# Supplementary Information Discovering privileged topologies of molecular knots with self-assembling models

M. Marenda *et al.* 



Supplementary Figure 1: Topological state diagram. The highlighted points in the discretized  $(h, \alpha)$  parameter space mark the template shapes where one observes constructs  $n_T = 3$  (top) and  $n_T = 4$  (bottom) templates with the topologies sketched on the right. The highlighted regions include points where the indicated knots account for more than 1% of the MC-sampled constructs. The cases shown here are made of templates with the same chirality. The 4<sub>1</sub>-knotted instances in the bottom panel mostly correspond to the geometry shown on the right, but there are also instances of an alternative geometry, shown inside the topological state diagram.





Supplementary Figure 2: Topological state diagram. The highlighted points in the discretized  $(h, \alpha)$  parameter space mark the template shapes where one observes constructs  $n_T = 4$  (top, racemic template mixture) and  $n_T = 5$  (bottom, templates of same chirality) templates with the topologies sketched on the right. The highlighted regions includes points where the indicated knots account for more than 1% of the MC-sampled constructs.

# Supplementary Note 2. Designability score of constructs obtained with self-assembly simulations

|                     | 3 templates 4 templates |     | s 5 templates |         | s          |               |             |
|---------------------|-------------------------|-----|---------------|---------|------------|---------------|-------------|
| Topology            | $3_1$                   | 819 | $4_{1}^{*}$   | $3_{1}$ | $10_{124}$ | $15n_{41185}$ | $12n_{242}$ |
| Designability Score | 42                      | 24  | 20            | 55      | 11         | 5             | 9           |

Supplementary Table I: Designability score for the symmetric (and quasi-symmetric) knots obtained in self-assembly of 3, 4 and 5 templates with shape parameters ( $h \in [0.1, 2.0]$  and  $\alpha \in [1.4, 1.9]\pi$ ).

(\*) The 4<sub>1</sub> is assembled from a racemic combination of 2 left- and 2 right-handed templates.

### Supplementary Note 3. Self-assembly in mixtures of hundreds of templates



Supplementary Figure 3: Snapshots of molecular dynamics simulations for the self-assembly of 250 templates in various conditions. Self-assembly of templates without coordinating particles: (a) same chirality helical fragments with geometry h = 1.0 and  $\alpha = 1.8\pi$  and helical fragments density 0.0125; (b) racemic mixture of helical fragments (ratio 50%) with geometry h = 0.8 and  $\alpha = 1.7\pi$  and helical fragments density 0.0075. Self-assembly of templates with coordinating particles: (c) racemic mixture of helical fragments (ratio 50%) with geometry h = 0.8 and  $\alpha = 1.7\pi$ , helical fragments density 0.0125 and Yukawa parameters  $C_Y = 10$  and  $l_Y = 0.91\sigma$ . The diameter of the coordinating particles in this example is  $2\sigma$ , that is twice the size of the templates' beads. (d) Racemic mixture of helical fragments (ratio 50%) with geometry  $3\sigma$ , Yukawa parameters  $C_Y = 5$  and  $l_Y = 1.59\sigma$ . For cases (c) and (d), the reference "contact distance" was suitably changed from the  $2^{1/6}\sigma$  value in eq. (1) of the main text, which is appropriate only for the default case of equally-sized template beads and coordinating particles. Other parameters are set to their default values given in the Methods section of the main text.



Supplementary Figure 4: (a) Probability distribution of the contact angle between consecutive templates in the Monte Carlo-generated cyclic-symmetric  $5_1$  knots made of 5 templates (data cumulated over all explored template shapes). Note that angles larger than  $\pi/4$ , or 45 degrees are disallowed and hence are not populated. The analogous distribution, but pertaining to molecular dynamics simulations, are shown in panel (b). In this case, the shape of the distribution is controlled by the steric and patchy interactions of the templates which promote the collinearity of the contacting templates' ends. Because of these smaller contacting angles, which are much lower than needed to establish  $5_1$  knots - see panel (a)-, the formation of  $5_1$  knots in MD assembly simulations is suppressed.



