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Supplementary Note 1: Sample Growth and Structure 

The sample was grown by solid-source molecular epitaxy (MBE) on semi-insulating GaAs 

(001) substrate. After oxide desorption, a 200 nm thick GaAs buffer was grown at a substrate 

temperature Tsub = 580 °C. Then the substrate temperature was increased to 600 °C and a 100 

nm thick Al0.75Ga0.25As sacrificial layer was deposited, followed by 5 nm GaAs, which was 

used to smoothen the surface and avoid oxidation of the membranes after releasing them from 

the substrate. Subsequently, 90 nm Al0.2Ga0.8As and 30 nm Al0.4Ga0.6As layers were deposited 

in sequence. Nanoholes were then etched on the surface of this layer by droplet etching 1,2: After 

stopping the arsenic supply, 0.5 monolayer Al were deposited so that the Al droplet can etch 

holes into the surface of Al0.4Ga0.6As layer during a subsequent annealing step under As flux. 

To infill the nanoholes, we deposited 1.6 nm GaAs followed by 2 minutes annealing. The GaAs 

QDs formed in the nanoholes due to the diffusion of GaAs driven by capillarity effects 3. Since 

the surface is practically flat after this step 4, the shape of the QDs can be assumed to coincide 

with that of the nanoholes. An inverted AFM image of such a nanhole is shown in Fig. 1(a) of 

the main text. The QDs were capped with 30 nm Al0.4Ga0.6As layer, followed by 90 nm 

Al0.2Ga0.8As layer. Finally, a 5 nm GaAs completes the growth. The whole structure of the as-

grown sample is shown in Supplementary Figure 1. 

 

Supplementary Figure 1. Structure of the GaAs QDs sample used in this work. 

 

 

 

Supplementary Note 2: Device Processing 

500-µm thick, (001)-oriented, PMN-PT substrates (TRS Techonogies Inc.) were lapped 

and polished to a thickness of ~300 µm and cut by a commercial 3D-Micromac micromachining 

system equipped with a femtosecond laser5,6. The laser spot was focused down to 5 μm. 
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Supplementary Figure 2(a), Microscope image of the micro-machined “two fingers” PMN-

PT actuator. (b), Enlarged microscope picture of the gap between the two fingers. (c), 

Micrograph of one device studied in this work, a large QDs-containing membrane bonded on 

the PMN-PT actuator (d), Microscope picture of another device featuring a narrow stripe 

membrane (3.5 μm in width ) bonded on the PMN-PT actuator. 

 

A representative picture of a micro-machined “two-fingers” 

[Pb(Mg1/3Nb2/3)O3]0.72[PbTiO3]0.28 (PMN-PT) actuator employed in our study is shown in 

Supplementary Figure 2(a). Because the total length of the two fingers (3.0 mm in total) is much 

larger than the length of the gap (20 ~ 60 μm) the relative size change of the gap is much larger 

than the relative deformation of the fingers when an electric field Fp is applied across the fingers. 

This is the key why this novel micro-machined PMN-PT can provide large strain amplification. 

Supplementary Figure 2(b) shows a microscope image of the gap between the two fingers. 
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Information on the membrane processing and integration on the actuator can be found in 

Supplementary Note 5 and in Refs.5,6. Supplementary Figure 2(c) and (d) show the two different 

sizes of membranes which we studied in this work. Supplementary Figure 2(c) presents an 

optical microscope picture of the device with a large membrane used for the data shown in in 

Figure 3 in the main text and Supplementary Figure 2(d) shows an image of a device with 

narrow stripe membranes, used in Figure 2 and Figure 4 in the main text. 

Supplementary Note 3: Stress configuration and finite element simulations  

Since in the experiment we were not able to provide an independent measurement of the 

strain configuration produced by the piezoelectric actuator, we have performed finite element 

method (FEM) simulations. We provide below the relation between stress and strain in the case 

of ideal uniaxial stress along the [100] crystal direction of GaAs and the results of the numerical 

calculations.  

Using the Voigt notation for the stress and strain tensors, the Hook’s law for a cubic 

semiconductor reads: 
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Here the σij are the independent components of the stress tensor, Cij the components of the 

elastic stiffness tensor and εij the strain tensor. Since in our case the uniaxial stress is applied 

along the [100] direction, there is no shear stress, so that the above equation can be further 

simplified as: 
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Here �[���] is the Poisson ratio for uniaxial stress along the [100] direction (ν = 0.31 for GaAs 

at a temperature of about 10 K7). 

