Supplemental data

Establishing normal metabolism and differentiation in hepatocellularcarcinoma cells by culturing in adult human serum.Rineke Steenbergen,Martin Oti, Rob ter Horst, Wilson Tat, Chris Neufeldt, Alexandr Belovodskiy, TiingTiing Chua, Woo Jung Cho, Michael Joyce, Bas E. Dutilh, D. Lorne Tyrrell

Supplemental Data 1

Other morphological changes in HS cultured cells

Additional morphological changes that were observed in the electron microscopic analysis include:

- The cytoplasm of HS cultured cells appears much more 'crowded' than the cytoplasms of FBS cultured cells.

- Mitochondrial (M) morphology has drastically changed, as outlined in figure 4 of the main document.

- In general. organelles appeared more structured and organized, for example, the endoplasmic reticulum (asterisks) shows a higher degree of organization, particularly around the mitochondria.

- An increase in vesicle transport and changes in autophagy and the lysosomal pathways were also observed on the electron micrographs. Whereas in FBS cells early lysosomes (EL) are abundant, other components of the endosomal/lysosomal pathway were harder to find, and no evidence was found of autophagy. In HS cultured cells late endosomes, multivesicular bodies and autophagosomes (APS) where abundant, potentially indicating a better functioning or more balanced endosomal/ lysosomal/ autophagosomal pathway is operational in HS cultured cells.

Supplemental Data 2

Comparison	Number of differentially expressed probes (multiple testing corrected, p<0.05)	%
FBS - HSd8	16304	33
FBS - HSd15	11420	23
FBS - HSd23	16252	33

Number of differentially expressed probes for the different pairwise comparisons between days. The total number of probes on the Primeview Array was 49395.

Supplemental data 3, hierarchical clustering analysis

Clustering is a machine learning algorithm that groups data that have a high degree of similarity together in a cluster. In this analysis, data were clustered, initially, by using hierarchical clustering as shown above, based on gene expression pattern similarity of the entire dataset (y-axis) as well as on patterns of expression over time (x-axis). The z-scores of the gene expression levels were used in order to focus on the expression variation pattern across the samples rather than on their absolute expression levels, which can vary strongly from gene to gene.

Hierarchical clustering of the entire data set is shown on the left and of transcripts that showed a significant change (p < 0.05) is shown on the right In both analyses the replicates clustered together (x-axis), as was also shown by the PCA analysis (figure 1), and 6 patterns emerged (y-axis) when the data with significant changes were considered (right panel). To further analyze the genes or processes that were associated with these 6 clusters, a variant of k-means clustering was used, PAM clustering (partitioning around medoids), to generate more clearly delineated clusters (see figure 3 in the main document).

Supplemental Data 5: DREM analysis

The Dynamic Regulatory Events Miner (DREM) allows one to model, analyze, and visualize transcriptional gene regulation dynamics. The method of DREM takes as input time series gene expression data and known transcription factor-gene interaction data, and produces as output a dynamic regulatory map. The dynamic regulatory map highlights major branching events in the time series expression data and described the transcription factors (TFs) potentially responsible for them.

A: TFs that were significantly upregulated and predicted to be associated with upregulated pathways (p<10e-12).

B: TFs predicted to be associated with upregulated pathways (p<10e-12) (in order of significance for the associated processes).

