Appendix A

Pre-exposure prophylaxis (PrEP) for MSM in low HIV incidence places: should high risk individuals be targeted?

Ngai Sze WONG¹, Tsz Ho KWAN², Owen TY TSANG³, Man Po LEE⁴, Wing Cheong YAM⁵, Wilson LAM⁴, Wai Shing LEUNG³, Jacky MC CHAN³, Kai Man HO³, Shui Shan LEE^{1*}

1 Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China

2 Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China

3 Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong, China

4 Department of Medicine, Queen Elizabeth Hospital, Hong Kong, China

5 Department of Microbiology, The University of Hong Kong, Hong Kong, China

Supplementary Material - additional model details

High- and low-risk groups

Susceptible (HIV negative) MSM were categorized into high and low-risk susceptible MSM. Highrisk MSM have a higher partner exchange rate and low-risk MSM have a lower rate. Defining ≤ 8 sexual partners per year as low-risk, 57% of MSM were low-risk as observed in our ongoing MSM sexual behavioral study. Similarly, infected MSM were categorized into high-and low-risk infected MSM in each sub-model. The proportion of low-risk infected MSM in each sub-model adopted the parameter setting in our previous study with adjustment by calibration (Table S1).[1] In the model, low-risk MSM are assumed to be in serial monogamy while high-risk MSM are assumed to be in random mixing (very high rate of partner exchange) partnership. The annual rate of sexual partner exchange of low-risk infected varied between sub-models, in accordance to the size of clusters (Table S1). We did not assume the flow of infected MSM between sub-models. However, high-risk susceptible MSM could develop sexual partnership with high-risk infected MSM from any submodels. Similarly, low-risk susceptible MSM could mix with low-risk infected MSM from any submodels (i.e. assortative mixing pattern).

Table S1 proportion of low-risk infected MSM and characteristics of sexual partnership in MSM sub-models

Sub-models of different cluster types	Proportion of low-risk infected MSM	Annual rate of sexual partner exchange for low-risk MSM in serial monogamy
isolates (1 node)	79% + b	1 partner per 10 years
dyads or very small clusters (2-3 connected	70%+b	a
nodes)		
small clusters (4-10 connected nodes)	66%+b	a+1
large clusters (>10 connected nodes)		
11-25 connected nodes	55%+b	a+2
26-50 connected nodes	50%+b	a+2
>50 connected nodes	50%+b	a+2

From model calibration, a = 6.7, b = -2%. The two parameters were used to adjust the value after the adoption from heterosexual model [1]

Sub-model (j = 1-19) equations in model with PrEP

We defined S_h as the number of high risk susceptible individuals, S_l as the number of low risk susceptible individuals, A as undiagnosed individuals in acute infection, Un as undiagnosed individuals in chronic infection, UnAIDS as undiagnosed individual with AIDS, Dx as diagnosed individuals, DxL as loss to follow-up before treatment initiation, Tx as patients on treatment, TxL as patients loss to follow-up after treatment initiation, TxSVL as patients on treatment with viral load suppression (<=500 copioes/mL), TxNSVL as patients on treatment with non-suppressed viral load (>500 copies/mL). We add "prep" in name of compartment to denote compartments with PrEP users only. In the model:

Susceptible compartments without PrEP

$$\begin{array}{l} \frac{\mathrm{d}S_{h}}{\mathrm{d}t} &= -\sum_{j=1}^{19} \lambda_{h,j}[\mathrm{t}] * S_{h}[t] + (1 - lowrisk) * aMSM[t] - \mathrm{PrEPh}[\mathrm{t}] * S_{h}[t] + dH * S_{hprep_{H}}[\mathrm{t}] + dL * S_{hprep_{L}}[\mathrm{t}] \\ = -\sum_{j=1}^{19} \lambda_{l,j}[\mathrm{t}] * S_{l}[\mathrm{t}] + (lowrisk) * aMSM[t] - \mathrm{PrEPl}[\mathrm{t}] * S_{l}[t] + dH * S_{lprep_{H}}[\mathrm{t}] + dL * S_{lprep_{L}}[\mathrm{t}] \\ \end{array}$$

Where **lowrisk** = proportion of MSM with ≤ 8 sex partners per year, **aMSM** = net change of MSM population, **PrEPh**=coverage of PrEP in high-risk MSM, **PrEPh**=coverage of PrEP in low-risk MSM;