Supplementary Figure 5: Probability distribution of the cyclic-symmetry score for Monte-Carlo sampled constructs made of  $n_T = 3$ , 4, and 5 templates of same or different chiralities, as indicated. Each distribution is cumulated over all considered templates' shapes. The symmetry score is computed as the root mean square deviation (RMSD) of the structural alignment of a construct with its circular permutant with the best (Kabsch) structural alignment. The best alignment is searched over all cyclic permutations of the beads indices with an indexing shift at least equal to half the templates' length (number of beads). For three and four templates, the presence of cyclic-symmetric constructs is signalled by a peak or shoulder at low values of the score. The cutoff value for the score used to select such instances is marked with a dashed line. For five templates, no peak is discernible and therefore we took the RMSD cutoff value (again indicated with a dashed line) as the largest RMSD below which all constructs are cyclic-symmetric. By this we mean that their geometry can be regularised into a cyclic-symmetric shape with only minor adjustments.

#### Supplementary Note 6. Effective bonding potential

The nominal strength of the bonding potential is controlled by the adimensional parameter  $C_p$ . In our simulations we set  $C_p = 25$ , so that the depth of the Gaussian well between two patches is equal to  $25 K_B T$ . The effective unbonding barrier is appreciably smaller than this, as it is clarified by computing the effective free-energy profile, F(r), of two patchy particles as a function of their distance r,

$$F(r) = -K_B T \log(Z(r)) \tag{1}$$

where Z(r) is the canonical partition function integrated over the degrees of freedom,  $\{\theta, \phi, \theta', \phi'\}$  defining the relative orientation of the patchy particles at the given distance r. Apart from a prefactor, contributing only to an additive shift of F(r), Z(r) is given by:

$$Z(r) = \left(\frac{r}{\sigma}\right)^2 \int_{\cos\theta=-1}^{\cos\theta=+1} \int_{\phi=0}^{\phi=2\pi} \int_{\cos\theta'=-1}^{\cos\theta'=+1} \int_{\phi'=0}^{\phi'=2\pi} d\cos\left(\theta\right) \ d\cos\left(\theta'\right) \ d\phi \ d\phi' \ e^{-\left[U^{patchy}(r)+U^{LJ}(r,\theta,\phi,\theta',\phi')\right]/K_BT}$$
(2)



Supplementary Figure 6: (a) Representation of the degrees of freedom  $(\theta, \phi, \theta', \phi')$  defining the relative orientation of two patchy particles at a distance r. (b) Free-energy profile, F(r), obtained by numerical integration for  $C_p = 25$ .

where  $\theta$  and  $\phi$  are the radial and azimuthal angles of the second patch defined in the Cartesian frame centered in the first patch and with x axis oriented along the principal axis of the first patchy particle itself, see Fig. 6a. The other parameters,  $\theta'$  and  $\phi'$  are instead the radial and azimuthal angles that specify the orientation of the center of the second patchy particle in respect to its patch, see inset of Fig. 6a.

The bead-patch distance is fixed and equal to  $\overline{d} = 2^{1/6} \sigma/2$ .

Numerical integration of Z(r) yields (up to an additive constant) the free energy profile shown in Fig. 6b.

One sees that due to the interplay of entropic and enthalpic effects, the effective barrier for breaking a bond is smaller than 25  $K_BT$ , and specifically it is equal to about 18  $K_BT$ .



Supplementary Figure 7: Natural logarithm of the time required to break the bond between two patchy helical templates as a function of the strength of the patch-patch potential  $C_p$ . Results from simulations are represented with orange circles, while linear fit is represented with a continuous blue line:  $time = 0.0645 \cdot \exp(0.718 \cdot C_p)\tau_{LJ}$ .

The result is consistent with the actual bond-breaking kinetics for two patchy helical templates, as it is shown in Fig. 7. The semi-log plot shows the  $C_p$  dependence of the time required to break the bond between two initially-contacting templates during various MD simulations (ten per each  $C_p$  value). The best fit line in Fig. 7 is time  $\propto \exp(0.718 \cdot C_p) \tau_{LJ}$ . For  $C_p = 25$ , this yields the effective barrier  $0.178 \cdot 25 K_B T \sim 18 K_B T$ . The associated detached time is of the order of 4,000,000  $\tau_{LJ}$ , which is about 20 times larger than the typical duration of our production runs.