DAY15 TO DAY 23

13

мус AHR

POU2F1

HNF1A

CUX1

RXRA

NR3C1 STAT1

MEF2A

NFYA

PGR CEBPA

NFYB

IRF1

IRE7

TFDP1

JUN

DSP

E2F4

E2F1

PAX6

GATA1

CREB1

PBX1

IRF2 FOXO4 MAX AIRE PPARG E2F3 FOXD1 TBP SOX9 TP53 ATF2 NFKB1 NRF1 FOXC1 GATA3 LMO2 RXRB HNF1B

POU3F2

FBS to Day 8

DAY8 TO DAY 15

	1	2	3		4 5	6	7	8	9	10	11	1
Α					AHR MYC EGR1 DDIT3	AHR	AHR	MYC AHR		AHR MYC DDIT3	AHR	A
В	RXRA POU2F1 CUX1 MEF2A HNF1A STAT1 TCF3 SRF PPARG IRF1 POU3F2 STAT5A CREB1 NR1H2 PBX1 ARNT CD40 GATA1 NFKB1 NR3C1 TBP CEBPA AR NFVA IRF8 SRY IRF2 STAT33 NFVA	POU2F1 HNF1A CUX1 POU3F2 RXRA NR3C1 STAT1 MEF2A NFYA PGR CEBPA NFYB IRF1 IRF7 TFDP1 JUN DSP E2F4 E2F1 PAX6 GATA1 CREB1 PBX1 IRF2 FOX04 MYC MAX ZEB1 AIRF2	CUX1 POUZF1 MEF2A TCF3 STAT1 STAT4 RXRA CEBPA STAT4 RXRA CEBPA STAT2 ARR CD40 STAT6 RORA STAT2 AHR EGR3 NFKB1 E2F4 STAT5B TFOP1 TBXS DSP	MEF POUJ RX IF S HNF CU NR3 TC PPA NR1 PE NR3 CEB STA	2A RXRA F1 MEF2A RA POU2F1 F1 PPARG RF STAT1 1A CUX1 1A CUX1	POU2F1 CUX1 GABPA GATA1 HNF1A TCF3 RXRA STAT1 TBP ELK4 TEAD1 IRF1 SRF ARNT CREB1 JUN POU1F1 NFE2L1 STAT5A RORA TP53 IL6 TFAP2A NFYA CEBPB FOXL1 ATF2 FOS	CUX1 POU2F1 MEF2A TCF3 STAT1 STAT4 RXRA CEBPA SRF PDX1 FOXL1 ARNT AIRE CD40 STAT6 RORA STAT2 EGR3 NFKB1 E2F4 STAT5B TFDP1 TBX5 DSP	POU2F1 HNF1A CUX1 POU3F2 RXRA NR3C1 STAT1 MEF2A NFYA CEBPA NFYB IRF1 IRF7 TFDP1 JUN DSP E2F4 E2F4 E2F4 GATA1 CREB1 PAXG GATA1 CREB1 PAXG	MEF2A POU2F1 RXRA IRF1 SRF HNF1A CUX1 NR3C1 TCF3 PPARG NRIH4 PBX1 NR2F2 CEBPA STAT1	RXRA MEF2A POU2F1 PPARG STAT1 CUX1 HNF1A TCF3 POU3F2 CREB1 STAT5A NFKB1 CD40 NFYA RNFKB1 CD40 NFYA PBX1 ARNT NFYB PGR NR3C1 AR IRF1 FOXD1 MEIS1 SRY CEBPA PAX5 MAX	POU2F1 CUX1 GATA1 HNF1A TCF3 RXRA STAT1 TBP ELK4 TEAD1 IRF1 IRF1 IRF1 SRF ARNT CREB1 JUN POU1F1 NFE2L1 STAT5A RORA TP53 IG TFAP2A NFYA CEBPB FOX1 ATF2 FOS FCN2	CLU POUL TT STJ STJ STJ RR PP FOL STJ RC CLE STJ EC STJ STJ TFL TT TFL TTL TTL TTL TTL TTL TTL TTL
	NFYB HNF4A AHR GABPA PAX6 PGR HNF1B	AIRE PPARG E2F3 FOXD1 TBP SOX9 TP53			MAX VDR PAX6 REST IRF8 JUN SOX9	EFNA2 STAT4		E2F3 FOXD1 TBP SOX9 TP53 ATF2 NFKB1		MAX VDR PAX6 REST IRF8 JUN SOX9	EFNA2 STAT4	
	NR2F2 MEIS1 JUN PDX1 RORA	ATF2 NFKB1 NRF1 FOXC1 GATA3			FOXJ1 PDX1 STAT3 NR1H3 RORA			NRF1 FOXC1 GATA3 LMO2 RXRB		FOXJ1 PDX1 STAT3 NR1H3 RORA		

