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Table S1. Size and zeta potential of NPsa  

NP type z-average (d.nm) Polydispersity index 
(PI) 

Zeta potential (mV) 

NP 181 ± 18 0.08 ± 0.04 -2.4 ± 0.7 

NP-pD 188 ± 28 0.09 ± 0.08 -3 ± 1 

NP/Al 174 ± 13 0.08 ± 0.06 -3 ± 1 

NPxAl 173 ± 36 0.12 ± 0.06 -15 ± 4 

NP-pD-Al 185 ± 11 0.06 ± 0.02 -6 ± 3 
a PLGA NPs made of unlabeled PLGA. 

n = 5 identically and independently prepared samples (mean ± standard deviation) 
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Table S2. Size of rhodamine-labeled NPs in 50% FBS 

NP type z-average (d.nm) Polydispersity index (PI) 

NP 105 0.54 

NP-pD 116 0.42 

NP/Al 113 0.47 

NPxAl 100 0.32 

NP-pD-Al 107 0.38 

NP-pD-PEG 111 0.54 

NPs were suspended in 50% FBS to 0.1 mg/mL. The size and PI the NPs were measured by a 
Malvern Zetasizer Nano ZS90. 
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Table S3. Size, zeta potential and loading efficiency of PTX loaded NPsa 

name z-average (d.nm) Polydispersity 
index (PI) 

Zeta potential 
(mV) 

PTX loading 
efficiency 
(LE %) 

PTX@NPxAl 169 ± 5 0.12 ± 0.02 -13 ± 1 7.9 ± 1.1 

PTX@NP-pD-
Al 

183 ± 4 0.10 ± 0.02 -3.6 ± 0.3 3.4 ± 0.3 

a PLGA NPs made of unlabeled PLGA. 

n = 6 identically and independently prepared samples (mean ± s.d.) 
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Table S4. Serum chemistry of B16F10 tumor bearing mice at 24 h after the last treatment of 
PBS, PTX@NPxAl, or PTX@NP-pD-Al  

Groups 

Parameters (Ref. Range) 

GLU 

(90-192 
mg/dL) 

CREA 

(0.20-0.80 
mg/dL) 

ALT 

(28-132 
IU/L) 

ALKP 

(62-209 
IU/L) 

GGT 

(IU/L) 