#### Supplementary Note 7. Enumeration of braid patterns

The tables below list various single-component knots (i.e. not links) obtainable for various  $(n_T, n_S)$  combinations, including few beyond those covered by Fig. 4 of the main text, e.g. (9,2), (8,3) and (10,3). The (7,4) pair is not included, due to the excessively large number of braid combinations yielding knotted patterns that exceed the complexity of tabulated knot types (available for prime components of up to 16 crossings). Knots of up to 10 crossings are denoted with the conventional Rolfsen notation. More complex knots are labelled with the Thistlethwaite notation, except for specific instances of torus knots, for which we use the conventional  $T(n_1, n_2)$  notation, and very complex topologies which we fingerprint with their Dowker code.

For each  $(n_T, n_S)$  combination, the  $2^{n_T(n_S-1)}$  possible braid patterns are subdivided according to several criteria. First we consider the number of crossings projected in the plane orthogonal to the axis of cyclic symmetry, which is clearly an upper bound to the minimal crossing number. Next, we separate braids that admit a closed cyclic-symmetric arrangement from those that do not. The latter are not the main focus of the study and hence, for simplicity, are not included for the more complex cases of (8,3) and (10,3). The symmetric braids are then grouped by the order of their cyclic symmetry. The number of linear braid patterns associated to a given knot type is shown in the second column.

$$(n_T = 3, n_S = 2)$$

| Topology       | # possible<br>braid rep. |  |  |
|----------------|--------------------------|--|--|
| C3 - symmetric |                          |  |  |
| 31             | 2                        |  |  |
| Non-symmetric  |                          |  |  |
| 01             | 6                        |  |  |

| ( | $\mathbf{n_T}$ | = | <b>4</b> , | $\mathbf{n_S}$ | = | <b>3</b> ) |  |
|---|----------------|---|------------|----------------|---|------------|--|
|---|----------------|---|------------|----------------|---|------------|--|

#### 8 projected crossings

| Topology       | # possible<br>braid rep. |  |  |
|----------------|--------------------------|--|--|
| C4 - symr      | netric                   |  |  |
| 818            | 2                        |  |  |
| 819            | 2                        |  |  |
| C2 - symmetric |                          |  |  |
| 31             | 8                        |  |  |
| 41             | 4                        |  |  |
| Non-symi       | Non-symmetric            |  |  |
| 01             | 88                       |  |  |
| 31             | 64                       |  |  |
| 51             | 16                       |  |  |
| 52             | 32                       |  |  |
| 63             | 16                       |  |  |
| 820            | 16                       |  |  |
| 31#31          | 8                        |  |  |

| $(\mathbf{n_T} =$ | $5,\mathbf{n_S}$ | = 2) |
|-------------------|------------------|------|
|-------------------|------------------|------|

#### 5 projected crossings

| Topology                   | # possible braid rep. |  |
|----------------------------|-----------------------|--|
| C <sub>5</sub> - symmetric |                       |  |
| 51                         | 2                     |  |
| Non-symmetric              |                       |  |
| 01                         | 20                    |  |
| 31                         | 10                    |  |

| $(\mathbf{n_T})$ | = | 5, | $\mathbf{n}_{\mathbf{S}}$ | = | <b>3</b> ) |
|------------------|---|----|---------------------------|---|------------|
|------------------|---|----|---------------------------|---|------------|

#### 10 projected crossings

| Тороlоду       | # possible<br>braid rep. |  |
|----------------|--------------------------|--|
| C₅ - symmetric |                          |  |
| 10123          | 2                        |  |
| 10124          | 2                        |  |
| Non-sym        | metric                   |  |
| 01             | 330                      |  |
| 31             | 200                      |  |
| 41             | 60                       |  |
| 51             | 60                       |  |
| 52             | 60                       |  |
| 62             | 80                       |  |
| 63             | 20                       |  |
| 89             | 20                       |  |
| 817            | 20                       |  |
| 819            | 20                       |  |
| 820            | 20                       |  |
| 821            | 60                       |  |
| 10141          | 20                       |  |
| 10155          | 10                       |  |
| 31#31          | 40                       |  |

**Supplementary Figure** 8: Symmetric and non-symmetric knots for the following  $(n_T, n_S)$  pairs: (3, 2), (4, 3), (5, 2), (5, 3). The number of linear braid patterns associated to a given knot type is shown in the second column.

