SUPPORTING INFORMATION

Deciphering Conformational Changes Associated with the Maturation of Thrombin Anion Binding Exosite I

Ramya Billur[†], David Ban[‡], T. Michael Sabo[‡], and Muriel C. Maurer[†]*

[†]Department of Chemistry, University of Louisville, Louisville, Kentucky 40292

[‡]Department of Medicine, James Graham Brown Cancer Center, University of Louisville,

Louisville, KY 40202, USA

*Corresponding author: Muriel C. Maurer Department of Chemistry University of Louisville Louisville, KY 40292 Telephone: (502) 852-7008 Email: muriel.maurer@louisville.edu

Figure S1: An overlay of the 2D 13 C- 1 H natural abundance HSQC NMR spectra of 1 mM PAR3 (44-56) and 1mM PAR3G (44-56). All NMR samples were in 25mM H₃PO₄, 150 mM NaCl, 0.2 mM EDTA and 10 % D₂O (pH 6.5). The PAR3 residues are in red whereas the PAR3G are in black. The expected cross peaks for the unique residues Pro51 versus Gly51 are labeled.

Figure S2: 1D ¹⁵N-HSQC NMR titrations of PAR3_{FD} (44-56) in the presence of ProT and PPACK- IIa All NMR samples were in 25mM H₃PO₄, 150 mM NaCl, 0.2 mM EDTA and 10 % D₂O (pH 6.5). (A) For the PAR3_{FD} binding studies with ProT, starting complexes included 50 μ M PAR3_{FD} (44-56, ¹⁵N-F47, ¹⁵N-D54) in 137 μ M ProT. The serial dilutions resulted in ProT to PAR3 ratios that spanned from 3:1 to 0.1:1. (B) For PPACK- IIa, starting complexes included 50 μ M PAR3_{FD} (44-56, ¹⁵N-F47, ¹⁵N-D54) in 210 μ M PPACK- IIa. The serial dilutions resulted in PPACK- IIa to PAR3_{FD} ratios that spanned from 4:1 to 0.1:1. Representative data sets are shown.

Figure S3: 2D ¹H-¹⁵N HSQC NMR titrations of PAR3_{FD} (44-56) in the presence of ProT and PPACK-IIa. All NMR samples were in 25mM H₃PO₄, 150 mM NaCl, 0.2 mM EDTA and 10 % D₂O (pH 6.5). (**A**) For the PAR3_{FD} binding studies with ProT, starting complexes included 50 μ M PAR3_{FD} (44-56, ¹⁵N-F47, ¹⁵N-D54) in 130 μ M ProT. The serial dilutions resulted in ProT to PAR3_{FD} ratios that spanned from 3:1 to 0.1:1. (**B**) For PPACK -IIa, starting complexes included 50 μ M PAR3_{FD} (44-56, ¹⁵N-F47, ¹⁵N-D54) in 210 μ M PPACK-IIa. The serial dilutions resulted in PPACK-IIa to PAR3_{FD} ratios that spanned from 4:1 to 0.1:1. Representative data sets are shown. Colors for the HSQC crosspeaks span from blue (highest protein-peptide ratio) to red (free peptide).

Figure S4: 1D ¹⁵N-HSQC NMR titrations of PAR3G_{FD} (44-56) in the presence of ProT and PPACK- IIa All NMR samples were in 25mM H₃PO₄, 150 mM NaCl, 0.2 mM EDTA and 10 % D₂O (pH 6.5). (A) For the PAR3G_{FD} binding studies with ProT, starting complexes included 37.5 μ M PAR3G_{FD} (44-56, ¹⁵N-F47, ¹⁵N-D54) in 70 μ M ProT. The serial dilutions resulted in ProT to PAR3G ratios that spanned from 2:1 to 0.3:1. (B) For PPACK- IIa, starting complexes included 37.5 μ M PAR3G_{FD} (44-56, ¹⁵N-F47, ¹⁵N-D54) in 70 μ M PPACK- IIa, starting complexes included 37.5 μ M PAR3G_{FD} (44-56, ¹⁵N-F47, ¹⁵N-D54) in 70 μ M PPACK- IIa. The serial dilutions resulted in PPACK- IIa to PAR3G_{FD} ratios that spanned from 2:1 to 0.05:1. Representative data sets are shown.

Figure S5: ¹⁵N **HSQC NMR titrations of PAR3G**_{EL} (**44-56**) in the presence of ProT and PPACK- IIa All NMR samples were in 25mM H₃PO₄, 150 mM NaCl, 0.2 mM EDTA and 10 % D₂O (pH 6.5). (**A**) For the PAR3G_{EL} binding studies with ProT, starting complexes included 50 μ M PAR3G_{EL} (44-56, ¹⁵N-E48, ¹⁵N-L52) in 180 μ M ProT. The serial dilutions resulted in ProT to PAR3G ratios that spanned from 4:1 to 0.1:1. (**B**) For PPACK- IIa, starting complexes included 50 μ M PAR3G_{EL} (44-56, ¹⁵N-E48, ¹⁵N-L52) in 211 μ M PPACK- IIa. The serial dilutions resulted in PPACK- IIa to PAR3G_{EL} ratios that spanned from 4:1 to 0.1:1. Representative data sets are shown.

Figure S6: Determination of Binding Affinity (K_D) for ¹⁵N-labeled F47 and D54 of PAR3G_{FD} interacting with PPACK-R77aA IIa For this NMR titration series, the peptide ligand concentration was kept constant and the ProT and PPACK-R77aA IIa concentrations were serially diluted. As a result, the NMR titrations were measuring the binding of protein to a defined peptide concentration. (A) Interactions between PPACK-R77aA IIa and PAR3G ¹⁵N-D54 led to a K_D = 168 ± 88 μ M and (B) ProT and PAR3G ¹⁵N-F47 led to a K_D = 173 ± 85 μ M. NMR titrations were done in duplicate. The reported K_D values were determined using in-house scripts written using Python. The term | Δ 60bs| ¹⁵Nppm = δ ^{15N}_{Bound} – δ ^{15N}_{Free} reflects the absolute difference in chemical shift between the bound and free states of the particular ¹⁵N-amide. Error analysis was carried out using a Monte-Carlo approach assuming a 10% error in the serially diluted protein samples. See Materials and Methods for more details.

Figure S7: Determination of Binding Affinity (K_D) for ¹⁵N-labeled L52 and E48 of PAR3G_{FD} interacting with Prothrombin and PPACK-IIa For this NMR titration series, the peptide ligand concentration was kept constant and the ProT and PPACK-IIa concentrations were serially diluted. As a result, the NMR titrations were measuring the binding of protein to a defined peptide concentration. (A) Interactions between ProT and PAR3G ¹⁵N-L52 led to a K_D = 124 ± 27 μ M, (B) ProT and PAR3G ¹⁵N-E48 led to a K_D = > 200 μ M, and (C) PPACK-IIa and PAR3G ¹⁵N-L52 led to a K_D = 47 ± 6 μ M. NMR titrations were done in triplicate. The reported K_D values were determined using in-house scripts written using Python. The term | $\Delta \delta obs$ | ¹⁵Nppm = $\delta^{15N}_{Bound} - \delta^{15N}_{Free}$ reflects the absolute difference in chemical shift between the bound and free states of the particular ¹⁵N-amide. Error analysis was carried out using a Monte-Carlo approach assuming a 10% error in the serially diluted protein samples. See Materials and Methods for more details.