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Supplementary Note 1. Topological state diagrams
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Supplementary Figure 1: Topological state diagram. The highlighted points in the discretized (h, α) parameter space mark
the template shapes where one observes constructs nT = 3 (top) and nT = 4 (bottom) templates with the topologies sketched
on the right. The highlighted regions include points where the indicated knots account for more than 1% of the MC-sampled
constructs. The cases shown here are made of templates with the same chirality. The 41-knotted instances in the bottom panel
mostly correspond to the geometry shown on the right, but there are also instances of an alternative geometry, shown inside
the topological state diagram.
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Supplementary Figure 2: Topological state diagram. The highlighted points in the discretized (h, α) parameter space mark
the template shapes where one observes constructs nT = 4 (top, racemic template mixture) and nT = 5 (bottom, templates of
same chirality) templates with the topologies sketched on the right. The highlighted regions includes points where the indicated
knots account for more than 1% of the MC-sampled constructs.
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Supplementary Note 2. Designability score of constructs obtained with self-assembly
simulations

3 templates 4 templates 5 templates

Topology 31 819 4∗1 31 10124 15n41185 12n242

Designability Score 42 24 20 55 11 5 9

Supplementary Table I: Designability score for the symmetric (and quasi-symmetric) knots obtained in self-assembly of 3,
4 and 5 templates with shape parameters (h ∈ [0.1, 2.0] and α ∈ [1.4, 1.9]π).
(*) The 41 is assembled from a racemic combination of 2 left- and 2 right-handed templates.

Supplementary Note 3. Self-assembly in mixtures of hundreds of templates

(a) (b)
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Supplementary Figure 3: Snapshots of molecular dynamics simulations for the self-assembly of 250 templates in various
conditions. Self-assembly of templates without coordinating particles: (a) same chirality helical fragments with geometry
h = 1.0 and α = 1.8π and helical fragments density 0.0125; (b) racemic mixture of helical fragments (ratio 50%) with geometry
h = 0.8 and α = 1.7π and helical fragments density 0.0075. Self-assembly of templates with coordinating particles: (c) racemic
mixture of helical fragments (ratio 50%) with geometry h = 0.8 and α = 1.7π, helical fragments density 0.0125 and Yukawa
parameters CY = 10 and lY = 0.91σ. The diameter of the coordinating particles in this example is 2σ, that is twice the size of
the templates’ beads. (d) Racemic mixture of helical fragments (ratio 50%) with geometry h = 0.8 and α = 1.7π and helical
fragments density 0.0125; coordinating particles diameter 3σ, Yukawa parameters CY = 5 and lY = 1.59σ. For cases (c) and

(d), the reference ”contact distance” was suitably changed from the 21/6σ value in eq. (1) of the main text, which is appropriate
only for the default case of equally-sized template beads and coordinating particles. Other parameters are set to their default
values given in the Methods section of the main text.
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Supplementary Note 4. Contact angles in 51-knotted constructs

a) b)

Supplementary Figure 4: (a) Probability distribution of the contact angle between consecutive templates in the Monte
Carlo-generated cyclic-symmetric 51 knots made of 5 templates (data cumulated over all explored template shapes). Note that
angles larger than π/4, or 45 degrees are disallowed and hence are not populated. The analogous distribution, but pertaining
to molecular dynamics simulations, are shown in panel (b). In this case, the shape of the distribution is controlled by the steric
and patchy interactions of the templates which promote the collinearity of the contacting templates’ ends. Because of these
smaller contacting angles, which are much lower than needed to establish 51 knots - see panel (a)- , the formation of 51 knots
in MD assembly simulations is suppressed.
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Supplementary Note 5. Monte Carlo cyclic-symmetry score
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Supplementary Figure 5: Probability distribution of the cyclic-symmetry score for Monte-Carlo sampled constructs made
of nT = 3, 4, and 5 templates of same or different chiralities, as indicated. Each distribution is cumulated over all considered
templates’ shapes. The symmetry score is computed as the root mean square deviation (RMSD) of the structural alignment of
a construct with its circular permutant with the best (Kabsch) structural alignment. The best alignment is searched over all
cyclic permutations of the beads indices with an indexing shift at least equal to half the templates’ length (number of beads).
For three and four templates, the presence of cyclic-symmetric constructs is signalled by a peak or shoulder at low values of
the score. The cutoff value for the score used to select such instances is marked with a dashed line. For five templates, no peak
is discernible and therefore we took the RMSD cutoff value (again indicated with a dashed line) as the largest RMSD below
which all constructs are cyclic-symmetric. By this we mean that their geometry can be regularised into a cyclic-symmetric
shape with only minor adjustments.
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Supplementary Note 6. Effective bonding potential