PBS 
185 0.2 450 69 54 

202 0.1 44 113 19 

PTX@NPxAl 

255 0.3 >2000 68 37 

178 0.2 898 76 17 

265 0.3 2923 98 37 

211 0.2 781 88 16 

166 0.1 1069 107 47 

PTX@NP-
pD-Al 

224 0.2 1147 84 29 

181 0.1 62 72 16 

158 0.1 88 85 73 

170 0.2 70 86 28 

Mice were treated with PBS (n = 2), PTX@NPxAl (n = 5), or PTX@NP-pD-Al (n = 4) at 15 
mg/kg q3d × 2. One day after the second dose, mice were sacrificed for the analysis of serum 
chemistry. GLU, glucose; CREA, creatinine; ALT, alanine aminotransferase; ALKP, alkaline 
phosphatase; GGT, gamma glutamyl transferase.  
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Fig. S1. Micro BCA assay of NP and NP-pD. (a) Absorbance (562 nm) difference between NP 
and NP-pD at different concentrations indicating the presence of pD.  (b) The pD content in the 
NP-pD, estimated based on the absorbance difference between NP-pD and bare NP.  Dopamine, 
NP, or NP-pD at different concentrations was incubated in the BCA working reagent for 2 h at 
37 °C. A supernatant was separated from the NP suspension by centrifugation, and its 
absorbance was read at 562 nm. The pD content in NP-pD was estimated based on the 
absorbance difference between NP-pD and bare NP and a calibration curve drawn with 
dopamine solutions of known concentrations. 
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Fig. S2. Two representative SDS-PAGE gels for determination of albumin contents in NPs. 
Albumin standards were prepared as (Top) 0.0625, 0.03125, 0.015625 and 0.0125 mg/mL and 
(Bottom) 0.1, 0.08, 0.04 and 0.02 mg/mL.  
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Fig. S3. Cell viability of (a) HUVEC and (b) hCMEC/D3 cells incubated with NPs (0-0.5 
mg/mL) for 6 h; (c) B16F10 melanoma cells incubated with NPs (0-0.5 mg/mL) for 24 h; and (d) 
THP1-XBlue-MD2-CD14 cells incubated with NPs (0-1 mg/mL) for 24 h, in media 
supplemented with 2% (HUVEC and hCMEC/D3 cells) or 10% (B16F10 and THP1-XBlue-
MD2-CD14 cells) FBS, determined by MTT assay (n = 3-4 identically and independently 
prepared samples. mean ± s.d.). *: p < 0.05 vs. NP by Dunnett’s multiple comparisons test 
following two-way ANOVA.  
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Fig. S4. Cells were incubated with PBS (control), FITC-BSA (0.8 mg/mL) alone or co-incubated 
with FITC-BSA and HSA (1.6 mg/mL) in the 10% serum-supplemented medium for 30 min. (a) 
Cells were imaged without fixation by a Biotek Cytation 3 cell imaging multimode reader. Scale 
bars = 100 μm. (b) FITC-BSA interactions with HUVEC or hCMEC/D3 were determined by 
flow cytometry. n = 3 identically and independently prepared samples (mean ± s.d.) *: p < 0.05; 
**: p < 0.01 vs. HUVEC with a corresponding treatment, by Sidak’s multiple comparisons test 
following two-way ANOVA.  
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Fig. S5. Images of B16F10 cells after 6 and 30 h (6+24 h) incubation with complete EGM-2 
media ± HUVEC seeded on the Transwell insert. Scale bar: 100 µm. 
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Fig. S6. SEAP levels normalized to cell viability. THP1-XBlue-MD2-CD14 cells incubated with 
NPs (0.1 mg/mL) for 24 h, and the supernatants were analyzed for the production of SEAP. n = 3 
identically and independently prepared samples (mean ± s.d.). *: p < 0.05; ***: p < 0.001 vs. NP 
by Dunnett’s multiple comparisons test following two-way ANOVA.   
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Fig. S7. Cellular uptake of NP-pD-Al and NP-pD-PEG (0.1 mg/mL) by J774A.1 macrophages 
after 30 min incubation and B16F10 cells after 1 h incubation in media supplemented with 10% 
serum. (a) Imaged by confocal microscopy (Red: rhodamine-labeled NPs; Blue: nuclei stained 
with Hoechst 33342). Scale bar: 50 μm. (b) Quantified by flow cytometry. n = 3 repeated tests of 
the same batch NPs. NP-pD-PEG was produced by incubating NP-pD with methoxyl 
polyethylene glycol 2000 Da (mPEG; Nanocs, New York, NY) at an mPEG-to-NP weight ratio 
of 2/1 for 30 min in Tris buffer (10 mM, pH 8.5). The NP-pD-PEG was collected by 
centrifugation at 13,600 rcf for 20 min at 4 °C and washed twice with DI water.  
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Fig. S8. All images of fluorescently labeled NPs (red) in FITC-lectin stained tumor blood 
vessels (green). A series of z-stack images were collected from two randomly selected fields per 