Susceptible compartments with PrEP

Susceptible high-risk MSM on high adherence PrEP

dShprep_H

 $-\sum_{j=1}^{n} \lambda_{h,j}[t] * (1 - \text{efficacyH}) * S_{hprep_H}[t] + \text{PrEPh}[t] * \text{highadhH} * S_h[t] - (dH + toLPrEP) * S_{hprep_H}[t] + toHPrEP * S_{hprep_L}[t]$ Susceptible high-risk MSM on low adherence PrEP

dShprep_L___

 $-\sum_{j=1}^{19} \lambda_{h,j}[t] * (1 - \text{efficacyL}) * S_{hprep_L}[t] + \text{PrEPh}[t] * (1 - \text{highadhH}) * S_h[t] - (dL + toHPrEP) * S_{hprep_L}[t] + toLPrEP * S_{hprep_L}[t]$ Susceptible low-risk MSM on high adherence PrEP

dS_{lprep_H}

 $-\sum_{j=1}^{dt} \lambda_{l,j}[t] * (1 - \text{efficacyH}) * S_{lprep_H}[t] + \text{PrEPl}[t] * \text{highadhL} * S_l[t] - (dH + toLPrEP) * S_{lprep_H}[t] + toHPrEP * S_{lprep_L}[t]$ Susceptible low-risk MSM on low adherence PrEP

 $-\sum_{j=1}^{dt} \lambda_{l,j}[t] * (1 - \text{efficacyL}) * S_{lprep_L}[t] + \text{PrEPI}[t] * (1 - \text{highadhL}) * S_l[t] - (dL + toHPrEP) * S_{lprep_L}[t] + toLPrEP * S_{lprep_H}[t]$ Where **efficacyH**= efficacy of high adherence PrEP, **efficacyL**=efficacy of low adherence PrEP; **PrEPh**=coverage of PrEP in high-risk MSM,

PrEPl=coverage of PrEP in low-risk MSM; **highadhH**=proportion of high-risk PrEP users in high adherence, **highadhL**=proportion of low-risk PrEP users in high adherence, **dH**=dropout rate of high adherence PrEP, **dL**=dropout rate of low adherence PrEP; **toLPrEP**=changing from high to low adherence PrEP; **toLPrEP**=changing from low to high adherence PrEP;

In each sub-model:

 $\begin{aligned} &Undiagnosed \ compartments \ of \ non-PrEP \ users \\ &\frac{dA_j}{dt} = \lambda_{l,j}[t]^*S_l[t] + \lambda_{h,j}[t]^*S_h[t] - (\alpha + mm)^*A_j[t] + nonlocal_j[t] \\ &\frac{dUn_j}{dt} = \alpha^*A_j[t] - (vc_{i=1}[t] + ((\tau_{i=1} + mm)^* (1 - vc_{i=1,j}[t])))^* \ Un_{i=1,j}[t] + \\ &\sum_{i=2}^{4} \ [\tau_{i-1}^* (1 - vc_{i-1,j}[t])^* \ Un_{i-1,j}[t] - (vc_{i,j}[t] + ((\tau_i + mm)^* (1 - vc_{i,j}[t])))^* \ Un_{i,j}[t]] \\ &\frac{dUnAIDS_j}{dt} = \tau_{i=4}^* (1 - vc_{i=4,j}[t])^* \ Un_{i=4,j}[t] - (vc_{i=5}^* + ((mm + mu[t])^* (1 - vc_{i=5})))^* \ UnAIDS_j[t] \end{aligned}$

Undiagnosed compartments of PrEP users

 $\begin{array}{l} \frac{aAprep_{j}}{dt} &= \lambda_{h,j}[t] * (1 - efficacyH) * S_{hprep_{j}H}[t] + \lambda_{h,j}[t] * (1 - efficacyL) * S_{hprep_{j}L}[t] + \lambda_{l,j}[t] * (1 - efficacyH) * S_{lprep_{j}H}[t] \\ + \lambda_{l,j}[t] * (1 - efficacyL) * S_{lprep_{j}L}[t] - (\alpha + mm) * Aprep_{j}[t] \\ \frac{dUnprep_{j}}{dt} &= \alpha * Aprep_{j}[t] - (vc_{i=1}[t] + ((\tau_{i=1} + mm) * (1 - vc_{i=1,j}[t]))) * Unprep_{i=1,j}[t] + \\ \sum_{i=2}^{4} [\tau_{i-1} * (1 - vc_{i-1,j}[t]) * Un_{i-1,j}[t] - (vc_{i,j}[t] + ((\tau_{i} + mm) * (1 - vc_{i,j}[t]))) * Unprep_{i,j}[t]] \\ \frac{dUnAIDSprep_{j}}{dt} &= \tau_{i=4} * (1 - vc_{i=4,j}[t]) * Unprep_{i=4,j}[t] - (vc_{i=5} + ((mm + mu[t]) * (1 - vc_{i=5}))) * UnAIDSprep_{j}[t] \end{array}$

