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Web Appendix A. Statement of Theorems for Generalized Linear Models

For convenience, we first restate the theorems for generalized linear models and corresponding

background information here before we present the proofs.

The density of a generalized linear model with canonical link given single observation

(yk,xk) for subpopulation k can be written as:

fk(yk|xk, θk) = h(yk) exp(ykθk − φ(θk)), (1)

and our sparsity-inducing estimator is defined by the following problem

argmin
β

[ K∑
k=1

1

N

{
−Y >k (Xkβk,·) + e>k φ(Xkβk,·)

} ]
+ λP (β). (2)

We assume the following regularity conditions:

(C.1) Ik = Ek[φ
′′(xkβ

0
k,·)xkx

>
k ] is finite and postive definite, where Ek[·] is the expectation

w.r.t xk under the measure of subpopulation k.

(C.2) For subpopulation k, there is a sufficiently large enough open set Ok that contains

β0
k,· such that ∀βk,· ∈ Ok,

|φ′′′(xkβk,·)| 6Mk(xk) <∞,

and

Ek[Mk(xk)|xk,jxk,lxk,m|] <∞,

for all 1 6 j, l,m 6 p.

(C.3) 0 < infk=1,...,K lim infN→+∞
nk

N
6 supk=1,...,K lim supN→+∞

nk

N
< 1.

Theorem 1: Assume the data are generated under the model represented by (1) and that

our estimator is given by (2). Furthermore, assume that the non-zero patterns Z induced by

the specified group structure G contain the true zero pattern. Assume conditions (C.1) - (C.3)

and let λG,j = ||β̂
MLE

G,j ||
−γ
2 for some γ > 0 such that N (γ+1)/2λ→∞. If

√
Nλ→ 0, then we
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have the following:

P (Ĵ·,j = J·,j)→ 1 as N →∞, (3)

and

√
nk(β̂k,· − β0

k,·)
d−→ Zk, (4)

where Zk,Jk,· ∼ N|Jk,·|(0, (IkJk,·Jk,·)
−1) and Zk,Jc

k,·
= 0.

Theorem 2: Assume the data are generated under the model represented by (1) and that

our estimator is given by (2). Here we do not necessarily assume that the group structure

is correctly specifiied. Assume conditions (C.1) - (C.3) and let λG,j = ||β̂
MLE

G,j ||
−γ
2 for some

γ > 0 such that N (γ+1)/2λ→∞. If
√
Nλ→ 0, then we have the following:

P (Ĵ·,j = H·,j)→ 1 as N →∞, (5)

and

√
nk(β̂k,· − β0

k,·)
d−→ Zk, (6)

where Zk,Hk,· ∼ N|Hk,·|(0, (IkHk,·Hk,·
)−1) and Zk,Hc

k,·
= 0.

Web Appendix B. Additional Theorems for Semiparametric Linear Models

We now present new theorems not presented in the main text of our paper pertaining to

semiparametric linear models. To loosen the restriction of normality required for our theorems

for generalized linear models, we make separate set of assumptions. We assume that the

observed response Y k for subpopulation k follows the semiparametric linear model

Y k = Xkβ
0
k,· + εk (7)

where εk is a vector of iid errors with zero mean and finite variance σ2
k. The resulting group

lasso estimator is the solution of the following problem
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argmin
β

K∑
k=1

1

2N

∥∥∥∥Y k −Xkβk,·

∥∥∥∥2
2

+ λP (β) (8)

where P (β) =
∑p

j=1

∑
G∈G λG,j||βG,j||2. To perform adaptive estimation, we take λG,j =

||β̂
MLE

G,j ||
−γ
2 , where γ > 0.

We assume the following classical conditions

(D.1) limn→∞
1
nk
X>kXk → Qk where Qk is positive definite

(D.2) The error εk is a nk-dimensional vector of random errors of subpopulation k. And

the random errors of subpopulation k are iid with mean zero and finite variance σ2
k. All

subpopulations are independent.

(D.3) 0 < infk=1,...,K lim infn→+∞
nk

N
6 supk=1,...,K lim supn→+∞

nk

N
< 1.

Theorem 3:

Assume the data are generated under the model described in (7) and that our estimator is

given by (8). Furthermore, assume the non-zero patterns Z induced by the specified group

structure G contain the true zero pattern. Assume conditions (D.1) - (D.3) and let λG,j =

||β̂
OLS

G,j ||
−γ
2 for some γ > 0 such that N (γ+1)/2λ → ∞. If

√
Nλ → 0, then we have the

following:

P (Ĵ·,j = J·,j)→ 1 as N →∞ (9)

and

√
nk(β̂k,· − β0

k,·)
d−→ Zk (10)

where Zk,Jk,· ∼ N|Jk,·|(0,σ2
k(Q

k
Jk,·Jk,·

)−1) and Zk,Jc
k,·

= 0.

The following result pertains to cases where the group structure has been misspecified.

This theorem is analogous to Theorem 2.