| $(\mathbf{n_T} =$ | $\mathbf{=5,n_S}$ | = 4) |
|-------------------|-------------------|------|
|-------------------|-------------------|------|

| Topology  | <pre># possible braid rep.</pre> |
|-----------|----------------------------------|
| C₅ - symn | netric                           |
| 15a84903  | 2                                |
| 15n41185  | 2                                |
| 15n166130 | 4                                |
| Non-symr  | netric                           |
| 01        | 2910                             |
| 31        | 3130                             |
| 41        | 370                              |
| 51        | 1480                             |
| 52        | 2360                             |
| 61        | 100                              |
| 62        | 140                              |
| 63        | 1200                             |
| 71        | 200                              |
| 72        | 440                              |
| 73        | 520                              |
| 74        | 420                              |
| 75        | 500                              |
| 76        | 280                              |
| 77        | 20                               |
| 87        | 380                              |
| 88        | 660                              |
| 810       | 680                              |
| 813       | 320                              |
| 815       | 180                              |
| 816       | 140                              |
| 818       | 80                               |
| 819       | 310                              |
| 820       | 1460                             |
| 821       | 50                               |
| 928       | 60                               |
| 931       | 140                              |
| 933       | 40                               |
| 942       | 20                               |
| 943       | 40                               |
| 944       | 120                              |
| 945       | 160                              |
| 946       | 10                               |

| 948           | 90  |
|---------------|-----|
| 949           | 100 |
| 10112         | 80  |
| 10114         | 40  |
| 10122         | 60  |
| 10124         | 60  |
| 10125         | 280 |
| 10126         | 240 |
| 10128         | 120 |
| 10129         | 160 |
| 10130         | 280 |
| 10132         | 360 |
| 10134         | 120 |
| 10135         | 520 |
| 10139         | 50  |
| 10140         | 140 |
| 10142         | 60  |
| 10143         | 180 |
| 10145         | 80  |
| 10146         | 10  |
| 10148         | 320 |
| <b>10</b> 151 | 440 |
| <b>10</b> 153 | 520 |
| 10156         | 40  |
| 10157         | 20  |
| 10159         | 40  |
| 10160         | 40  |
| 10161=10162   | 140 |
| 10164         | 40  |
| 10165         | 80  |
| 11a171        | 40  |
| 11n12         | 40  |
| 11n23         | 80  |
| 11n24         | 160 |
| 11n39         | 60  |
| <b>11n</b> 41 | 40  |
| 11n46         | 80  |
| 11n50         | 20  |
| 11n54         | 160 |
| 11n56         | 40  |
| 11n61         | 120 |

| 11n65          | 80  |
|----------------|-----|
| <b>11</b> n71  | 40  |
| 11n78          | 20  |
| 11n82          | 40  |
| 11n94          | 120 |
| 11n95          | 40  |
| 11n96          | 200 |
| 11n98          | 40  |
| 11n106         | 180 |
| 11n107         | 20  |
| 11n118         | 20  |
| 11n132         | 40  |
| 11n133         | 20  |
| 11n145         | 160 |
| 11n146         | 40  |
| <b>11n</b> 147 | 40  |
| 11n148         | 60  |
| 11n173         | 20  |
| 11n178         | 20  |
| 11n179         | 20  |
| 11n183         | 40  |
| 11n184         | 20  |
| 12n121         | 60  |
| 12n242         | 20  |
| 12n253         | 40  |
| 12n309         | 140 |
| 12n318         | 160 |
| 12n323         | 200 |
| 12n328         | 40  |
| 12n371         | 140 |
| 12n385         | 80  |
| 12n425         | 60  |
| 12n426         | 20  |
| 12n439         | 100 |
| 12n443         | 80  |
| 12n451         | 80  |
| 12n488         | 100 |
| 12n548         | 40  |
| 12n591         | 40  |
| 12n646         | 40  |