NR1H4	AHR	HNF1B	CEBPB	HNF1B	CEBPB
VDB	RXRB	GATA1	GATA2	GATA1	GATA2
VDR	INTE	GATAI	GATAZ	GATAL	GATAZ
IRF7	HNF1B	FOXC1	ELK1	FOXC1	ELK1
SOX5	CEBPB	FKBP4	HIF1A	FKBP4	. HIF1A
FOXF2	GATA2	SOX5	SETD2	SOX5	SFTD2
BELA	ELK1	LINEAA	UNE4A		
NELA	ELKI	FINF4A	HNF4A	FINE4A	
MAX	HIF1A	LEF1	RFX1	LEF1	. RFX1
EGR1	SETD2	SREBF1	CD40	SREBF1	CD40
IBE3	HNE4A	CEBPD	FOS	CEBPD	FOS
111.5	2004	CEDID	105	CEDID	105
IRF4	RFX1	ZB1B16	RUNX1	ZB1B16	RUNX1
IRF5	CD40	HOXA9	PDX1	HOXA9	PDX1
LFF1	FOS	ATE6	BACH1	ATE6	BACH1
ND254	DUNNA	CNITNO	STATC	CNITNIA	CT. 17
NK2F1	RUNX1	CNTNZ	STAID	CNINZ	SIAIb
POU1F1	PDX1	PLAU	CASR	PLAU	CASR
ARID5B	BACH1	TBP	NR112	TBP	NR1I2
CERRE	STATC	ONECUTA	FOXES	ONECUTA	FOXES
CEBPD	STATE	UNECUTZ	FUXF2	UNECUTZ	FUXF2
E2F1	CASR	E2F1	POU3F1	E2F1	. POU3F1
EGR2	NR112	ATF3	MZF1	ATF3	MZF1
DAVE	FOXE2	DDED1	CDID	DDED1	CDIP
PAAS	FUAFZ	NRED1	JPID	KREDI	JPID
FOS F	POU3F1	SIAI6	SIAISA	SIAI6	SIAI5A
ATF6	MZF1	FOX01	irf3	FOX01	irf3
FOXA1	SPIR	FOXA1	irf4	FOXA1	irf4
707010	CTATE A	0.011	fr	DEV1	i-fr
201010	STATSA	RFAI	1115	KFA1	. III S
TP53	IRF3	STAT5B	irf8	STAT5B	, irf8
NKX3-1	IRF4	IRF7	stat3	IRF7	stat3
EKDDA	IBE5	DELA	feuia	DELA	faul3
FKBP4	10.50	RELA	IOXJZ	RELA	10XJ2
FOX01	IRF8	NR1H4	pou2f2	NR1H4	pou2f2
REST	STAT3	NKX3-1	gata4	NKX3-1	gata4
CNTN2	FOX12	NP2E2	pr1h2	NIDJEJ	pr1h2
CIVITVZ	0002	1112F2	111112	INRZF2	111112
MYC F	POU2F2	STAT4	bach2	STAT4	bach2
RFX1	GATA4	ATF2	usf2	ATF2	usf2
STATSR	NR1H2	CASP	arnt	CACD	arnt
JIAIJO	DAGUO	CASK	allit	CA3N	anit
ELK4	BACH2	EGR3	atf1	EGR3	atf1
ONECUT1	USF2	NR1I2	gabpa	NR1I2	gabpa
ONFCUT2	ARNT	FGR2	AR	FGR2	AR
CERRR	4751	FOYOA	CDI1	FOYOA	CDI1
CEBPB	AIFI	FUXU4	5811	FUXU4	SPIL
SREBF1	GABPA	CEBPB	nfe2l1	CEBPB	, nfe2l1
FOXO3	AR	NR2F1	cebpg	NR2F1	cebpg
HOYAG	SDI1	ETS1	hcf1	ETS1	hcf1
HUXAS	3811	E131	11511	EIJI	11511
STAT4	NFE2L1	SP1	nr1h4	SP1	. nr1h4
STAT6	CEBPG	FOXO3	ube4a	FOXO3	ube4a
IPEO	HSE1	EOXA2	vdr	EOYA2	ydr.
101 J	ND4114	TOXA2	10252	TOXA2	Vui ND252
EGR3	NR1H4	FUXA3	NR2F2	FUXA3	NKZFZ
NFE2L1	UBE4A	FOXM1	STAT4	FOXM1	STAT4