We used the commercial software package COMSOL Multiphysics to perform Finite 

Element Method (FEM) simulations for our actuators. All calculations assume linear elastic 

deformations. All the parameters are set based on one of the devices. We should mention that 

in the simulation we used the elastic and piezoelectric parameters of PMN-PT at room 

temperature. Since it is known that the piezoelectric constants of PMN-PT will decrease at 

cryogenic temperature8, we adjusted the electric field applied to the PMN-PT to obtain strain 

magnitudes similar to our experiment.  

 

Supplementary Figure 3. FEM simulations of the stress and strain distribution in our devices. 

(a) Major stress σxx map in the middle of the membrane in z direction (the same location of the 

QDs). The dashed line shows the position of the line scan in (b). (c, d) In plane strain (εxx, εyy) 

maps, respectively. We verified that εzz=εyy, consistent with a uniaxial stress configuration. 

Supplementary Figure 3(a) shows the major stress σxx map in our device. It shows quite 

homogeneous tensile stress in the suspended area of the membrane. In order to have a clearer 

picture of the stress distribution along the x direction of the membrane, we make a line scan 

[the line is locate in the middle of membrane, marked as dashed line in Supplementary Figure 

3(a)] along x, see Supplementary Figure 3(b). The suspend area (-10 μm < x < 10 μm) shows 

homogeneous tensile stress, while the tensile stress falls rapidly when we move to the area 
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bonded on the PMN-PT actuator and changes into compressive stress when moving away from 

the gap (not shown here). As mentioned above, for an ideal uniaxial stress, ��� =  ��� =

−�[���]���. Supplementary Figure 3(c) and (d) show the in plane strain maps of the strain tensor 

components εxx and εyy from the simulation. It is clear that in the suspend area there is tensile 

strain along x direction (εxx = 2.0% > 0) and compressive strain along y direction (εyy = -0.62% 

< 0), the Poisson ratio �[���] is about 0.31, consist with the expected value. 

The impact of stress on the electronic properties of our QDs and bulk GaAs is described 

in the main text and also in Supplementary Note 8-12. 

Supplementary Note 4: Additional photoluminescence data on macroscopic membranes 

To confirm the reliability and reproducibility of the results shown in the manuscript (Fig. 

3), measurements on another device with a large membrane were performed. The data collected 

on a randomly chosen QD located in the area of the membrane suspended above the actuator 

gap are shown in Supplementary Figure 4 Supplementary Figure 4(a) shows the color-coded 

PL spectra of the selected QD as a function of linear-polarization direction with no applied 

voltage to the actuator (Fp = 0 kV/cm). In spite of the fact that no stress is intentionally applied 

to the membrane, we see slightly polarized emission from the neutral exciton (X) and 

multiexcitonic lines (MX) and a substantially larger X fine-structure-splitting (FSS) compared 

to the values obtained on as-grown samples. We attribute these two observations to residual 

(anisotropic, see below) stress arising from the device processing and from the different thermal 

expansion coefficients of the materials present in the device (PMN-PT, semiconductor, SU8 

etc.), as mentioned in the main text. Under strong tension, see Supplementary Figure 4(b), all 

lines are nearly 100% polarized, similar to the results shown in Fig. 3(c) of the main text. In 

Supplementary Figure 4(c), we plot the degree of linear polarization P of X and MX as a 

function of Fp (tensile stress). For the MX lines we integrated the intensity of all lines. It is 

obvious that P increases with the increasing tensile stress, which is consistent with the 

experimental and theoretical analysis in the main text.  



7 
 

 

Supplementary Figure 4. (a-b) Color coded linear-polarization-resolved PL spectra of a GaAs 

QD at 0 applied field across the actuator and under high tensile stress. X and MX stand for 

neutral exciton and multiexcitonic lines. The slight polarization anisotropy observed in (a) is 

attributed to process- and cooling- induced stress. (c) Evolution of polarization degree with 

increasing tensile stress (magnitude of electric field Fp). (d) Evolution of the polarization 

orientation of X and MX for increasing |Fp|. While the initial polarization is randomly oriented, 

light becomes fully polarized parallel to the y direction (perpendicularly to the pulling direction) 

at large stress.   