Theorem 4:
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Assume the data are generated under the model described in (7) and that our estimator is

given by (8). Furthermore, assume conditions (D.1) - (D.3) and let λG,j = ||β̂
MLE

G,j ||
−γ
2 for

some γ > 0 such that N (γ+1)/2λ→∞. If
√
Nλ→ 0, then we have the following:

P (Ĵ·,j = J·,j)→ 1 as N →∞, (11)

and

√
nk(β̂k,· − β0

k,·)
d−→ Zk, (12)

where Zk,Hk,· ∼ N|Hk,·|(0,σ2
k(Q

k
Hk,·Hk,·

)−1) and Zk,Hc
k,·

= 0.

Web Appendix C. Proofs

In this section, we prove Theorems 1-4 of our paper. We will first prove the results for

semiparametric linear models before proving the results for generalized linear models for

simplicity of presentation.

Proof. [Proof of Theorem 4] We first prove asymptotic results for the linear model and

then extend them to generalized linear models later. We begin by showing (10). Let βk,· =

β0
k,· +

1√
nk
uk,·, where uk,· ∈ Rp. We can write the objective function (8) multiplied by N as

a function of u = (u1,·, . . . ,uK,·) as follows:

FN(u) =
K∑
k=1

1

2

∥∥∥∥ 1
√
nk
Xkuk,· + εk

∥∥∥∥2
2

+ λN

p∑
j=1

∑
G∈G

λG,j||β0
G,j +

1
√
nG
◦ uG,j||2,

where uk,j =
√
nk(βk,j−β0

k,j),
1√
nG

is a |G|-dimensional vector with 1√
nG

= ( 1√
nG1

, . . . , 1√
nGm

)

if G = {G1, . . . ,Gm} ⊂ {1, · · · ,K}, and ◦ represents coordinate-wise multiplication of two

vectors. Let û(N) = argminu FN(u) and note that û
(N)
k,· =

√
nk(β̂k,· − β0

k,·), where β̂ is the

minimizer of the objective function (8). Thus, to investigate the asymptotic distribution of
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β̂ is equivalent to investigating the asymptotic distribution of û(N). Now, we let

DN(u) = FN(u)− FN(0) (13)

=
K∑
k=1

(
1

2
u>k,·

(
1

nk
Xk

>Xk

)
uk,· −

1
√
nk
u>k,·Xkεk

)

+
√
Nλ
√
N

(
p∑
j=1

∑
G∈G

λG,j||β0
G,j +

1
√
nG
◦ uG,j||2 −

p∑
j=1

∑
G∈G

λG,j||β0
G,j||2

)

=
K∑
k=1

(
1

2
u>k,·

(
1

nk
Xk

>Xk

)
uk,· −

1
√
nk
u>k,·Xkεk

)

+
√
Nλ

p∑
j=1

∑
G∈GH·,j

λG,j

√
N

(∥∥∥∥β0
G,j +

1
√
nG
◦ uG,j

∥∥∥∥
2

−
∥∥∥∥β0

G,j

∥∥∥∥
2

)
(14)

+
√
Nλ

p∑
j=1

∑
G∈GHc

·,j

λG,j

√
N

(∥∥∥∥β0
G,j +

1
√
nG
◦ uG,j

∥∥∥∥
2

−
∥∥∥∥β0

G,j

∥∥∥∥
2

)
, (15)

where GH·,j is the set of all groups G with any k ∈ G such that β0
k,j 6= 0 and GHc

·,j
is the set

of all groups G such that β0
k,j = 0 for all k ∈ G. To obtain the asymptotic distribution of

û(N), we first investigate the asymptotic property of DN(u) for every fix u ∈ RKp.

For all G ∈ GH·,j , we have λG,j
p−→ ||β0

G,j||
−γ
2 and by taking the directional derivative in the

direction of uG,j, we have

√
N

(∥∥∥∥β0
G,j +

1
√
nG
◦ uG,j

∥∥∥∥
2

−
∥∥∥∥β0

G,j

∥∥∥∥
2

)
=
√
N

1
√
nG
◦
uG,j

>β0
G,j

||β0
G,j||2

+ op(1).

Then because
√
Nλ = o(1), we have by Slutsky’s theorem that

√
NλλG,j

√
N

(∥∥∥∥β0
G,j +

1
√
nG
◦ uG,j

∥∥∥∥
2

−
∥∥∥∥β0

G,j

∥∥∥∥
2

)
= op(1).

For all G ∈ GHc
·,j

, because Nγ/2||β̂
MLE

G,j ||
γ
2 = Op(1) and

√
N

(∥∥∥∥β0
G,j + 1√

nG
◦ uG,j

∥∥∥∥
2

−
∥∥∥∥β0

G,j

∥∥∥∥
2

)
= ||
√
N 1√

nG
◦ uG,j||2, we have

λλG,j

√
N ||
√
N

1
√
nG
◦ uG,j||2 = ||

√
N

1
√
nG
◦ uG,j||2λ

N (γ+1)/2

(
√
N ||β̂

MLE

G,j ||2)γ
p−→∞, (16)
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if uG,j 6= 0, and,

λλG,j

√
N ||
√
N

1
√
nG
◦ uG,j||2 = ||

√
N

1
√
nG
◦ uG,j||2λ

N (γ+1)/2

(
√
N ||β̂

MLE

G,j ||2)γ
= 0, (17)

if uG,j = 0.