slide (16-μm cryostat section) at 0.5 μm intervals and presented as projection images. Mice (n=3 
per group) were given a single IV injection of fluorescently labeled NPxAl or NP-pD-Al at 300 
mg NP/kg. After 24 h, mice were injected IV with lectin-FITC (100 μL, 1 mg/mL in saline), 
perfused with saline 5 min later and sacrificed. Scale bars = 50 μm. Images used in the main text 
are highlighted with red outline. 
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Fig. S9. All images of fluorescently labeled NPs (red) in FITC-lectin stained liver blood vessels 
(green). A series of z-stack images were collected from four randomly selected fields per slide 
(16-μm cryostat section) at 0.5 μm intervals and presented as projection images. Mice (n=3 per 
group) were given a single IV injection of fluorescently labeled NPxAl or NP-pD-Al at 300 mg 
NP/kg. After 24 h, mice were injected IV with lectin-FITC (100 μl, 1 mg/mL in saline), perfused 
with saline 5 min later and sacrificed. Scale bars = 50 μm. Images used in the main text are 
highlighted with red outline. 
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Fig. S10. All images of fluorescently labeled NPs (red) in FITC-lectin stained spleen blood 
vessels (green). A series of z-stack images were collected from four randomly selected fields per 
slide (16-μm cryostat section) at 0.5 μm intervals and presented as projection images. Mice (n=3 
per group) were given a single IV injection of fluorescently labeled NPxAl or NP-pD-Al at 300 
mg NP/kg. After 24 h, mice were injected IV with lectin-FITC (100 μl, 1 mg/mL in saline), 
perfused with saline 5 min later and sacrificed. Scale bars = 50 μm. Images used in the main text 
are highlighted with red outline. 
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Fig. S11. Release kinetics of PTX/NPs in PBST (PBS containing 0.2% Tween 80). 
PTX@NPxAl or PTX@NP-pD-Al were suspended in PBS containing 0.2% Tween 80 (PBST) to 
a concentration equivalent to PTX 4 μg/mL. The NP suspensions were divided into multiple 1 
mL aliquots and incubated at 37 °C with constant agitation. At each time point, the aliquots were 
centrifuged to separate NP pellets and supernatants. The supernatant was analyzed using HPLC. 
n=3 tests with representative batches (mean ± s.d.). 
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Fig. S12. (a) Dosing schedule of PTX-loaded NPs and (b) body weight change of animals. PBS 
(black; n = 3); PTX@NPxAl (blue; n = 5); PTX@NP-pD-Al (red; n = 5). Arrows indicate 
treatment times.  
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Fig. S13. In vivo activity of PTX@NPxAl and @NP-pD-Al in C57BL/6 mice. Mice were treated 
with PBS (n = 3), PTX@NPxAl (n = 5), or PTX@NP-pD-Al (n = 5) at 15 mg/kg q3d × 2. 
Arrows indicate treatment times. (a) Dosing schedule of PTX-loaded NPs, (b) tumor size (mm3), 
(c) specific growth rate of B16F10 tumor = ∆logV/∆t (V: tumor volumes; t: time in days), (d) 
body weight change of animals, and (e) serum levels of TNF-α, IL-6, and IL-1β in B16F10-
tumor bearing mice treated with PBS (n = 2), PTX@NPxAl (n = 4) or PTX@NP-pD-Al (n = 3).  
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Fig. S14. PTX content in liver, spleen, and heart of B16F10 tumor-bearing mice. Mice were 
treated with PBS (n = 3), PTX@NPxAl (n = 5), or PTX@NP-pD-Al (n = 5) at a dose equivalent 
to PTX 15 mg/kg q3d × 2. One day after the second dose, mice were sacrificed for the analysis. 
#: p < 0.05 by non-parametric Mann-Whitney test.  
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Fig. S15. All images of TUNEL-stained B16F10 tumor sections. Two randomly selected fields 
were imaged for each animal. Mice were treated with PBS (n = 3), PTX@NPxAl (n = 5), or 
PTX@NP-pD-Al (n = 5) at a dose equivalent to PTX 15 mg/kg q3d × 2. One day after the 
second dose, mice were sacrificed for the analysis. Scale bars = 50 μm.   

 

 

 

Fig. S16. Photomicrographs (20× objective) of PBS treated (1-3) animals with rare tumor 
hemorrhage, rare vacuolar change within the liver, and normal spleen pathology. PTX@NPxAl 
treated animals (4-6) demonstrating multifocal tumor necrosis, multifocal vacuolar change 
within the liver, and lymphoid depletion within the spleen. PTX@NP-pD-Al treated animals (7-
9) demonstrating marked tumor necrosis, multifocal vacuolar change within the liver, and 
lymphoid depletion within the spleen.  

 