TFAD1	VDR	FOS	FTS2	FOS	FTS2
ELCORD1	NDOEO	IRES	DIALL	IDES	DIAL
ELSPDP 1	NRZFZ	INFO	FLAU	INFO	PLAU
FOXJ1	STAT4	IRF4	GATA6	IRF4	GATA6
FOXA2	ETS2	IRF5	SRY	IRF5	SRY SRY
FOXA3	PLAU	GABPA	SRF	GABPA	SRE
FOXAS	CATAG	GADIA	5004	CADI A	500
FUXIVII	GATAb	RXRB	ESRI	KXKB	ESRI
FOXC1	SRY	ALX1	NR2F1	ALX1	. NR2F1
PLAU	SRF	POU1F1	SP3	POU1F1	SP3
ATE2	ESD1	ARIDER	NP1H2	ARIDER	ND1H2
AILZ	LUNCE	ARIDOB	NILLIS	ANDJD	NICITIS
NR1H3	NR2F1	POU3F1	FOX01	POU3F1	FOX01
ETS1	SREBF1	SOX10	NHLH1	SOX10	NHLH1
FOXD1	SP3	STAT2	ΡΔΧ2	STAT2	ΡΔΥ2
7501	NB1112	BACUI	DUNY2	DACUI	DUNY2
ZEBI	INK1H3	BACHI	RUNXZ	BACHI	RUNAZ
FOXO4	FOXO1	SP3	TCF3	SP3	TCF3
SOX10	NHLH1	ESR1	ATF3	ESR1	ATF3
FOXI 1	PAX2	TD52	GARDR1	TD52	GARDEL
I UALI	DUNYO	1755	OADPB1	1933	GADEBI
ELF2	RUNAZ	SP4	GABPB2	SP4	GABPB2
POU3F1	TCF3	TOPORS	RFX5	TOPORS	RFX5
BACH1	ATF3	TFAP2A	REXANK	TFAP2A	REXANK
MYOD1 (GABPB1	ZNIEE 90	DEVAD	71/200	PEVAD
WITODI (2111-389	KEXAP	210F589	KEXAP
RREB1 C	GABPB2	ELSPBP1	FOSL1	ELSPBP1	FOSL1
ALX1	RFX5	ETS2	JUNB	ETS2	JUNB
NR112	REXANK	POLIZEZ	IUND	POLIZEZ	ILIND
FCD4	PEYAD	CM404	TEADOA	100212	JOND
ESKI	IN APP	SIMAD4	TEAPZA	SMAD4	IFAP2A
LHX3	FOSL1	PPARA	TEAD1	PPARA	TEAD1
ETS2	JUNB	DSP	TBX5	DSP	TBX5
ΔΤΕ3	ILIND	FOVD3	GEI1	EOVD3	GEI1
All S	TEADOA	10,03	GFII	FOXD3	GFI
CASR	TFAPZA	IRF9	GFI1B	IRF9	GFI1B
FOSL1	TEAD1	ELF2	CREM	ELF2	CREM
JUNB	TBX5	ATF4	HOXA7	ATF4	HOXA7
IUND	GEI1	FLV4	1554	ELV1	10000
	GFIL	ELKI	LEFI	ELKI	LEFI
TFAP2A	GFI1B	MYOD1	FOSL2	MYOD1	FOSL2
USF1	CREM	FOSL1	ARID5B	FOSL1	ARID5B
SP1	HOXA7	II IN B	FOYO3	II IND	FOYO3
JF 1	LEE1	JOINB	10/03	JOINB	10,03
YY1	LEF1	JUND	FOXI1	JUND	FOXI1
DSP	FOSL2	NR6A1	NR5A2	NR6A1	NR5A2
RXRB	ARID5B	FLK4	ATF7	FI K4	ATF7
CDEM	50703		CTATED		CTATED
CKEIVI	50/03	USFI	STATSB	USFI	STATSB
SMAD4	FUXI1	FOXJ2	LHX3	FOXJ2	LHX3
ALX4	NR5A2	ATF7	ETS1	ATF7	ETS1
EOSI 2	ATE7	BACHO	DADA	BACHO	DADA
FUSIZ	CTATED	DACHZ	hARA	BACH2	nAKA
STATZ	STAT2B	HLF	RARB	HLF	RARB
HLF	LHX3	FOXI1	RARG	FOXI1	RARG
ATF1	ETS1	TFAP4	CEBPD	ΤΕΔΡ4	CEBPD
TCFA	PARA	DAVO	CMADO	000	CMAP2
1074	IN-SINPA	PAXZ	SIVIAD3	PAXZ	SIVIAD3