 

The presence anisotropic prestress combined with random fluctuations in the confinement 

potential defined by the QD lead to emission which is partially linearly polarized along a 

random direction. In addition, the transition dipoles for the X emission have random orientation 
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even in absence of prestress2,4. In Supplementary Figure 4(d) we plot the polarization direction 

* along which the emission intensity is maximal as a function of the electric field across the 

actuator fingers (which we expect to be approximately proportional to the applied uniaxial 

stress). Independent on the initial polarization direction and the initial orientation of the X-

dipoles, the emission lines (X and MX) become fully polarized perpendicular to the pulling 

direction defined by the actuator at large uniaxial stress, which is consistent with the theoretical 

prediction in main text.  

 

Supplementary Figure 5. (a) AFM image of stripe-like membrane after H2SO4:H2O2:H2O 

etching (b) 3D view of the AFM image of etched membrane. (c) Line profile of etched 

membrane.   

Supplementary Note 5: AFM topographic image of stripe membranes 

The etching solution used to produce mesa structures on the semiconductor sample 

consists of H2SO4:H2O2:H2O (1:8:200 in volume ratios). Etching was performed at room 

temperature (RT). This etching solution is widely used for GaAs9 and is slightly anisotropic. 

During etching, the photoresist is undercut, leading to tilted side-walls, as illustrated by the 

AFM image in Supplementary Figure 5(a) and (b) and corresponding line scan in 

Supplementary Figure 5(c). The membrane is bonded upside-down on the actuator, so that the 

tilted edges act as rough reflectors, which allow us to collect z-polarized light from the sample 

top. Because of the poorly defined geometry and roughness, a quantitative evaluation of the 

relative intensity of y- and z-polarized components is not possible using this simple strategy. 
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However we expect z-polarized light to be "converted" in y-polarized light when detected from 

the top of the stripe, consistent with the results shown in Supplementary Figure 6 and Fig. 4 of 

the main text. 

 

Supplementary Figure 6. Color-coded polarization-resolved PL signal of a neutral exciton 

emission in a GaAs QD for different values of the electric field applied to the actuator. Tensile 

stress increases from top to bottom. An angle of 0° corresponds to polarization along the pulling 

direction x. Dz stands for one of the initially dark states, while Dx is the dark exciton state under 

tensile stress, By and Bz are the new two bright exciton states under tensile stress. The chosen 

color-scale enhances also weak features. 
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Supplementary Note 6: Linear-polarization-resolved PL spectra of neutral excitons 

confined in QDs embedded in stripe membranes 

Supplementary Figure 6 shows a set of polarization-resolved PL spectra of a neutral 

exciton X confined in a GaAs QD (QD1) under different tensile stresses [the same dot shown 

in Figure 2(c) of the main text]. These spectra provide a clear picture of the evolution of the X 

fine structure during the transition from a HHz to a HHx hole ground state (HGS). With 

increasing uniaxial stress, the initially dark exciton Dz becomes bright [Supplementary Figure 

6(a)] and gradually moves from the low energy side of the bright exciton By to its high energy 

side, and finally becomes a bright exciton Bz [Figure S6(d)]. The z-polarized component (Dz or 

Bz) is reflected by the sidewalls of stripe membrane and appears to have polarization 

approximately parallel to the y direction, as expected. The initially bright exciton Bx moves to 

the low side energy side of By with increasing stress. Moreover, the intensity of Bx drops 

monotonically with increasing stress (for this reason we refer to it as Dx for large tensile stress). 

Data shown in Supplementary Figure6 and additional collected for different values of the field 

Fp applied to the actuators were averaged to obtain a single spectrum for each value of Fp. To 

highlight the evolution of the fine structure, such spectra were shifted along the energy axis 

using the By as a reference. The result is shown in Supplementary Figure 7(a), (b). The same 

procedure was used for another QD (QD2) [Fig. 4(b-d) of the main text], which shows fully 

consistent behavior. Similar data for still another QD (QD3) are shown in Supplementary Figure 

7(c), (d).  

Overall, we see very similar behavior for all QDs. In addition, the high energy component 

Bz is consistently observed only in QDs contained in narrow stripes and not in large membranes. 

It should be noted that - especially for QD3 - a "full darkening" of the Dx line is not achieved 

within the applied range of Fp values. We qualitatively attribute this observation to the presence 

of prestress with main axes away from the [100] and [010] directions, consistent with the large 

FSS observed at low Fp. 