| 12n702          | 80  |
|-----------------|-----|
| 12n725          | 10  |
| 12n730          | 40  |
| 12n749          | 60  |
| 12n811          | 20  |
| 12n829          | 20  |
| 12n835          | 40  |
| 12n868          | 10  |
| 13n225          | 40  |
| 13n288          | 80  |
| <b>13n</b> 501  | 60  |
| 13n519          | 20  |
| 13n584          | 40  |
| 13n586          | 20  |
| 13n592          | 120 |
| <b>13n</b> 601  | 40  |
| 13n603          | 40  |
| 13n606          | 120 |
| 13n608          | 80  |
| 13n1192         | 20  |
| 13n1644         | 40  |
| 13n1692         | 80  |
| 13n1716         | 40  |
| <b>13n</b> 1718 | 40  |
| <b>13n</b> 1719 | 80  |
| 13n1724         | 80  |
| 13n1727         | 40  |
| <b>13n</b> 1734 | 20  |
| 13n1735         | 40  |
| 13n1739         | 40  |
| 13n1931         | 120 |
| <b>13n</b> 1945 | 40  |
| <b>13n</b> 1957 | 20  |
| 13n2303         | 40  |
| 13n2436         | 40  |
| 13n2442         | 40  |
| 13n2491         | 40  |
| 13n2787         | 120 |
| 13n3023         | 40  |
| 13n3351         | 20  |
|                 |     |

| 13n3393          | 80 |
|------------------|----|
| 13n3582          | 40 |
| 13n3611          | 40 |
| 13n3956          | 40 |
| 13n3958          | 40 |
| 13n3969          | 40 |
| 13n3973          | 40 |
| 13n3978          | 20 |
| 13n3979          | 40 |
| 13n3982          | 40 |
| 13n3998          | 40 |
| 13n4003          | 40 |
| 13n4035          | 60 |
| 13n4051          | 10 |
| 13n4079          | 60 |
| 13n4080          | 60 |
| 13n4634          | 20 |
| 13n5018          | 10 |
| 14n6174          | 10 |
| 14n21472         | 20 |
| 14n22172         | 20 |
| 14n22583         | 20 |
| 14n23344         | 20 |
| 15n40180         | 20 |
| <b>15n</b> 40184 | 40 |
| 15n40185         | 20 |
| 15n41127         | 20 |
| 15n41189         | 20 |
| 15n41193         | 60 |
| 15n41223         | 20 |
| 15n41235         | 40 |
| 15n43517         | 30 |
| 15n45460         | 10 |
| 15n46935         | 40 |
| 15n46936         | 20 |
| 15n47800         | 40 |
| 15n48957         | 20 |
| 15n49035         | 40 |
| 15n51709         | 20 |
| 15n52941         | 10 |

| 15n52944  | 20  |
|-----------|-----|
| 15n53947  | 20  |
| 15n53948  | 20  |
| 15n56026  | 20  |
| 15n59004  | 40  |
| 15n59005  | 20  |
| 15n59007  | 20  |
| 15n71113  | 20  |
| 15n107628 | 40  |
| 15n124826 | 40  |
| 15n125031 | 40  |
| 15n125991 | 20  |
| 15n126002 | 20  |
| 15n126008 | 20  |
| 15n126010 | 40  |
| 15n126011 | 20  |
| 15n126024 | 10  |
| 15n127000 | 20  |
| 15n127094 | 10  |
| 15n127330 | 10  |
| 15n127609 | 20  |
| 15n127610 | 20  |
| 15n127630 | 40  |
| 15n127654 | 40  |
| 15n163844 | 20  |
| 15n163860 | 20  |
| 15n166131 | 10  |
| 15n166806 | 10  |
| 31#31     | 730 |
| 31#41     | 60  |
| 31#51     | 280 |
| 31#52     | 400 |
| 31#63     | 80  |
| 31#820    | 60  |
| 31#819    | 40  |
| 31#31#31  | 10  |

**Supplementary Figure** 9: Symmetric and non-symmetric knots for the following  $(n_T, n_S)$  pairs: (5, 4). The number of linear braid patterns associated to a given knot type is shown in the second column.

$$(n_T = 7, n_S = 2)$$

| Topology       | # possible braid rep. |
|----------------|-----------------------|
| C7 - symmetric |                       |
| 71             | 2                     |
| Non-symmetric  |                       |
| 01             | 70                    |
| 31             | 42                    |
| 51             | 14                    |

