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Supplementary Note 1 - Derivation of return mapping algorithm from
plastic flow

The return mapping algorithm is the discrete equivalent to solving for a strain that satisfies the plastic flow rule in
Equation 5 of the Methods section and that lies in the CamClay yield surface. In this section first we outline the
method of Simo and Meschke [1] to derive the discrete equations from their continuous versions. This procedure
starts by assuming there is no plastic flow and a return mapping algorithm is derived from the flow equations that
shows how to project back to the yield surface if the assumption of no plastic flow is invalid.

Consider the evolution of bE from time tn to time tn+1 = tn + ∆t. We consider this evolution per particle, and
thus it is useful to take a Lagrangian view. We outline the notation used in the Lagrangian view in the Methods
section of the paper. Specifically useful here is the flow map φ : Ω0× [0, T ]→ Rd, and its relation to the deformation
gradient F = ∂φ

∂X . Define the time tn configuration of the material as Ωtn =
{
x̃ = φ(X, tn) for some X ∈ Ω0

}
and

define φ̃ : Ωtn × [tn, T ] → Rd as φ̃(x̃, t) = φ(φ−1(x̃, tn), t). Intuitively, φ̃ defines the deformation as if the time tn

configuration Ωtn of the material is the reference configuration, rather than Ω0 as in the standard Lagrangian view.
This is some times called an updated Lagrangian view. While the deformation gradient F defines the deformation

from the initial configuration (Ω0) to the time t configuration (Ωt), the Jacobian F̃ = ∂φ̃
∂x̃ defines the deformation from

the time tn configuration (Ωtn) to the time t configuration (Ωt), where t ≥ tn. Also these are related as F = F̃Fn,
or more precisely F(X, t) = F̃(φ(X, tn), t)F(X, tn) for all X ∈ Ω0.

Define bE∗ = F̃−1bEF̃−T . Let us consider the difference between the evolution of bE∗ and bE in absence of
plasticity at time tn < t < tn+1. By the definition of bE∗, DbE∗

Dt = −2γ̇F̃−1GF̃bE∗, with G = ∂y
∂τ , therefore in

absence of plasticity bE∗ is constant since DbE∗

Dt = 0. In contrast, bE
∣∣
t

= F̃
∣∣∣
t
bE

∣∣
tn

F̃T
∣∣∣
t

in the same case. In other

words, bE∗ is constant except for the effect of plasticity, but at the same time bE would also be stretched by the flow.

This isolation of the plastic part allows for a more intuitive discretization. Specifically, if we let H = (γ̇F̃−1GF̃)
∣∣∣
tn+1

,

we have that bE∗ approximately satisfies the ODE: DY
Dt = −2HY , with Y|tn = bE

∣∣
tn

, and we can approximate

bE∗
∣∣
tn+1 by Y|tn+1 = exp(−2∆tH)bE

∣∣
tn

= exp(−2∆γ F̃−1GF̃)
∣∣∣
tn+1

bE
∣∣
tn

where ∆γ = ∆t γ̇ ≥ 0 will be used to

enforce the constraint y(τ (bE
∣∣
tn+1)) ≤ 0. Multiplying the approximation by F̃

∣∣∣
tn+1

on the left and F̃T
∣∣∣
tn+1

on the

right, and recalling the definition of bE∗, we obtain

bE
∣∣
tn+1 = F̃

∣∣∣
tn+1

bE∗∣∣
tn+1F̃

T
∣∣∣
tn+1

≈ F̃
∣∣∣
tn+1

exp(−2∆γ F̃−1GF̃)
∣∣∣
tn+1

bE
∣∣
tn

F̃T
∣∣∣
tn+1

= F̃
∣∣∣
tn+1

F̃−1
∣∣∣
tn+1

exp(−2∆γG)|tn+1F̃
∣∣∣
tn+1

bE
∣∣
tn

F̃T
∣∣∣
tn+1

= exp(−2∆γG)|tn+1F̃
∣∣∣
tn+1

bE
∣∣
tn

F̃T
∣∣∣
tn+1

.

Using the notation b̃E = F̃
∣∣∣
tn+1

bE
∣∣
tn

F̃T
∣∣∣
tn+1

, we are looking for a solution pair ∆γ and bE
∣∣
tn+1 such that

bE
∣∣
tn+1 = exp

(
−2∆γG(τ (bE

∣∣
tn+1))

)
b̃E , (1)

and constraint y(τ (bE
∣∣
tn+1)) ≤ 0 is satisfied. Note that b̃E is the elastic strain we would get without the effect of

plasticity. For example if y(τ (b̂E)) ≤ 0, then ∆γ = 0 and bE
∣∣
tn+1 = b̃E is the trivial solution pair and there is
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no plastic flow. In this sense, we can see that b̃E can be considered as the trial elastic state obtained without any
plastic flow. If this does not satisfy the constraint, ∆γ and bE

∣∣
tn+1 must be defined to “project” b̃E to bE

∣∣
tn+1 .

