Supplemental information

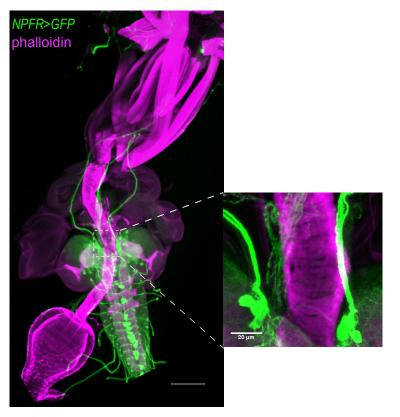
Two *Drosophila* Neuropeptide Y-like Neurons Define a Reward Module for Transforming Appetitive Odor Representations to Motivation

Yuhan Pu¹, Yiwen Zhang¹, Yan Zhang and Ping Shen*

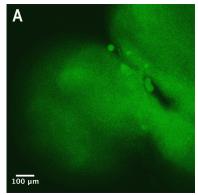
Department of Cellular Biology and Biomedical and Health Sciences Institute, University of Georgia, 500 D. W. Brooks Drive, Athens, GA 30602, USA

¹ Co-first authors

* Correspondence should be addressed to P.S. (pshen@uga.edu)


Figure S1 Anatomical analysis of NPFR1-Gal4 neurons in the SEZ

A pair of four NPFR1-Gal4 neurons, labeled by mCD8::GFP, is present in the SEZ. The inset shows a magnified view of their axons exiting from the antenna nerve.


Figure S2 Images of control larvae from the split GFP analysis

A) the image of the brain lobe from *TH-Gal4*/UAS-CD4::spGFP¹⁻¹⁰; LexAop-CD4::spGFP¹¹ larvae; **B**) the image of the brain lobe from *NPF-Gal4*/UAS-CD4::spGFP¹⁻¹⁰; LexAop-CD4::spGFP¹¹ larvae. No split GFP signals were detected in the control brain tissues. N = 6-8.


FigS1

FigS2

TH-Gal4 /UAS-CD4::spGFP1-10 ; LexAop-CD4::spGFP11

NPF-LexA/UAS-CD4::spGFP¹⁻¹⁰ ; LexAop-CD4::spGFP¹¹