The nominal strength of the bonding potential is controlled by the adimensional parameter Cp. In our simulations
we set Cp = 25, so that the depth of the Gaussian well between two patches is equal to 25 KBT . The effective
unbonding barrier is appreciably smaller than this, as it is clarified by computing the effective free-energy profile,
F (r), of two patchy particles as a function of their distance r,

F (r) = −KBT log(Z(r)) (1)

where Z(r) is the canonical partition function integrated over the degrees of freedom, {θ, φ, θ′, φ′} defining the relative
orientation of the patchy particles at the given distance r. Apart from a prefactor, contributing only to an additive
shift of F (r), Z(r) is given by:

Z(r) =
( r
σ

)2 ∫ cos θ=+1

cos θ=−1
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Supplementary Figure 6: (a) Representation of the degrees of freedom (θ, φ, θ′, φ′) defining the relative orientation of two
patchy particles at a distance r. (b) Free-energy profile, F (r), obtained by numerical integration for Cp = 25.
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where θ and φ are the radial and azimuthal angles of the second patch defined in the Cartesian frame centered in
the first patch and with x axis oriented along the principal axis of the first patchy particle itself, see Fig. 6a. The
other parameters, θ′ and φ′ are instead the radial and azimuthal angles that specify the orientation of the center of
the second patchy particle in respect to its patch, see inset of Fig. 6a.
The bead-patch distance is fixed and equal to d = 21/6σ/2.

Numerical integration of Z(r) yields (up to an additive constant) the free energy profile shown in Fig. 6b.
One sees that due to the interplay of entropic and enthalpic effects, the effective barrier for breaking a bond is

smaller than 25 KBT , and specifically it is equal to about 18 KBT .
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Supplementary Figure 7: Natural logarithm of the time required to break the bond between two patchy helical templates
as a function of the strength of the patch-patch potential Cp. Results from simulations are represented with orange circles,
while linear fit is represented with a continuous blue line: time = 0.0645 · exp(0.718 · Cp)τLJ .

The result is consistent with the actual bond-breaking kinetics for two patchy helical templates, as it is shown in
Fig. 7. The semi-log plot shows the Cp dependence of the time required to break the bond between two initially-
contacting templates during various MD simulations (ten per each Cp value). The best fit line in Fig. 7 is time ∝
exp(0.718 ·Cp) τLJ . For Cp = 25, this yields the effective barrier 0.178 · 25 KBT ∼ 18 KBT . The associated detached
time is of the order of 4, 000, 000 τLJ , which is about 20 times larger than the typical duration of our production runs.
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Supplementary Note 7. Enumeration of braid patterns

The tables below list various single-component knots (i.e. not links) obtainable for various (nT , nS) combinations,
including few beyond those covered by Fig. 4 of the main text, e.g. (9, 2), (8, 3) and (10, 3). The (7, 4) pair is
not included, due to the excessively large number of braid combinations yielding knotted patterns that exceed the
complexity of tabulated knot types (available for prime components of up to 16 crossings). Knots of up to 10 crossings
are denoted with the conventional Rolfsen notation. More complex knots are labelled with the Thistlethwaite notation,
except for specific instances of torus knots, for which we use the conventional T (n1, n2) notation, and very complex
topologies which we fingerprint with their Dowker code.

For each (nT , nS) combination, the 2nT (nS−1) possible braid patterns are subdivided according to several criteria.
First we consider the number of crossings projected in the plane orthogonal to the axis of cyclic symmetry, which is
clearly an upper bound to the minimal crossing number. Next, we separate braids that admit a closed cyclic-symmetric
arrangment from those that do not. The latter are not the main focus of the study and hence, for simplicity, are not
included for the more complex cases of (8, 3) and (10, 3). The symmetric braids are then grouped by the order of their
cyclic symmetry. The number of linear braid patterns associated to a given knot type is shown in the second column.
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Topology # possible 
braid rep.