FOXD3	RARB	FOXL1	USF1	FOXL1	USF1
ZNF238	RARG	POU2AF1	GATA5	POU2AF1	GATA5
CEBPG	RXRG	POU4F1	ATF6	POU4F1	ATF6
NFIL3	CEBPD	POU5F1	FOXJ1	POU5F1	FOXJ1
IRF6	SMAD3	POU5F1B	ATF4	POU5F1B	ATF4
BACH2	USF1	NFKB2	EFNA2	NFKB2	EFNA2
SP3	GATA5	IRF6	NFATC1	IRF6	NFATC1
PPARA	ATF6	SP2	NFATC2	SP2	NFATC2
FOXJ2	FOXJ1	AIRE	NFATC3	AIRE	NFATC3
POU2F2	ATF4	E2F4	NFATC4	E2F4	NFATC4
TFAP4	EFNA2	NFE2L1	SOX5	NFE2L1	SOX5
GATA2	NFATC1	TFDP1	BRCA1	TFDP1	BRCA1
NKX2-1	NFATC2	TCF4	ETV4	TCF4	ETV4
NKX2-2	NFATC3	NFIC	NKX2-1	NFIC	NKX2-1
NR6A1	NFATC4	ZNF238	FOXL1	ZNF238	FOXL1
AIRE	SOX5	PRDM1	NFIL3	PRDM1	NFIL3
E2F4	BRCA1	EGR4	SMAD4	EGR4	SMAD4
ELK1	ETV4	GATA4	NFIC	GATA4	NFIC
POU2AF1	NKX2-1	FOSL2	MEIS1	FOSL2	MEIS1
POU4F1	FOXL1	MTF1	TFE3	MTF1	TFE3
POU5F1	NFIL3	REL	TFEB	REL	TFEB
POU5F1B	SMAD4		YY1		YY1
FOXI1	NFIC		CEBPE		CEBPE
NRF1	MEIS1		PAX8		PAX8
PAX2	TFE3		ELF2		ELF2
TFDP1	TFEB				
CUZD1	YY1				
FLI1	CEBPE				
HSF1	PAX8				

