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Background on Timoshenko beam model for thermally fluctuating biofilaments 
 
In this paper, we propose a theory for thermally fluctuating that captures both shear and 
bending deformation effects per Timoshenko beam theory14. The governing Equations (1-
2) are deduced from Hamilton’s Principle 
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in which the elastic energy 𝑉 and work by random thermal noise 𝑛 are  
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Here, =C

=+
 is the total rotation of the cross section of the biofilament due to bending and shear 

deformations and 𝜑 is the component due to bending alone. The quantities 𝑊*+  and 𝑊,-  
denote energy dissipated by external friction (hydrodynamic drag) and internal friction, 
respectively which are introduced in (S1) using Rayleigh dissipation functions. The rate of 
energy dissipation due to hydrodynamic drag is 
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which, employing the Rayleigh dissipation function, results in  
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Similarly, the rate of energy dissipation due to internal friction is 
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in which the first and second terms capture the rates of energy dissipation due to bending 
deformation and shear deformation, respectively. Note the structure of (S6) that is 
analogous to that of the elastic energy (S2). Employing the associated Rayleigh dissipation 
function results in 
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Substituting (S2-S7) into Hamilton’s Principle (S1) and integrating by parts results in the 
following Langevin formulation ((1-2) in the paper) 
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Note that if the shear deformation effect is neglected, the total rotation of cross section is 
due to bending alone is described by the constraint =C

=+
= 𝜑.  Upon employing this 

constraint, the Eqns. (S2) and (S6-S7) reduce, respectively, to 
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In this limit, Timoshenko theory reduces to the Euler-Bernoulli theory employed in WLC 
model12. Substitution of (S3-S5) and (S10-S11) into (S1) yields 
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as expected.  

If the internal friction is neglected	  (𝜂T	  P = 𝜂O	  P = 0), equations (S8-S9) reduce to ((10-11) in 
the paper) 
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Derivation of relaxation time constants  

 
The Fourier transform of (S8) and (S9) with respect to space and time yields 
 

 
in which 𝜔  and q denote the frequency and wavenumber of propagating waves, 
respectively and 𝑈ab , 𝛷ab , and 𝑁ab  denote the (double) Fourier transforms of the 
transverse displacement 𝑢, the rotation 𝜑, and the random thermal noise	  𝑛, respectively.  
Solution of 𝑈ab yields 
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with 
 

A = 𝐵𝑞8 + 𝜅𝑆 
 

B = −𝜔(𝜂OP 𝐼𝑞8 + 𝜂TP𝐴) 

 (S19) 

 
C = (𝜂TP𝐴𝜔𝑞)8 − (𝜅𝑆𝑞)8 + 𝜅𝑆𝑞8(𝐵𝑞8 + 𝜅𝑆) 	  − (𝜂TP𝐴𝜔𝑞8 + 𝜂𝜔)(𝜂OP 𝐼𝜔𝑞8 + 𝜂TP𝐴𝜔)	  	   

 
D = 2(𝜂TP𝐴𝜔𝑞)(𝜅𝑆𝑞) − 𝜅𝑆𝑞8(𝜂OP 𝐼𝜔𝑞8 + 𝜂TP𝐴𝜔) − (𝜂TP𝐴𝜔𝑞8 + 𝜂𝜔)(𝐵𝑞8 + 𝜅𝑆) 

 
The power spectral density for 𝑢 follows from  
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with 
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𝛷ab{(−𝐵𝑞8 − 𝜅𝑆) + 𝑖(𝜂O	  P 𝐼𝜔𝑞8 + 𝜂T	  P 𝐴𝜔)} + 𝑈ab(𝜂T	  P 𝐴𝜔𝑞 + 𝑖𝜅𝑆𝑞) = 0 (S16) 

𝛷ab(𝜂T	  P 𝐴𝜔𝑞 + 𝑖𝜅𝑆𝑞) + 𝑈ab{𝜅𝑆𝑞8 + 𝑖(−𝜂T	  P 𝐴𝜔𝑞8 − 𝜂𝜔)} = 𝑁ab (S17) 



 
 
The time autocorrelation function ℛ(𝑇) for 𝑢 follows from the inverse Fourier transform 
of (S20) with respect to 𝜔 in which one assumes ideal (white) random thermal noise which 
yields ((5-6) in the paper) 
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Note that 〈𝑁ab8〉 is a function of wavenumber	  𝑞  only. To find thermal noise, we first 
rewrite the elastic energy (S2) in terms of wavenumber 𝑞  
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From equipartition theorem and (S28),  
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Transforming (S20) from frequency domain to time domain must recover (S29) at equal 
time. In doing so, the thermal noise correlation in wavenumber and time domains is 
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Equations (S20-S30) confirm that the thermal noise is related to the two internal dissipation 
coefficients 𝜂T	  P  and 𝜂O	  P , external dissipation coefficient 𝜂, and to absolute temperature 𝑇. 
 
If the internal friction is neglected, i.e., 𝜂T	  P = 𝜂O	  P = 0, the Fourier transforms of (S14) and 
(S15) with respect to space and time yield 
 

 
Then, the power spectral density for 𝑢 follows from 
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The inverse Fourier transform of (S33) with respect to 𝜔  yields the associated 
autocorrelation ℛ(𝑇)	  and relaxation time 𝜏�	  become ((12-13) in the paper) 
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Transforming (S33) to equal times must recover (S29). In this case, the thermal noise 
correlation in wavenumber and time domains is 
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Equation (S37) confirms that the amplitude of thermal noise is proportional to the absolute 
temperature 𝑇 and external viscosity coefficient 𝜂. 

𝛷ab(−𝐵𝑞8 − 𝜅𝑆) + 𝑈ab(𝑖𝜅𝑆𝑞) = 0 (S31) 

𝛷ab(𝑖𝜅𝑆𝑞) + 𝑈ab{𝜅𝑆𝑞8 + 𝑖(−𝜂𝜔)} = 𝑁ab (S32) 