C5 - symmetric

10123 2

10124 2

Non-symmetric

01 330

31 200

41 60

51 60

52 60

62 80

63 20

89 20

817 20

819 20

820 20

821 60

10141 20

10155 10

31#31     40

Topology # possible 
braid rep.

C5 - symmetric

51 2

Non-symmetric

01 20

31 10

Topology # possible 
braid rep.

C4 - symmetric

818 2

819 2

C2 - symmetric

31 8

41 4

Non-symmetric

01 88

31 64

51 16

52 32

63 16

820 16

31#31      8

Topology # possible 
braid rep.

C3 - symmetric

31 2

Non-symmetric

01 6

(nT = 3,nS = 2) (nT = 4,nS = 3) (nT = 5,nS = 3)(nT = 5,nS = 2)

3 projected crossings 8 projected crossings 5 projected crossings 10 projected crossings

Supplementary Figure 8: Symmetric and non-symmetric knots for the following (nT , nS) pairs: (3, 2), (4, 3), (5, 2), (5, 3).
The number of linear braid patterns associated to a given knot type is shown in the second column.
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Topology # possible 
braid rep.

C5 - symmetric

15a84903          2

15n41185          2

15n166130          4

Non-symmetric

01 2910

31 3130

41 370

51 1480

52 2360

61 100

62 140

63 1200

71 200

72 440

73 520

74 420

75 500

76 280

77 20

87 380

88 660

810 680

813 320

815 180

816 140

818 80

819 310

820 1460

821 50

928 60

931 140

933 40

942 20

943 40

944 120

945 160

946 10

948 90

949 100

10112 80

10114 40

10122 60

10124 60

10125 280

10126 240

10128 120

10129 160

10130 280

10132 360

10134 120

10135 520

10139 50

10140 140

10142 60

10143 180

10145 80

10146 10

10148 320

10151 440

10153 520

10156 40

10157 20

10159 40

10160 40

10161=10162 140

10164 40

10165 80

11a171 40

11n12 40

11n23 80

11n24 160

11n39 60

11n41 40

11n46 80

11n50 20

11n54 160

11n56 40

11n61 120

11n65 80

11n71 40

11n78 20

11n82 40

11n94 120

11n95 40

11n96 200

11n98 40

11n106 180

11n107 20

11n118 20

11n132 40

11n133 20

11n145 160

11n146 40

11n147 40

11n148 60

11n173 20

11n178 20

11n179 20

11n183 40

11n184 20

12n121 60

12n242 20

12n253 40

12n309 140

12n318 160

12n323 200

12n328 40

12n371 140

12n385 80

12n425 60

12n426 20

12n439 100

12n443 80

12n451 80

12n488 100

12n548 40

12n591 40

12n646 40

(nT = 5,nS = 4)

15 projected crossings
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12n702 80