Lastly, the polarization orientation of the neutral exciton in QDs embedded in stripe 

membranes with increasing magnitude of electric field (uniaxial stress) is plotted in 

Supplementary Figure 7(e). Consistent results are obtained with QDs embedded in macroscopic 
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membranes: the polarization orientations show initially (no intentional uniaxial stress applied) 

quite random direction, and become perpendicular to the pulling direction ([100] direction) with 

increasing uniaxial stress. All these results provide compelling evidence that uniaxial stress can 

be used to deterministically set the orientation of the transition dipoles in a QD, consistent with 

the theory.   

 

Supplementary Figure 7. Evolution of fine structure of the neutral exciton confined in 

different QDs for increasing magnitude of electric field applied (uniaxial stress). (a), (b) for 

QD1, (c), (d) for QD3. Similar plots for QD2 are shown in the main text. (e) Evolution of the 

neutral exciton polarization orientation for different QDs for varying magnitude of electric field 

applied to the actuator (uniaxial stress). 
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Supplementary Figure 8. Illustration of the procedure used to compensate piezo-creep after 

data acquisition. (a) Typical polarization-resolved PL spectra of a trion (marked as X*) emission. 

(b) Energy position of the trion emission as a function of polarization angle [obtained from 

Gaussian fitting of the spectra shown in (a)] and its linear fit. (c), (d) the raw and corrected 

polarization resolved PL spectra of the neutral exciton (marked as X) emission of the same dot. 

 

Supplementary Note 7: Data correction for piezo creep-compensation 

Piezo-creep is a quite common phenomenon in ferroelectric materials and typically results 

in a logarithmically-varying strain at a fixed applied electric field12. As mentioned in the main 

text piezo-creep was observed during the measurements, especially at large Fp. This problem, 

which is not significant for small fields and can be fully compensated by an active feedback,10,11 

was addressed here by combining waiting times of about 10-20 min after setting a new piezo-

voltage value for new polarization-resolved measurements and data correction after acquisition. 

To illustrate the procedure, we take the QD shown in Fig. 3 in the main text with applied electric 

field of -10 kV/cm as an example. Generally the PL signal of the trion is chosen as a reference 

due to its rather high intensity, narrow full-width-at-half-maximum (FWHM), and absence of 

fine-structure, as shown in Supplementary Figure 8(a). Then, through Gaussian curve fit of the 
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trion emission line, the peak position for each polarization angle is plotted, see Supplementary 

Figure 8(b). For sufficiently long waiting times and relatively short acquisition time for the PL 

data, the creep-induced shift is approximately linear. A slope of the linear fit of the peak position 

vs polarization angle is used to slightly shift the polarization-resolved PL spectra. 

Supplementary Figure 8(c), (d) show the raw and corrected polarization resolved PL spectra of 

neutral exciton emission, respectively.  

Supplementay Note 8: Definition of quantization axis based on the atomistic empirical-

pseudopotential-method (EPM) and the configuration-interaction (CI) 

The HGS confined in the QD was calculated with the EPM+CI methods and projected to 

the eigenstates of the angular-momentum-projection operator Jn=Jn, with n=(cos, 0, sin) in 

the x-z plane for increasing tensile stress. (The eigenstates can be obtained from those of the Jz 

operator usind the transformations provided in Supplementary Note 9). The result for the 

projection |⟨���|���⟩|� is graphically shown in Supplementary Figure 9. Large values of 

the projection – let’s say above 0.9 (a typical value of |⟨���|���⟩|�  for conventional 

Stranski-Krastanow QDs) can be interpreted as the indication that it is meaningful to define a 

quantization axis along the direction specified by n. Low values indicate instead mixed HH-LH 

states, for which the total angular momentum is not well defined. The plot clearly shows that a 

z quantization axis is appropriate for our as-grown QDs, while the quantization axis is oriented 

along the x direction for large values of strain). The data shown in red in Fig. 1b and 1c of the 

main text correspond to vertical scans for =0 (z-axis) and =π/2 (x-axis), respectively.    
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Supplementary Figure 9. Value of the projection of the HGS on the HHn state for different 

values of strain. Large values of the projection indicate that it is meaningful to define a 

quantization axis along the direction specified by the unit vector n=(cos, 0, sin) in the x-z 

plane (=0 corresponds to the z-axis while =π/2 corresponds to the x axis). 

