological
processes and pathways, including Proteoglycans in cancer,33

focal adhesion,34 oxidative phosphorylation,35 ECM-receptor interac-
tion,36 regulation of actin cytoskeleton,37 pathways in cancer,



Figure 5. Risk Prediction of the Six-lncRNA Signature for Patients Stratified by Tumor Stage

(A) The distribution of RRLnc6 scores of early-stage patients and late-stage patients. (B) The distribution of RRLnc6 scores in patients from stages I–IV. (C) The distribution of

RRLnc6 scores in recurrent patients and non-recurrent patients for the early-stage subgroup. (D) The distribution of RRLnc6 scores in recurrent patients and non-recurrent

patients for the late-stage subgroup. (E) Kaplan-Meier estimates of the recurrence-free survival of patients with low or high risk predicted by the six-lncRNA signature in the

early-stage subgroup. (F) Kaplan-Meier estimates of the recurrence-free survival of patients with low or high risk predicted by the six-lncRNA signature in the late-stage

subgroup.
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cAMP signaling pathway,38 and PPAR signaling pathway.39 Thus, our
in silica analysis of the six-lncRNA signature suggested that variation
in lncRNA expression might be involved in new critical biological
processes and pathways involved in cancer progression, further sup-
porting the relevance of the six-lncRNA signature in colon cancer
recurrence.

In conclusion, we first determined differentially expression pattern
of lncRNAs between patients with recurrence and recurrence-
free patients, and identified recurrence-associated lncRNAs.
Then we constructed a lncRNA expression signature composed
of six recurrence-associated lncRNAs (LINC0184, AC105243.1,
LOC101928168, ILF3-AS1, MIR31HG, and AC006329.1) and gener-
ated a recurrence risk score model (RRLnc6 score) that can effec-
tively stratify colon cancer patients into groups with low and high
risks of disease recurrence in the discovery dataset and three inde-
pendent datasets. Moreover, the six-lncRNA signature is an inde-
pendent predictive marker of disease recurrence and is superior
to the performance of clinical factors and known gene signatures.
With further prospective studies, the six-lncRNA signature not
only holds great potential as a novel tool for recurrence risk assess-
ment and personalized management of colon cancer patients, but
also may present new insights into the mechanisms underlying
colon cancer recurrence.
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Figure 6. Comparison of Sensitivity and Specificity

for Recurrence Risk Prediction by the Six-lncRNA

Signature, Other Clinical Factors, and Known Gene

Signature

(A) Receiver operating characteristic (ROC) curves of the

six-lncRNA signature, other clinical factors, and 13mSig.

(B) Comparison of recurrence-free survival differences in

high- and low-risk groups predicted by 13mSig and the

six-lncRNA signature.
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MATERIALS AND METHODS
Colon Cancer Sample Datasets

We retrospectively collected clinical data and microarray data of co-
lon cancer patient samples from five publicly available datasets from
the NCBI GEO database (https://www.ncbi.nlm.nih.gov/geo/) and
TCGA database (https://cancergenome.nih.gov/). After removing pa-
tient samples without recurrence information, a total of 1,480 colon
cancer patient samples were enrolled from four GEO datasets and
one TCGA dataset in this study, including 574 patients from theMar-
isa et al.40 study (the accession number is GEO: GSE39582, https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?Ac=GSE39582), 226 pa-
tients from the Jorissen et al.41 study (the accession number is
GEO: GSE14333 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
Ac=GSE14333), 200 patients from the Smith et al.42 study (the acces-
sion number is GEO: GSE17538, https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?Ac=GSE17538), 89 patients from the Sousa et al.43

study (the accession number is GEO: GSE33113, https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?Ac=GSE33113), and 391 patients
from the National Cancer Institute Genomic Data Commons
(NCI GDC) Data Portal. The median ages (range) and RFS time
(range) of the five datasets were 68.1 years (22–97.0 years) and
44.5 months (0–201 months), 67 years (26–92 years) and
38.5 months (0.9–142.6 months), 66 years (23–94 years)
and 39 months (0–142.6 months), 73 years (34–95 years) and
39.5 months (1.8–120 months), and 67 years (31–90 years) and
21.3 months (0–147.9 months), respectively. Of these patients, 179
(31.18%), 50 (22.12%), 55 (27.5%), 18 (20.22%), and 89 (22.76%) pa-
tients relapsed during follow-up, respectively. Detailed clinical char-
acteristics of colon cancer patients are listed in Table S1.

Acquisition and Processing of lncRNA Expression Profiles

The raw data files (.CEL format) of four colon cancer patient data-
sets profiled by Affymetrix Human Genome U133 Plus 2.0 (Affyme-
trix HG-U133 Plus 2.0) were downloaded directly from the GEO
database and were normalized using robust multichip average
method by R ‘affy’ package for background correction, quantile
normalization, and log2 transformation.44 lncRNA expression pro-
files of four colon cancer patient datasets were obtained by superim-
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posing data of the Affymetrix HG-U133 Plus
2.0 platform based on the NetAffx annotation
files (HG-U133 Plus 2.0 Annotations, CSV
format, release 36, 7/12/16) of the probe sets
and the annotation files of RefSeq (release
79) and GENCODE (release 25) according to a previous study:45