12n725 10

12n730 40

12n749 60

12n811 20

12n829 20

12n835 40

12n868 10

13n225 40

13n288 80

13n501 60

13n519 20

13n584 40

13n586 20

13n592 120

13n601 40

13n603 40

13n606 120

13n608 80

13n1192 20

13n1644 40

13n1692 80

13n1716 40

13n1718 40

13n1719 80

13n1724 80

13n1727 40

13n1734 20

13n1735 40

13n1739 40

13n1931 120

13n1945 40

13n1957 20

13n2303 40

13n2436 40

13n2442 40

13n2491 40

13n2787 120

13n3023 40

13n3351 20

13n3393 80

13n3582 40

13n3611 40

13n3956 40

13n3958 40

13n3969 40

13n3973 40

13n3978 20

13n3979 40

13n3982 40

13n3998 40

13n4003 40

13n4035 60

13n4051 10

13n4079 60

13n4080 60

13n4634 20

13n5018 10

14n6174 10

14n21472 20

14n22172 20

14n22583 20

14n23344 20

15n40180 20

15n40184 40

15n40185 20

15n41127 20

15n41189 20

15n41193 60

15n41223 20

15n41235 40

15n43517 30

15n45460 10

15n46935 40

15n46936 20

15n47800 40

15n48957 20

15n49035 40

15n51709 20

15n52941 10

15n52944 20

15n53947 20

15n53948 20

15n56026 20

15n59004 40

15n59005 20

15n59007 20

15n71113 20

15n107628 40

15n124826 40

15n125031 40

15n125991 20

15n126002 20

15n126008 20

15n126010 40

15n126011 20

15n126024 10

15n127000 20

15n127094 10

15n127330 10

15n127609 20

15n127610 20

15n127630 40

15n127654 40

15n163844 20

15n163860 20

15n166131 10

15n166806 10

31#31      730

31#41 60

31#51      280

31#52 400

31#63    80

31#820      60

31#819   40

31#31#31  10

Supplementary Figure 9: Symmetric and non-symmetric knots for the following (nT , nS) pairs: (5, 4). The number of linear
braid patterns associated to a given knot type is shown in the second column.
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Topology # possible 
braid rep.

C7 - symmetric

71 2

Non-symmetric

01 70

31 42

51 14

Topology # possible 
braid rep.

C7 - symmetric

14a19470 2

14n21881 2

Non-symmetric

01 2688

31 2884

41 224

51 1260

52 1400

62 168

63 896

71 280

73 280

75 560

87 336

89 28

810 336

816 168

817 28

818 112

819 280

820 868

821 140

1017 28

1048 56

1079 28

1091 56

1099 14

10104 28

10109 28

10112 168

10118 28

10124 70

10125 196

10126 140

10139 112

10141 28

10143 280

10148 280

10155 14

10157 70

10159 140

10161=10162          168

12a819 28

12a1209 28

12a1211 28

12n242 28

12n468 56

12n675 56

12n708 56

12n709 56

12n721 28

12n749 112

12n751 28

12n829 140

14n21882 28

14n24169 28

14n27039 28

14n27120 14

31#31      588

31#51 168

51#51 14

(nT = 7,nS = 2) (nT = 7,nS = 3)

7 projected crossings 14 projected crossings

Supplementary Figure 10: Symmetric and non-symmetric knots for the following (nT , nS) pairs: (7, 2), (7, 3). TThe number
of linear braid patterns associated to a given knot type is shown in the second column.



14

Topology # possible 
braid rep.

C9 - symmetric

91 2

C3 - symmetric

31 6

Non-symmetric

01 252

31 162

51 72

71 18

Topology # possible 
braid rep.

C8 - symmetric

16a379778 2

16n783154 2

C4 - symmetric

818 4

819 8

C2 - symmetric

31 48

41 40

85 48

819 16

12n725 72

12n750 32

12a1229 16

12a1288 8

16n998580 16

Non-symmetric

…

Topology # possible 
braid rep.

C10 - symmetric

T(10,3) 2

putative 20-crossing knot #1 2

C5 - symmetric

10123 4

10124 8

C2 - symmetric

31 210

85 80

818 60

819 120

12a1210 80

12a1229 20

12a1288 10

12n725 60

12n750 60

12n888 30

16a377123 20

16a377444 20

16n783154 20

16n998580 20

16n1003403 60

putative 20-crossing knot #2 20

putative 20-crossing knot #3 10

Non-symmetric

…

Dowker Code of putative 20-crossing knots for

putative 20-crossing knot #1 14 16 18 20 22 24 26 28 30 32 34 36 38 40 2 4 6 8 10 12

putative 20-crossing knot #2 10 -12 14 -18 -38 26 -28 30 -6 -32 -34 -36 40 -2 4 16 -20 -22 -8 24

putative 20-crossing knot #3 10 14 -16 20 24 28 30 32 -34 6 -36 8 38 40 12 2 -4 -18 -22 26

(nT = 9,nS = 2)(nT = 8,nS = 3) (nT = 10,nS = 3)

9 projected crossings16 projected crossings 20 projected crossings

(nT = 10,nS = 3)

Supplementary Figure 11: Symmetric and non-symmetric knots for the the following (nT , nS) pairs: (9, 2), (8, 3) and (10, 3).
The number of linear braid patterns associated to a given knot type is shown in the second column. Three knot types with
20 projected crossings are fingerprinted by their Dowker code, which could not be further simplified algebraically with the
Knotscape software package.