Diagnosed compartments

 $\begin{aligned} \frac{dDx_{j}}{dt} = vc_{i=1,j}[t] * Un_{i=1,j}[t] - (\tau_{i=1} + Tx_{i=1,j}[t] + dxlf_{i=1}[t] + mm) * Dx_{i=1,j}[t] + bc_{i=1}[t] * DxL_{j}[t] + \\ \sum_{i=2}^{4}[vc_{i,j}[t] * Un_{i,j}[t] + \tau_{i-1} * Dx_{i-1,j}[t] - (\tau_{i} + Tx_{i,j}[t]trepgh - risk, l is low risk; "number is a ersons\\\\M of any sub - \\] + [vc_{i=5} * UnAIDS_{j}[t] + \tau_{i=4} * Dx_{i=4,j}[t] - (Tx_{i=5,j}[t] + dxlf_{i=5}[t] + mm + mu[t]) * Dx_{i=5,j}[t] + bc_{i=5}[t] * DxL_{j}[t]] \\ \frac{dDxL_{j}}{dt} = \sum_{i=1}^{5} dxlf_{i}[t] * Dx_{i,j}[t] - \sum_{i=1}^{5} bc_{i}[t] * DxL_{i,j}[t] - mm^{*}DxL_{j}[t] \\ \frac{dTxNVL_{j}}{dt} = \sum_{i=1}^{5} Tx_{i,j}[t] * Dx_{i,j}[t] - (\omega_{j} + \kappa 1_{j}[t] + mm)^{*}TxNSVL_{j}[t] + \psi_{j} * TxSVL_{j}[t] + \gamma_{j} * TxL_{j}[t] \\ \frac{dTxSVL_{j}}{dt} = \omega_{j} * TxNSVL_{j}[t] - (\kappa 2_{j}[t] + \psi_{j} + mm)^{*}TxSVL_{j}[t] \\ \frac{dTxL_{j}}{dt} = \kappa 1_{j}[t] * TxNSVL_{j}[t] + \kappa 2_{j}[t] * TxSVL_{j}[t] - (\gamma_{j} + mm)^{*}TxL_{j}[t] \\ \end{bmatrix}$

Where \mathbf{j} =infected MSM subgroups defined by phylogenetic results (group 1 to 19); $\mathbf{i} = 1$ (CD4>500), 2 (CD4 351-500), 3 (CD4 201-350), 4 (CD4≤200), 5 (AIDS); \mathbf{h} is high-risk, \mathbf{l} is low risk; \mathbf{t} is time, from 1981 to 2022, with time-step =1/52;

Force of infection λ $\lambda_{l,j} = (\text{lowl}_j *$ $R_{l,x=1} * A_j[t] + R_{l,x=2} * \left(\sum_{i=1}^4 Un_{i,j}[t] + \sum_{i=1}^4 Unprep_{i,j}[t] + DxL_j[t] + TxL_j[t]\right) + R_{l,x=3} * (UnAIDS_j[t] + UnAIDSprep_j[t]) + (R_{l,x=4} * \sum_{i=1}^5 Dx_{i,j}[t]) + R_{l,x=5} * TxNSVL_j[t] + R_{l,x=6} * TxSVL_j[t]$ / N[t] $\lambda_{h,j} = ((1-\text{lowl}_j) *$ $R_{h,x=1} * A_j[t] + R_{h,x=2} * \left(\sum_{i=1}^4 Un_{i,j}[t] + \sum_{i=1}^4 Unprep_{i,j}[t] + DxL_j[t] + TxL_j[t]\right) + R_{h,x=3} * (UnAIDS_j[t] + UnAIDSprep_j[t]) + (R_{h,x=4} * \sum_{i=1}^5 Dx_{i,j}[t]) + R_{h,x=5} * TxNSVL_j[t] + R_{h,x=6} * TxSVL_j[t]$ / N[t]

Where $lowI_j$ is the proportion of low risk infected MSM; N is the total number of MSM in the community regardless of HIV serostatus N[t] = mN*msmp + aMSM[t]

Where **mN** is the number of adult male population (15-64 years old) in 1981; **msmp** is the proportion of sexual active MSM in adult male population, assuming constant over time; **aMSM** is the annual net change of number of MSM, which is proportional to the net change of adult male population size

and

reproduction number divided by duration for low risk level: $R_{l,x} = \frac{\beta_x * c_l * \text{duration}_x}{(\beta_x + c_l + \frac{1}{\text{duration}_x})} \div \text{duration}_x$ reproduction number divided by duration for the high risk level: $R_{h,x} = \frac{\beta_x * \text{duration}_x}{\text{duration}_x} = \beta_x$