 $(\mathbf{n_T}=\mathbf{7},\mathbf{n_S}=\mathbf{3})$ 

# 14 projected crossings

| Topology         | # possible<br>braid rep. |  |
|------------------|--------------------------|--|
| C7 - symmetric   |                          |  |
| <b>14a</b> 19470 | 2                        |  |
| 14n21881         | 2                        |  |
| Non-symr         | netric                   |  |
| 01               | 2688                     |  |
| 31               | 2884                     |  |
| 41               | 224                      |  |
| 51               | 1260                     |  |
| 52               | 1400                     |  |
| 62               | 168                      |  |
| 63               | 896                      |  |
| 71               | 280                      |  |
| 73               | 280                      |  |
| 75               | 560                      |  |
| 87               | 336                      |  |
| 89               | 28                       |  |
| 810              | 336                      |  |
| 816              | 168                      |  |
| 817              | 28                       |  |
| 818              | 112                      |  |
| 819              | 280                      |  |
| 820              | 868                      |  |
| 821              | 140                      |  |
| 1017             | 28                       |  |
| 1048             | 56                       |  |
| 1079             | 28                       |  |
| 1091             | 56                       |  |
| 1099             | 14                       |  |
| 10104            | 28                       |  |
| 10109            | 28                       |  |
| 10112            | 168                      |  |