We use this process to define the projection. F̃FE is considered the trial elastic state, one obtained in the absence
of plastic flow. Thus, b̃E = F̃bEF̃T and we seek the solution of Equation 1 to define the projection to bE

∣∣
tn+1 . This

can be done most easily by considering the singular value decomposition of F̃FE .

If the singular value decomposition of F̃FE is given by F̃FE = UΣ̃VT , then b̃E = UΣ̃
2
UT . It can be shown

that U diagonalizes G(τ (bE
∣∣
tn+1)) and bE

∣∣
tn+1 (i.e. G(τ (bE

∣∣
tn+1)) = UĜ(Σ)UT , and bE

∣∣
tn+1 = UΣ2UT with

Ĝ = ∂y
∂τ̂ and τ̂ = UT τ (bE

∣∣
tn+1)U), then we may write (1) as

UΣ2UT = exp
(
−2∆γUĜ(Σ)UT

)
UΣ̃

2
UT

= U exp
(
−2∆γĜ(Σ)

)
Σ̃

2
UT .

Multiplying both sides of the previous equation by UT on the left and by U on the right, and taking log results in

2 log (Σ) = −2∆γĜ(Σ) + 2 log
(
Σ̃
)
. (2)

The model that we choose uses the Hencky-strain as a measure of deformation. By defining

ε̂tr := log Σ̃ and ε̂n+1 := log Σ, (3)

we may simplify and rearrange Equation (2)

ε̂tr − ε̂n+1 = ∆γĜ. (4)

This is our discrete flow rule. In the return mapping algorithm, we want to solve for ε̂n+1 satisfies Equation (4)
subject to the constraint

y(τ̂ (ε̂n+1)) ≤ 0. (5)

Solving Equation (4) and (5) can be seen as a ray-ellipse intersection problem due to the ellipsoid shape of our
CamClay yield surface.
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Supplementary Note 2 - Shear behavior of the weak layer

We describe and discuss the mechanical behavior of the weak layer in shear by simulating an unconfined shear-
test (simulation setup corresponds to experiment n◦ 2 with a wall horizontal velocity of 0.01 m.s−1, Supplementary
Figure 1). After reaching the shear strength of the weak layer, significant softening is observed followed by weak layer
collapse (almost 20% of weak layer thickness). Then, the weak layer has a pure frictional behavior with a residual
shear strength. This mechanical behavior is very similar to what has been reported in laboratory experiments of
shear failure of snow [2] and what has been assumed in interfacial shear models [3, 4]. In particular, the so-called
critical sliding displacement (displacement δs associated to the softening zone) has the same order of magnitude as
in [3] and [2, 4] (δs = 3.5 mm in [3], δs = 2 mm in [2, 4] and δs ∼ 2 mm in our simulation).
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Supplementary Figure 1: Top: Shear test simulation of the weak layer under slab normal load. The setup corresponds
the PST simulation of experiment n◦ 2. The wall on the left is displaced along the x-direction with a constant speed
of 0.01 m.s−1. Middle: Mises equivalent stress q vs shear strain γ in a pure shear test (displacement controlled).
Bottom: Axial strain εa vs shear strain γ.
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Supplementary Note 3 - Influence of mesh resolution

We show the effect of mesh refinement on the amount of volumetric collapse of the weak layer. The collapse is
controlled by the hardening rule (point (2*) to (3*) in Figure 1 of the paper). It characterizes the thickness of
the anticrack (or compacting shear band) and can be evaluated by computing the change in volumetric plastic
deformation as 1 − JP with JP = det(FP ) (0 < JP ≤ 1). The collapse height hc can be evaluated by computing
hc = (1−JP )Dwl. Here, we simulated the shear test presented in Supplementary Note 3 for different mesh resolutions
and for different values of the parameters of our hardening rule. Supplementary Figure 2 shows that our model is
consistent with mesh refinement as 1− JP is almost not influenced by the mesh resolution.
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Supplementary Figure 2: Influence of mesh resolution dx, hardening factor ξ and consolidation pressure p0 (induced
by the slab load) on 1− JP . p0 was modified by varying slab density. The dashed line (model) is computed directly
from the theoretical hardening rule (Equation 4 of the paper).
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