   

 

Supplementary Note 9: k.p model: bulk limit    

 

To illustrate the effect of uniaxial stress on the quantization axis of our QDs we have used 

k.p theory, which is well suited to describe the band structure of semiconductors close to a 

specific point of the Brillouin zone (here the zone center, i.e. the  point).  

Since the CB is energetically well separated from the VBs, we have neglected coupling 

and treated separately the CB and the VBs. The dispersion of the 6 VBs and the effect of strain 

are described by the Luttinger-Kohn and Pikus-Bir Hamiltonians. For the periodic part of the 

Bloch wave functions |��⟩, � = 0 … 8   for electrons in the CB and holes in the HH, LH, SO 

bands at the  point we use the convention of Ref.18: 
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Here X, Y, Z have the same angular dependence as (cosj sinq, sinj sinq, cosq) and can be 

expressed as proper linear combination of the spherical harmonics with angular momentum 

quantum number l=1 (see Ref. 18) and S is spherically symmetric (l=0). The vertical arrows 

stand with spin up and spin down states with respect to the z quantization axis. In the main text 

we have called the X, Y, Z states as |��⟩.  By using this basis, the Hamiltonian reads: 
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x,y, and z correspond to the [100], [010] and [001] crystal directions, respectively; Eg is the 
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energy bandgap and Ev the energy of the HH and LH valence bands at the  point in absence 

of strain; the parameters  are the Luttinger parameters, m* is the electron effective mass and ac, 

av, b, d are the deformation potentials. The values of these parameters were taken from Ref. 19. 

By diagonalizing the Hamiltonian for a fixed value of k we obtain 8 eigenvalues i (each 

at least twice degenerate) and the corresponding eigenvectors |��
� � for the valence bands (in 

general a mixture of HH, SO and LH with different spins) and |��
�
� for the two conduction 

bands. In general, the eigenstates corresponding to the VBs can be written as:  

|��
� � = ∑ ��

�  |��⟩�
���                           (7) 

 

Note that in the model used above the coefficients corresponding to the CB are zero. Since 

the basis states are linear combinations of the X, Y, Z states with spin-up and spin-down, the 

eigenstates of the Hamiltonian can also be expressed as a linear combination of such states, as 

stated in the main text.  

The model can be used to calculate the band-structure in proximity of k=0 as illustrated in 

Figs. 1(b-c) of the main text. As an additional remark we would like to add that the nature 

("heavy" or "light") of the highest energy VB can be qualitatively understood in a tight-binding 

picture. A HHx state has only contributions from atomic orbitals lying in the y-z plane and no 

contribution from px orbitals (similar to a HHz state having contributions from atomic orbitals 

in the x-y plane and no contribution from pz orbitals, see form of |���
�,� � above). Upon tension 

along the x direction the overlap between the px-like atomic orbitals decreases along the 

“stretched” direction, weakening the bonds involved. In contrast, the overlap between the py 

and pz-like atomic orbitals increases (to a lesser extent than the reduced overlap because the 

relative displacement along x (strain component xx) is much larger than yy). A 

decreased/increased overlap leads to a drop/increase of the energy associated with the bond 

(due to Heisenberg's principle). Following this argument it is clear that the energy of the HHx 

state increases under tension, while that of the LHx state drops with respect to the unstrained 

situation. This simple picture allows us also to understand the origin of the anisotropic effective 

mass of the two bands. The HHx state has no px orbitals, making the motion of electron motion 

along the x direction "difficult". The effective mass of such electrons is thus "large". In the 

perpendicular direction motion is instead "easy" because of the presence of py and pz orbitals 
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with improved overlap. For the LHx state we have instead "easy" motion along x (although with 

an increased effective mass compared to the unstrained case) and "difficult" in the perpendicular 

direction (because the LHx state consists mostly of px orbitals). Similar arguments can be 

applied for the compressive case. It should be noted that the topmost band (LHx) is characterized 

by an extremely light effective mass in this case, since compression along x produces a 

pronounced improvement of the overlap between px atomic orbitals). 