Supplemental data 6

regulation of the Warburg effect

Proliferating cells often display a metabolic profile that is referred to as 'cancer metabolism', first described by Otto Warburg in 1924. Cancer metabolism is typically characterized by reduced levels of oxidative phosphorylation and mitochondrial activity, higher dependence on aerobic glycolysis and glutaminolysis for ATP production, and increased generation of biosynthetic intermediates that are essential for the production of macromolecules (phospholipids, nucleotides, proteins) to support cell proliferation (reviewed in^{3, 5-7}). The metabolic reprogamming that occurs during the Warburg effect is tightly regulated. The likely benefit for proliferative cells to adopt a Warburg-like metabolic profile, despite the much lower yield of ATP, is the conservation of pyruvate for the synthesis of lipids, nucleotides and amino acids, as building blocks for new cells ¹⁻⁴.

Key regulators of the Warburg effect include:

* **PDK1** (pyruvate dehydrogenase kinase 1): in proliferative cells PDK1 is up-regulated, inhibiting PDH (pyruvate dehydrogenase), which transport pyruvate into the mitochondria, PDK1 upregualtion results in limiting the uptake of pyruvate into the mitochondria. *PDK1 is downregulated in HS-cultured cells, in line with a non-proliferative character. PDH did not change.*

* LDHA and LDHB: lactate dehydrogenases A and B catalyze the conversion of pyruvate ot lactate (LDHA), vice versa (LDHB) High LDHA levels direct the conversion of pyruvate to lactate, whereas low LDHa levels, with higher LDHB levels favour the reverse reaction. LDHA is decreased in HS cultured cells, whereas LDHB is increased, consistent with the ratio in differentiated tissue

* **MCT4** (monocarboxylic acid transporter 4): MCT4 removes lactate from the cells, and is increased during aerobic glycolysis (right panel). *MCT4 is decreased in HS cultured cells, consistent with the reversal of the Warburg effect.*

- 1. Cairns, R.A., Harris, I.S. & Mak, T.W. Regulation of cancer cell metabolism. Nat Rev Cancer 11, 85-95 (2011).
- 2. Lunt, S.Y. & Vander Heiden, M.G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27, 441-464 (2011).
- 3. Pavlova, N.N. & Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab 23, 27-47 (2016).
- 4. Vander Heiden, M.G., Cantley, L.C. & Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033 (2009).

Supplemental Data 7: 25 genes with highest increase or decrease in expression

Increased expression (Top 25)

			fold increase			
	Gene Title	Gene Symbol	<u>d8</u>	<u>d15</u>	<u>d23</u>	
1	sulfotransferase family 1E, estrogen-preferring, member 1	SULT1E1	1.60980851	10.074521	17.2660059	
2	apolipoprotein A-IV	APOA4	1.46445382	3.96256758	12.9515673	
3	urothelial cancer associated 1 (non-protein coding)	UCA1	13.0403278	14.1624532	12.653981	
4	S100 calcium binding protein A14	S100A14	1.10835538	2.47252987	12.1360695	
5	anterior gradient 2 homolog (Xenopus laevis)	AGR2	4.09387803	7.3550794	11.4152296	
6	phospholipase A1 member A	PLA1A	1.72761844	6.24060598	11.0728783	
7	Kruppel-like factor 4 (gut)	KLF4	4.8156499	6.25374168	10.9723147	
8	epithelial splicing regulatory protein 1	ESRP1	1.72298527	4.746049	10.2605455	
9	guanylate binding protein 2, interferon-inducible	GBP2	4.90674414	7.71908765	10.2079568	
10	transcription factor EC	TFEC	2.9324839	5.22814844	9.95592446	
11	leucine rich repeat containing 19	LRRC19	1.10196646	2.89413995	9.76210338	
12	zinc finger protein 114	ZNF114	2.96517484	4.5009058	9.35384665	
13	cholinergic receptor, nicotinic, alpha 1 (muscle)	CHRNA1	3.89463693	4.89524151	8.91442928	
14	discoidin domain receptor tyrosine kinase 1 /// microRNA 4640	DDR1	1.01238471	3.17424196	8.03071659	
15	chromosome 19 open reading frame 69	C19orf69	1.08588648	2.76599503	7.98168685	
16	UDP glucuronosyltransferase 2 family, polypeptide A3	UGT2A3	1.85090717	6.82158978	7.87140438	
17	protease, serine, 23	PRSS23	3.95576075	6.46029912	7.76669156	
18	chromosome 12 open reading frame 39	C12orf39	4.53196492	6.43655253	7.71021042	
19	proline/histidine/glycine-rich 1	PHGR1	1.80191957	5.29692291	7.02058702	
20	anoctamin 1, calcium activated chloride channel	ANO1	0.97804907	0.94345729	6.98110729	
21	vanin 2	VNN2	11.4370228	10.9074657	6.93981919	
22	insulin-like growth factor binding protein 3	IGFBP3	0.93963018	2.63802643	6.76395235	
23	hephaestin	HEPH	2.6201261	4.21156181	6.52502213	
24	cell death-inducing DFFA-like effector c	CIDEC	4.24499095	4.38011981	6.48955863	
25	family with sequence similarity 47, member E	FAM47E	4.80857272	7.66127981	6.25362451	