| 10118281012470101251961012614010139112101412810143280101551410157701015914010161=1016216812a12092812n7242812n755612n7085612n7212812n7212812n7512812n7512812n7512812n7212812n7512812n7512814n21822814n21822814n218311214n21845614n218514014n218514014n21851431#3158831#5114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|
| 10124701012519610126140101391121014128101432801014514101551410157701015114010151168128192812812128128120281281212812812128128121281281212812812128128121281281212812812156128121281281212812812128128121281281212812812128128121281281212812812128128121281281212812812128148218228148218328148218458831#3158831#51168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10118           | 28  |
| 101251961012614010139112101412810143280101551410157701015714010157168128192812812028128121281281202812812128128121281281212812812128128121281281215612812156128121281293256129735612974112129752812975281297528129752812975281297528129752814921692814921692814921692814921691431#3158831#5116851#5114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10124           | 70  |
| 10126         140           10139         112           10141         28           10143         280           10143         280           10143         280           10155         14           10155         14           10157         70           10157         70           10157         168           122819         28           122120         28           122121         28           122121         28           122120         28           122121         28           122121         28           122121         28           122121         28           122121         28           120742         28           120755         56           120779         56           1207751         28           120751         28           120751         28           1402         28           1402         28           1402         28           1402         28           1402         28           1402 <td< td=""><td>10125</td><td>196</td></td<> | 10125           | 196 |
| 10139         112           10141         28           10143         280           10143         280           10155         14           10155         14           10157         70           10157         70           10157         140           10157         168           12819         28           12819         28           128121         28           128121         28           128121         28           128121         28           128121         28           128121         28           128121         28           128121         28           128121         28           128121         28           128121         28           129708         56           129709         56           129771         28           129751         28           1402         28           1402         28           1402         28           1402         28           1402         28           1402         28                                     | 10126           | 140 |
| 10141         28           10143         280           10148         280           10155         14           10157         70           10157         70           10157         70           10157         140           10157         70           10159         140           10161=10162         168           12a1209         28           12a121         28           12n42         28           12n468         56           12n709         56           12n709         56           12n721         28           12n751         28           12n751         28           12n751         28           12n82         140           14n21882         28           14n21882         28           14n2169         28           14n27120         14           31#31         588           31#51         168                                                                                                                                                       | 10139           | 112 |
| 10143         280           10148         280           10155         14           10157         70           10157         70           10157         70           10157         70           10157         70           10157         70           10159         140           10151         168           12a120         28           12a120         28           12a121         28           12n242         28           12n675         56           12n708         56           12n709         56           12n721         28           12n751         28           12n751         28           12n829         140           14n21882         28           14n2189         28           14n2169         28           14n21720         14           31#31         588           31#51         168                                                                                                                                                              | 10141           | 28  |
| 10148         280           10155         14           10157         70           10159         140           10159         168           12819         28           12a120         28           12a120         28           12a121         28           12a121         28           12a121         28           12a121         28           12n63         56           12n75         56           12n709         56           12n721         28           12n751         28           12n751         28           12n82         140           14n21882         28           14n21882         28           14n2169         28           14n2120         14           31#31         588           31#51         168                                                                                                                                                                                                                                                 | 10143           | 280 |
| 10155         14           10157         70           10157         70           10157         70           10157         70           10157         70           10157         70           10159         140           10159         168           12a120         28           12a121         28           12n242         28           12n675         56           12n708         56           12n709         56           12n721         28           12n751         28           12n751         28           12n829         140           14n21882         28           14n21882         28           14n2169         28           14n27039         14           31#31         588           31#51         168                                                                                                                                                                                                                                                 | 10148           | 280 |
| 10157         70           10159         140           10161=10162         168           12819         28           121210         28           121211         28           1212121         28           1212121         28           1212121         28           1212121         28           121213         56           1210468         56           121075         56           1210709         56           1210721         28           1210751         28           1210751         28           1210751         28           1210829         140           141021882         28           14102103         28           14102103         28           14102103         14           31#31         588           31#51         168                                                                                                                                                                                                                         | 10155           | 14  |
| 10159       140         10161=10162       168         12a819       28         12a1209       28         12a1211       28         12n242       28         12n468       56         12n675       56         12n709       56         12n721       28         12n751       28         12n629       140         12n751       28         12n629       140         14n21882       28         14n21882       28         14n2189       28         14n2189       140         14n2189       28         14n2189       140         14n2189       14         31#31       588         31#51       168                                                                                                                                                                                                                                                                                                                                                                               | 10157           | 70  |
| 10161=10162       168         12a819       28         12a1209       28         12a1211       28         12n242       28         12n468       56         12n709       56         12n709       56         12n721       28         12n721       28         12n751       28         12n751       28         12n721       28         12n751       28         14n21882       28         14n21882       28         14n27039       28         14n27120       14         31#31       588         31#51       168         51#51       14                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10159           | 140 |
| 12a819     28       12a1209     28       12a1211     28       12n242     28       12n468     56       12n675     56       12n708     56       12n709     56       12n721     28       12n751     28       12n829     140       14n21882     28       14n21882     28       14n2169     28       14n27039     14       31#31     588       31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10161=10162     | 168 |
| 12a1209     28       12a1211     28       12n242     28       12n468     56       12n675     56       12n708     56       12n709     56       12n721     28       12n751     28       12n751     28       12n721     28       12n751     28       14n21882     28       14n21882     28       14n2109     28       14n2109     14       31#31     588       31#51     168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>12a</b> 819  | 28  |
| 12a1211     28       12n242     28       12n468     56       12n675     56       12n708     56       12n709     56       12n721     28       12n749     112       12n751     28       12n829     140       14n21882     28       14n2169     28       14n27039     28       14n27120     14       31#31     588       31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>12a</b> 1209 | 28  |
| 12n242     28       12n468     56       12n675     56       12n708     56       12n709     56       12n721     28       12n751     28       12n751     28       12n829     140       14n21882     28       14n2189     28       14n2103     28       14n2181     588       31#31     588       31#51     168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12a1211         | 28  |
| 12n468     56       12n675     56       12n708     56       12n709     56       12n721     28       12n721     28       12n751     28       12n829     140       14n21882     28       14n27039     28       14n27120     14       31#31     588       31#51     168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12n242          | 28  |
| 12n675     56       12n708     56       12n709     56       12n721     28       12n749     112       12n751     28       12n629     140       14n21882     28       14n21882     28       14n27039     28       14n27120     14       31#31     588       31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12n468          | 56  |
| 12n708     56       12n709     56       12n721     28       12n749     112       12n751     28       12n829     140       14n21882     28       14n21882     28       14n27039     28       14n27120     14       31#31     588       31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12n675          | 56  |
| 12n709     56       12n721     28       12n749     112       12n751     28       12n829     140       14n21882     28       14n2169     28       14n27039     28       14n27120     14       31#31     588       31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12n708          | 56  |
| 12n721     28       12n721     112       12n751     28       12n829     140       14n21882     28       14n2169     28       14n27039     28       14n27120     14       31#31     588       31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12n709          | 56  |
| 12n749     112       12n751     28       12n829     140       14n21882     28       14n24169     28       14n27039     28       14n27120     14       31#31     588       31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12n721          | 28  |
| 12n751     28       12n829     140       14n21882     28       14n24169     28       14n27039     28       14n27120     14       31#31     588       31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12n749          | 112 |
| 12n829     140       14n21882     28       14n24169     28       14n27039     28       14n27120     14       31#31     588       31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12n751          | 28  |
| 14n21882     28       14n24169     28       14n27039     28       14n27120     14       31#31     588       31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12n829          | 140 |
| 14n24169     28       14n27039     28       14n27120     14       31#31     588       31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14n21882        | 28  |
| 14n27039     28       14n27120     14       31#31     588       31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14n24169        | 28  |
| 14n27120     14       31#31     588       31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14n27039        | 28  |
| 31#31     588       31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14n27120        | 14  |
| 31#51     168       51#51     14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31#31           | 588 |
| 51#51 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31#51           | 168 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51#51           | 14  |