We now provide an additional argument to illustrate that the quantization axis can be 

rotated by strain. For sufficiently large strain, we can neglect the effects produced by 

confinement. In addition, because of the relatively large value of the spin-orbit coupling-

constant  we can limit our attention to the topmost 4 bands, which are described by the 

following 44 block of the Hamiltonian in Eq. 1: 
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�               (8) 

For compressive biaxial stress in the x-y plane (which we have mentioned in the main text), 

the non-zero components of the strain tensor are ��� = ��� < 0  and ��� = −
����
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���~ −

0.9��� > 0. 

With the same basis used for the Hamiltonian, the operator for the z component of the total 

angular moment of an electron in the HH or LH bands is given by: 
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It is easy to see that this operator commutes with the Hamiltonian at the  point, since both 

S and R are zero in the case of ��� = ���. This means that it is possible to choose the eigenstates 

of ��×� and ��� simultaneously. In other words, the eigenstates have well defined Jz. 

In the case of uniaxial stress along x we have ��� = ���  and ��� = −
�������

���
���~ −

3.2���. We see from this expression, that uniaxial stress produces a strain configuration, which 
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is much more anisotropic than biaxial stress, as mentioned in the main text. Now S is still 0 

(because there is no shear strain), but R does not vanish. Since the operator for the component 

x of the total angular moment is given by: 
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it is easy to see that now [���, ��×�]=0, i.e. that the quantization axis is parallel to the x axis.  

Supplementary Note 10. Inclusion of vertical confinement and calculation of mixing 

Because of the flat morphology of the studied QDs, the main effect of confinement stems 

from the vertical (z) direction. We included the effect of vertical confinement in our k·p model 

following two approaches. The simplest is to emulate the effect of confinement by adding a 

fixed biaxial compression, as described in the text. After diagonalization of the Hamiltonian, 

the eigenstates are projected either to the (HH, LH, SO)z states or to the (HH, LH, SO)x states 

to obtain the degree of mixing for the z or the x quantization axis (shown in Fig. 1(e,f)). The 

(HH, LH, SO)x states are obtained from the conventional (HH, LH, SO)z states using the 

transformations provided in Ref. 18: 
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�

�             (12) 

with � = 90°, � = 0° for the x-axis. 

For Fig. 1(d-f) we have used a biaxial compression of -120 MPa to obtain results close to those 

obtained by the EPM method. The Bloch wavefunctions shown in Fig. 1 were obtained by 

replacing the states X, Y, and Z with their representation in polar coordinates. The evolution of 

the Bloch wavefunction of the topmost VB states in prestressed bulk GaAs under uniaxial stress 
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is shown in the Supplementary Movie. This was obtained by assuming a fixed biaxial stress 

��� = ��� = −120 MPa superimposed to a variable uniaxial stress ��� from 0 to 320 MPa.    

A more correct approach to include the vertical confinement is to consider a GaAs quantum 

well (QW) with thickness hQW embedded in Al0.4Ga0.6As barriers. The confined states can be 

calculated by combining k·p theory with the effective mass equation. In this approach, kz in Eq. 

1 is replaced by the operator −�
�

��
 and the spatial dependence of the VB-edge energy EV(z) 

acts as a potential. For the VB profile we have used simple linear interpolations (Vegard's law) 

of the values of Ev,av for GaAs and AlAs provided in Table C.2 of Ref.18 while all other 

parameters are obtained using the Vegard's law on parameters provided in Ref.19. The uniaxial 

stress applied to the structure is varied continuously and the corresponding strain values are 

assumed to be constant throughout the heterostructures (we used the stiffness constants of GaAs 

also for the barriers). We solved the QW problem by the finite difference method. The z 

direction is discretized in N steps and each of the elements appearing in Eq. 1 is replaced by a 

NN block. To guarantee that the resulting 6N6N matrix describing the VBs is Hermitian we 

used the approximations provided by Ref.20 for the derivatives (Note that in the second term of 

Eq. 35 one of the A(zi-1) should be replaced by A(zi+1)). Diagonalization is performed with the 

LA_EIGENVEC routine (from LAPACK) implemented in IDL6.4. 