Decreased expression (Top 25)

			fold decrease			
	Gene Title	Gene Symbol	<u>d8</u>	<u>d15</u>	<u>d23</u>	
1	fibrinogen beta chain	FGB	1.01799746	2.61994629	5.23852945	
2	leukemia inhibitory factor	LIF	5.24506451	5.02385697	4.77031089	
3	tubulin, beta 1 class VI	TUBB1	2.94554978	3.25901429	4.70925991	
4	glucan (1,4-alpha-), branching enzyme 1	GBE1	2.20827505	3.07756181	4.11316342	
5	coagulation factor XIII, B polypeptide	F13B	2.234701	3.08244714	3.96939829	
6	reelin	RELN	2.70351405	2.92224273	4.83406186	
7	alcohol dehydrogenase 6 (class V)	ADH6	3.36367076	3.17448993	4.49200411	
8	protein phosphatase 1, regulatory (inhibitor) subunit 1A	PPP1R1A	3.86675208	3.40475789	3.49474836	
9	cancer susceptibility candidate 5	CASC5	2.32440917	2.14682899	3.47556406	
10	F-box and leucine-rich repeat protein 21 (gene/pseudogene)	FBXL21	2.56581742	1.99000289	3.40485515	
11	forkhead box N4	FOXN4	2.82919142	3.00748786	3.30598489	
12	natriuretic peptide B	NPPB	0.73137249	1.77084611	3.2991722	
13	claudin 14	CLDN14	3.44809761	3.16915066	3.28154663	
14	fucosyltransferase 11 (alpha (1,3) fucosyltransferase)	FUT11	1.55861651	2.67772711	3.17790018	
15	ribonucleotide reductase M2	RRM2	1.22693238	1.67626212	3.57449496	
16	SPC25, NDC80 kinetochore complex component, homolog (S. cerevisiae)	SPC25	1.69842724	1.92727121	3.13577253	
17	E2F transcription factor 7	E2F7	2.29203247	2.27124832	3.05634284	
18	alanine-glyoxylate aminotransferase 2-like 1	AGXT2L1	1.11519966	1.67205374	3.40744429	
19	fibrinogen alpha chain	FGA	2.0769312	3.00503011	3.4734301	
20	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4	PFKFB4	3.22650034	3.78462628	3.42101327	
21	pyruvate dehydrogenase kinase, isozyme 1	PDK1	2.32540542	2.45489876	3.07676876	
22	non-SMC condensin I complex, subunit G	NCAPG	1.98587391	2.51523109	3.02975911	
23	hypoxia inducible lipid droplet-associated	HILPDA	1.63404113	2.40863783	3.15806134	
24	kinesin family member 14	KIF14	1.26819019	1.80179264	3.40913024	
25	zinc finger protein 789	ZNF789	1.45259678	2.17329004	2.86947321	

Supplemental Data 9

mRNA levels determined by quantitative PCR of different cytochrome P450 genes.

A: CYP1, 2 and 3 families: drug and steroid metabolism

B: CYP4 familly: arachidonic acid or fatty acid metabolism

mRNA levels determined by quantitative PCR of other factors involved in degradation or removal of xenobiotics

ABC transporters:

transport of a wide variety of substrates out of the cell, including metabolic products, lipids, steroids, and drugs. ABCA1 removes excess cholesterol from the cell, ABCB1 is also known as MDR-1, ABCC1 is also known as MRP1, ABCD1 transports fatty acids into the peroxisome,

Supplemental data 10

Full length blot of figure 5C

Full length Licor blot of the cropped images of figure 5C. CPT-1 has a predicted size of 78 kDa and is stained green. Tubulin and the molecular weight markers are stained red. Additional, unlabeled lanes on the blot represent other conditions that are not relevant for this study.