**Supplementary Figure** 10: Symmetric and non-symmetric knots for the following  $(n_T, n_S)$  pairs: (7, 2), (7, 3). TThe number of linear braid patterns associated to a given knot type is shown in the second column.

$$(\mathbf{n_T}=\mathbf{8},\mathbf{n_S}=\mathbf{3})$$

| Topology       | # possible<br>braid rep. |  |
|----------------|--------------------------|--|
| Ca - symn      | C8 - symmetric           |  |
| 16a379778      | 2                        |  |
| 16n783154      | 2                        |  |
| C4 - symmetric |                          |  |
| 818            | 4                        |  |
| 819            | 8                        |  |
| C2 - symmetric |                          |  |
| 31             | 48                       |  |
| 41             | 40                       |  |
| 85             | 48                       |  |
| 819            | 16                       |  |
| 12n725         | 72                       |  |
| 12n750         | 32                       |  |
| 12a1229        | 16                       |  |
| 12a1288        | 8                        |  |
| 16n998580      | 16                       |  |
| Non-symmetric  |                          |  |
|                |                          |  |

$$(\mathbf{n_T}=\mathbf{9},\mathbf{n_S}=\mathbf{2})$$

#### 9 projected crossings

| Topology       | # possible<br>braid rep. |  |
|----------------|--------------------------|--|
| C9 - symn      | C9 - symmetric           |  |
| 91             | 2                        |  |
| C3 - symmetric |                          |  |
| 31             | 6                        |  |
| Non-symmetric  |                          |  |
| 01             | 252                      |  |
| 31             | 162                      |  |
| 51             | 72                       |  |
| 71             | 18                       |  |

$$(n_T = 10, n_S = 3)$$

#### 20 projected crossings

| Topology                     | # possible braid rep. |
|------------------------------|-----------------------|
| C10 - symmetric              |                       |
| T(10,3)                      | 2                     |
| putative 20-crossing knot #1 | 2                     |
| C5 - symmetric               |                       |
| 10123                        | 4                     |
| 10124                        | 8                     |
| C2 - symmetric               |                       |
| 31                           | 210                   |
| 85                           | 80                    |
| 818                          | 60                    |
| 819                          | 120                   |
| 12a1210                      | 80                    |
| 12a1229                      | 20                    |
| 12a1288                      | 10                    |
| 12n725                       | 60                    |
| 12n750                       | 60                    |
| 12n888                       | 30                    |
| 16a377123                    | 20                    |
| 16a377444                    | 20                    |
| <b>16</b> n783154            | 20                    |
| 16n998580                    | 20                    |
| <b>16n</b> 1003403           | 60                    |
| putative 20-crossing knot #2 | 20                    |
| putative 20-crossing knot #3 | 10                    |
| Non-symmetric                |                       |
|                              |                       |

|                              | Dowker Code of putative 20-crossing knots for $(\mathbf{n_T}=10,\mathbf{n_S}=3)$ |
|------------------------------|----------------------------------------------------------------------------------|
| putative 20-crossing knot #1 | 14 16 18 20 22 24 26 28 30 32 34 36 38 40 2 4 6 8 10 12                          |
| putative 20-crossing knot #2 | 10 -12 14 -18 -38 26 -28 30 -6 -32 -34 -36 40 -2 4 16 -20 -22 -8 24              |
| putative 20-crossing knot #3 | 10 14 -16 20 24 28 30 32 -34 6 -36 8 38 40 12 2 -4 -18 -22 26                    |

Supplementary Figure 11: Symmetric and non-symmetric knots for the the following  $(n_T, n_S)$  pairs: (9, 2), (8, 3) and (10, 3). The number of linear braid patterns associated to a given knot type is shown in the second column. Three knot types with 20 projected crossings are fingerprinted by their Dowker code, which could not be further simplified algebraically with the Knotscape software package.