(1) we first extracted probe sets with RefSeq IDs that were labeled
as “NR_” and annotated with “long non-coding RNA” in the RefSeq
database (release 79); (2) we then extracted probe sets with Ensembl
gene IDs, which were annotated as “long non-coding RNA” in the
GENCODE project (release 25); and (3) finally, expression data of
2,466 unique lncRNAs corresponding to 3,431 probe sets of four
colon cancer patient datasets were used for further analysis. To ac-
count for heterogeneity of multiple microarray datasets in system-
atic measurement, we standardized each dataset independently by
the Z score transformation to scale expression intensities of each
probe.46

Identification of Recurrence-Associated lncRNA Signature

To identify recurrence-associated lncRNAs, we compared expres-
sion differences between patients with recurrence and those without
recurrence for >5 years for each individual lncRNA using variance
filtering and SAM method. Differentially expressed lncRNAs (coef-
ficient of variation [CV] value >10% and false discovery rate (FDR)
adjusted p < 0.05) were defined as candidate recurrence-associated
lncRNAs. Then recurrence-associated lncRNAs were identified
from these candidate recurrence-associated lncRNAs using random
forest supervised classification algorithm with an iteration proced-
ure in which the one-third least important lncRNAs were discarded
according to the permutation important score at each iteration step.
Finally, SVM and 5-fold cross-validation were used to determine the
best combination of the selected recurrence-associated lncRNAs
as an optimal lncRNA signature for recurrence prediction by
comparing classification accuracies of each combination in the dis-
covery dataset.

Statistical Analyses

A risk score model for recurrence risk stratification was constructed
using the sum of expression values of lncRNAs in the optimal
lncRNA signature weighted by the estimated regression coefficients
in the multivariate Cox regression analysis as described previ-
ously.47,48 The risk score model was calculated for each patient
and classified each patient into a low- or high-risk group using

https://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?Ac=GSE39582
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Figure 7. Functional Analysis of the Six-lncRNA Signature

(A) Functionally grouped network with enriched GO terms as nodes linked based on kappa score threshold of 0.4. Node size represents the term enrichment significance. (B)

The most significantly enriched KEGG pathways. The node size represents the number of genes in the pathways, and the color represents the pathway enrichment

significance.
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the median risk score of the discovery dataset as a cutoff. Patients
belonging to the low-risk group have a lower risk of recurrence
and long-term RFS, and those belonging to the high-risk group
have a higher risk of recurrence and short-term RFS. Kaplan-Meier
survival curves and log rank tests were used to assess the differences
in RFS of the predicted high-risk and low-risk groups. Univariate
and multivariate analyses with Cox proportional hazards regression
for RFS were performed on the clinical variables including age,
gender (male versus female), stage (IV, III versus I, II), and risk
score. HRs and 95% CIs were calculated. Hierarchical clustering
of both patients and lncRNAs was performed with R software using
the metric of Euclidean distance and complete linkage. The c2 test
was used to evaluate the significance of differences in recurrence sta-
tus between clustered patient groups. All statistical analyses were
performed using R software and Bio-conductor.

Functional Enrichment Analysis

Functional enrichment analysis of GO and Kyoto encyclopedia of
genes and genomes (KEGG) pathway was performed to determine
significantly enriched GO terms and KEGG pathways of genes corre-
lated with the six-lncRNA signature using the ClueGO plugin
(version 2.3.3) in Cytoscape limited in biological processes49 and
DAVID Bioinformatics Resources (https://david.ncifcrf.gov/, version
6.8).50 Functional map and clusters of enriched GO terms were
obtained and visualized using a two-sided hypergeometric test with
Bonferroni stepdown correction and kappa score threshold of 0.4,
and limited in the GO level intervals 3–8 with minimum gene 20
and p % 0.05. Biological pathways with p < 0.05 was considered as
significant using functional annotation chart options with the whole
human genome as background.
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Supplemental Figure S1. (A) Unsupervised clustering of patients based on the 
expression pattern of 17 recurrence-associated lncRNAs. (B) Kaplan-Meier estimates 
of the recurrence-free survival of patients in the two sample clusters based on 17 
recurrence-associated lncRNAs.  
  



 

 
Supplemental Figure S2. (A) Unsupervised clustering of patients based on the 
expression pattern of six lncRNAs in the signature. Recurrence. (B) Kaplan-Meier 
estimates of the recurrence-free survival of patients in the two sample clusters based 
on six lncRNAs in the signature. 
 
  



Supplemental Table S1. Clinical characteristics of patients with colon cancer in 
the six datasets 
Characteristics Discovery 

dataset 
GSE39582 

dataset 
GSE14333 

dataset 
GSE17538 

dataset 
GSE33113 

dataset 
TCGA 
dataset 

No. of patients 389 574 226 200 89 391 
Age (years)      

Range 30.2-97 22-97 26-92 23-94 34-95 31-90 
Median 68 68.1 67 66 73 67 

Gender      
Female 175 257 120 98 47 181 

  Male 214 317 106 102 42 210 
Stage      

I/II 196 304 135 134 89 227 
III/IV 193 266 91 66 0 155 
Unknown  4    9 

Recurrence      
Yes 179 179 50 55 18 89 
No 210 395 176 145 71 302 

Recurrence-free 
survival (months) 

     

Range 0-201 0-201 0.9-142.6 0-142.6 1.8-120 0-147.9 
Median 65 44.5 38.5 39 39.5 21.3 
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