Where $\mathbf{x} = 1$ (acute infection), 2 (undiagnosed chronic infection or loss to follow-up), 3 (undiagnosed AIDS), 4 (diagnosed chronic infection and AIDS), 5 (treatment without viral load suppression), 6 (treatment with viral load suppression), $\boldsymbol{\beta}$ = transmission hazard, \mathbf{c} = number of sex partners per year, **duration**= period of each stage (1/ α for acute infection, 1/ τ for chronic infection)

Table S2 Model parameters			
Description	Symbol	Estimated value	Further explanation / Source
Biological narameters			Source
Transmission hazard in	ß		
heterosexuals (per year)	Ρ		
Undiagnosed acute infection	ß1	2 76	[2]
Undiagnosed chronic infection	B2	0.106	[2]
Undiagnosed AIDS	р <u>2</u> ВЗ	0.76	[2]
Diagnosed chronic infection	р5 В4	0.036	[2]
and AIDS	μ	0.050	[2]
Initiated treatment with NSVL	ß5	0 179	[3]
Initiated treatment with SVI	р <i>5</i> Вб	0.00178	[3]
Lost to follow-up	ро В2	0.106	[3]
Adjusting vector for estimating	р 2	1 2	[2] Calibration
transmission hazard in MSM		1.2	Canoration
Duration of disease stages			
Acute infection	1/α	0.5 years	[2]
Chronic infection	$1/\alpha$	Total 6 5 years	[²] Clinical data
$CD4 > 500/\mu I$	1/ *	22 months	Clinical data
$CD4 251 500/\mu L$	$1/c_{i=1}$	21 months	Clinical data
CD4 331-300/µL	$1/\tau_{i=2}$		
CD4 201-350/µL	$1/\tau_{i=3}$	19 months	Clinical data
CD4 ≤200/µL	$1/\tau_{i=4}$	16 months	Clinical data
Effectiveness of PrEP usage			
High adherence	efficacyH	70%	[4]
Low adherence	efficacyL	23%	[4]
Annual mortality rate for AIDS	mu		
Before 2000		0.3	Clinical data
on or after 2000		0.1	Clinical data
Mortality rate for general	mm	0.00517	Population census
population			
Behavioral parameters			
% of low risk group	lowrisk	57%	Data from our
			ongoing study
Duration of stable sexual	с		Calibration
partnership			
PrEP usage			
Proportion of high risk group	PrEPh	[tested in sensitivity analysis]	Assumption
on PrEP			
High adherence	highadhH	[tested in sensitivity analysis]	Assumption
Low adherence	1-	1- high adherence proportion	Assumption
	highadhH		
Proportion of low risk group	PrEPl	[tested in sensitivity analysis]	Assumption
on PrEP			
High adherence	highadhL	[tested in sensitivity analysis]	Assumption
Low adherence	1-	1- high adherence proportion	Assumption
	highadhL		
Drop-out rate of PrEP usage	dH, dL	20% for both high and low adherence	

Annual rate of changing PrEP			
adherence			
From high to low adherence	toLPrEP	20%	[4]
From low to high adherence	toHPrEP	10%	[4]
Cascade of HIV care			
Diagnosis rate	vc_i	Varied across time and sub- groups	Clinical data
Loss to follow-up rate (before treatment)	$dxlf_i$	Varied across time and sub- groups	Clinical data
Back to care rate (before treatment)	bc_i		
Treatment initiation rate	Tx_i	Varied across time and sub- groups	Clinical data
Treatment loss to follow-up	к1, к2	Varied across time and sub-	Clinical data
Back to treatment rate	γ	Varied across time and sub-	Clinical data
		groups	
Viral suppression rate	ω	Varied across sub-groups	Clinical data
Viral rebound rate	ψ	Varied across sub-groups	Clinical data
Others			
Non-locally acquired infections	nonlocal	Varied across time and sub- groups	Annual surveillance reports for the total number of non-local infections,[5] and randomly assigned to subgroups, validated by simulations
Male (aged 15-64) population size	mN	1904357 in 1981	[6]
Proportion of sexually active MSM in adult male population	msmp	0.02	[7]
Annual net change of number of MSM	aMSM	Net change of mN * msmp, change over time	[6], [7]

-

Supplementary figures

Supplementary Fig. S3. Impact of overall effectiveness of PrEP along high adherence PrEP coverage (1%, 10% and 90%) in MSM

The impact of PrEP effectiveness were analysed in scenarios of increasing the effectiveness of PrEP (A) from 23% to 47% in low adherence, and effectiveness of high adherence remains 70%; (B) increasing from 23% to 52% in low adherence, and from 70% to 99% in high adherence.