Supplementary Figure 9 shows the result for the mixing evaluated along the z axis and x 

axis for hQW=4 and 12 nm. (Our QDs have a height between 7 and 9 nm). It is evident that the 

trends closely resemble those obtained with the simplified "bulk" model with a fixed prestress 

and the more sophisticated 3D EPM model (see Fig. 1(b-c) of main text). We note that for a 

QW we have a pure HHz state in absence of strain. In a lens-shaped QD this is not the case 

because the lateral confinement and other effects induces some LH-HH mixing, as previously 

calculated for the dots considered here in Refs.17,21. In addition we see that the transition from 

a z- to an x-oriented quantization axis becomes smoother when the quantum well thickness 

decreases. In particular we see that for a thin QW substantial mixing persists under large 

uniaxial tension. This means that tall QDs are required to achieve full rotation of the axis and 

reduce residual mixing. In addition, compressive stress present in commonly studied SK dots 

would further hinder the rotation of the quantization axis.   
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Supplementary Figure 9. Calculation of mixing for GaAs/AlGaAs QWs of different thickness. 

The rotation of the quantization axis is facilitated by a larger QW thickness. This means that 

tall GaAs QDs are preferable. The results of the EPM calculations shown in Fig. 1 of the main 

text are reported as symbols. 

 

Supplementary Note 11. Emission energy shift under uniaxial stress along [100] 

Since we have not determined the strain induced by our actuators experimentally, we can 

estimate the strain by comparing the observed energy shift to that expected from calculations. 

Supplementary Figure 10 shows the calculated emission energy of an exciton in a GaAs QD 

computed by the EPM+CI methods and a simple k·p calculation for QWs with thickness 

ranging from 4 to 12 nm (in this case no excitonic effects were included). While we have linear 

shifts for sufficiently large tensile strains, the behavior is strongly non-linear at small strains 

and in the compressive regime. This effect, which is seen both in the EPM and k·p calculations, 

stems from an anticrossing of the two uppermost VBs, as illustrated in Supplementary Fig. 11, 

where we have used again the bulk Hamiltonian of Eq. 1. To emulate the behaviour of a QW, 

we have shifted the CB terms by 52.8 meV (calculated confinement energy for electrons in a 8 

nm QW), the diagonal HH terms (P+Q) by 9.1 meV and added a fixed energy shift of 10 meV 

to the diagonal terms corresponding to LH. 
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Supplementary Figure 10. Calculated emission energy of a GaAs QD via the EPM and CI 

methods and comparison with the emission energy of QWs with different thickness calculated 

with the k·p method. 

 

The EPM and k·p calculations follow qualitatively the same trends. However the EPM 

results shows enhanced slopes both under tension and compression. Although the reason is not 

yet clear, we can estimate that an energy shift of 100 meV (see Fig. 2c of the main text) 

corresponds to a major strain of about 1.5-1.7%.    



22 
 

 

Supplementary Figure 11. Illustration of the origin of the non-linear energy shift of the QD 

emission. 

 

 

Supplementary Note 12. Evolution of selection rules under uniaxial stress 

The change of quantization axis upon uniaxial stress changes substantially the selection 

rules for dipole-allowed transitions. Both theoretically and experimentally we have seen that 

initially bright transitions turn dark and initially dark transitions turn bright. 

By using the experimentally measured radiative lifetime  of bright excitons in unstrained 

QDs (with HHz ground state)22 we can estimate the transition rates -1 for transitions with 

polarization along the axes of the cubic cell from both the EPM and k·p calculations as shown 

in Fig. 5a of the main text. For the sake of completeness we show in Supplementary Figure 12 

the calculated transition strengths for a QW. At 0 strain the HGS has dominant HHz character 
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according to the 3D EPM calculations (or pure HHz character according to the 1D calculations 

for a 12-nm thick QW). Under tensile strain we have the transition to a HHx HGS, which does 

not couple to x-polarized light. The transition rate for the x-polarized emission is slightly higher 

than for the initially unstrained QD, while the z-polarized transition is slightly weaker. In other 

words the overall oscillator strength, which is initially equally shared between the in-plane 

transition-dipoles is redistributed in a slightly asymmetric fashion under uniaxial tension. A 

direct comparison with the experiment would require time-resolved measurements of temporal 

decay. 

 

Supplementary Figure 12. Estimated transition rates for light polarized parallel to the x, y, and 

z direction. 

 

Under compression (not investigated experimentally yet, but very interesting for 

integrated-photonics applications), almost the whole oscillator strength is transferred to the x-

polarized emission. The effect is robust, as it is reproduced both by the 3D and 1D simulations 

and stems from the properties of bulk GaAs (shown in Fig. 5a of the main text). 
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