Supplementary Fig. S4. In high HIV incidence place, estimates of proportion of new infections averted in 2021 above scenario without PrEP in sensitivity analyses of 0-90% high adherence PrEP coverage target high and low-risk groups

Parameter	Value	Source
Annual cost in year 2016 (USD)		
Specialist visit (4 visits per year	\$536	Specialist visit cost as listed in
for HIV patients and PrEP users)		http://gia.info.gov.hk/general/201106/29/P2011062
		<u>90186_0186_80935.pdf</u> ;
		Further adjustment was made by inflation rate
		(composite consumer price index) estimated by
		Census and Statistics Department, Hong Kong
		Special Administrative Region.
		Market price of PrEP drug in 2016;
		With reference to the previous study,[4] high
		adherence PrEP users were defined as ≥75% usage.
		We take the mid-point of 75% and 100% for the
		estimation of PrEP annual cost;
		Further adjustment was made by inflation rate
PrEP annual cost (high adherence		(composite consumer price index) estimated by
in 87.5% usage, daily oral		Census and Statistics Department, Hong Kong
HKD188 (~\$24) per dose)	\$7703	Special Administrative Region.
		Market price of PrEP drug in 2016;
		We take the mid-point of 1% and 75% for the
		estimation of low adherence usage of PrEP
		(38%).[4];
		Further adjustment was made by inflation rate
PrEP annual cost (low adherence		(composite consumer price index) estimated by
in 38% usage, daily oral HKD188		Census and Statistics Department, Hong Kong
(~\$24) per dose)	\$3345	Special Administrative Region.
Testing cost for PrEP (HIV per		
visit, and creatinine, syphilis, CT,		
NG once per year)	\$104	
ART annual cost for HIV-		
infected	\$16761	
cost for CD4 and viral load		
measurement (4 times per year)	\$410	
Utility	1	
Noninfected	1	[8]
Pre-treatment with	0.025	[0]
CD4 >= 350	0.935	
CD4 200-349	0.818	
CD4 <200 or AIDS	0.702	
		As viral load level is significantly associated with
On tracting and with NEVI	0.010	CD4 level, patients with NS VL are commonly with
On treatment with NSVL	0.818	10wer CD4 level and probably lower utility.
On treatment with SVI	0.035	we assume that CD4 level of patients with SVL is
Least follow yr	0.933	Decovering to a satisfactory level with high dillity.
Loss to follow-up	0.818	rations lost to follow-up are mostly with INSVL.
Death		101
Annual discounted rate	3.5%	[8]

Table S3 parameters for cost-effectiveness analysis

NSVL – non-suppressed viral load (>500 copies/mL); SVL – suppressed viral load (≤500 copies/mL)

Reference

1. Wong, N.S. The incorporation of viral load measures at sub-population level for modelling the HIV epidemic in Hong Kong. (2015).

2. Hollingsworth, T.D., Anderson, R.M. & Fraser, C. HIV-1 transmission, by stage of infection. *J Infect Dis*.**198**, 687-93 (2008).

3. Jean, K. et al. Effect of early antiretroviral therapy on sexual behaviors and HIV-1 transmission risk among adults with diverse heterosexual partnership statuses in Côte d'Ivoire. *The Journal of Infectious Diseases*.**209**,431-40 (2014).

4. Mitchell, K.M. et al. Potential impact of pre-exposure prophylaxis for female sex workers and men who have sex with men in Bangalore, India: a mathematical modelling study. *J Int AIDS Soc.* **19**, 20942 (2016).

5. Virtual AIDS Office of Hong Kong. *Virtual AIDS Office – HIV surveillance office*. <u>http://www.info.gov.hk/aids/english/surveillance/sur_report/hiv15.pdf</u> (2015)

6. Census and Statistics Department HKSAR. *Demographic trends in Hong Kong 1981–2011*. http://www.censtatd.gov.hk/hkstat/sub/sp150.jsp?productCode=B1120017 (2012)

7. Lau, J.T., Siah, P.C. & Tsui, H.Y. A study of the STD/AIDS related attitudes and behaviors of men who have sex with men in Hong Kong. *Arch Sex Behav.* **31**, 367-73 (2002).

8. Schneider, K., Gray, R.T. & Wilson, D.P. A Cost-effectiveness Analysis of HIV Preexposure Prophylaxis for Men Who Have Sex With Men in Australia. *Clin Infect Dis.* **58**, 1027-34 (2014).