To facilitate the notations, for any vector ak,· ∈ Rp associated with subpopulation k and a

index set Ik,· ⊂ {1, . . . , p} associated with subpopulation k, aIk,· represents a |Ik,·| dimensional

vector with elements in ak,· indexed by Ik,·.

Since the term (13) converges in distribution to
∑K

k=1

(
1
2
u>k,·Q

kuk,· + u
>
k,·W k,·

)
, where

W k,· ∼ Np(0,σ2
kQ

k), using Slutsky’s theorem we have that DN(u)
d−→ D(u) for each u,

where

D(u) =


∑K

k=1

(
1
2
u>Hk,·

Qk
Hk,·Hk,·

uHk,· + u>Hk,·
WHk,·

)
if uHc

k,·
= 0, ∀k = 1, . . . ,K,

∞ otherwise.

It is clear thatDN(u) is convex and the unique minimum ofD(u) is ((Qk
Hk,·Hk,·

)−1WHk,· ,0).

By the epiconvergence results of Geyer (1994) and Knight and Fu (2000), we have the

following:

û
(N)
Hk,·

d−→ (Qk
Hk,·Hk,·

)−1WHk,· and û
(N)
Hc

k,·

d−→ 0 (18)

where (Qk
Hk,·Hk,·

)−1WHk,· ∼ N|Hk,·|(0,σ2
k(Q

k
Hk,·Hk,·

)−1). Hence (10) is verified.

We now show selection consistency. For any j ∈ Hk,·, we have by the asymptotic normality

(10) and thus it follows that P (k ∈ Ĵ·,j) → 1. To verify (9) it is equivalent to show that

for any k′ such that j ∈ Hc
k′,· which implies that k′ 6∈ Hull(J·,j), P (k′ ∈ Ĵ·,j) → 0. Suppose

β̂k′,j 6= 0 and j ∈ Hc
k′,·, there exists G0 ⊂ {1, . . . ,K} such that k′ ∈ G0 ⊂ Hc

·,j. Assume

without lose of generality that G0 = {1, . . . , k0}. Then by the KKT optimality conditions as
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derived in Lee and Xing (2014) and Jenatton et al. (2011) we know that

0 =


−X1,j(Y 1 −X1β̂1,·)

...

−Xk0,j(Y k0 −Xk0β̂k0,·)

+ λ


v1,j

...

vk0,j

 = Φ + λv,

where Xk,j is the jth covariate for subpopulation k, vk′,j = N(
∑

G∈Gs.t.k′∈G λG,j
β̂k′,j

||β̂G,j ||2
) is

the subgradient of n
∑

G∈G λG,j||β̂G,j||2 with respect to β̂k′,j. Due to the asymptotic normality

of
√
nk(β

0
k,· − β̂k,·) and condition (D.1)(D.3), we have∥∥∥∥ 1√

N
Φ

∥∥∥∥
2

= Op(1).

In addition, by the same arguments that show (16) and definition of G0, we have

||
√
NλλG,j

β̂G0,j

||β̂G0,j||2
||2

p−→∞.

Thus we can see that the probability of the KKT conditions holding vanishes,

P (k′ ∈ Ĵ·,j) 6 P (||Φ||2 = ||λv||2)→ 0.

Hence, we have established selection consistency.

Proof. [Proof of Theorem 2]

We will start from asymptotic normality (4). Let βk,· = β0
k,· +

1√
nk
uk,·, where uk,· ∈ Rp.

We define the following function:

FN(u) =
K∑
k=1

(
−Y >k (Xk(β

0
k,· +

uk,·√
nk

)) + e>k φ(Xk(β
0
k,· +

uk,·√
nk

))

)

+Nλ

p∑
j=1

∑
G∈G

λG,j||β0
G,j +

1
√
nG
◦ uG,j||2.

Same as linear case, let û(N) = argminu FN(u) and û
(N)
k,· =

√
nk(β̂k,· −β0

k,·). Now, we define

that DN(u) = FN(u) − FN(0). We notice that DN(u) is a convex function. By Taylor
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expansion, we obtain

DN(u) =
K∑
k=1

S
(N)
1,k +

K∑
k=1

S
(N)
2,k + S

(n)
3 + S

(N)
4 +

K∑
k=1

S
(N)
5,k ,

with

S
(N)
1,k = − 1

√
nk

[Y k − φ′(Xkβ
0
k,·)]

>(Xkuk,·),

S
(N)
2,k =

1

nk

1

2
u>k,·(Xk

>diag{φ′′(Xkβ
0
k,·)}Xk)uk,·,

S
(N)
3 =

√
Nλ

p∑
j=1

∑
G∈GH·,j

λG,j

√
N

(∥∥∥∥β0
G,j +

1
√
nG
◦ uG,j

∥∥∥∥
2

−
∥∥∥∥β0

G,j

∥∥∥∥
2

)
,

S
(N)
4 =

√
Nλ

p∑
j=1

∑
G∈GHc

·,j

λG,j

√
N

(∥∥∥∥β0
G,j +

1
√
nG
◦ uG,j

∥∥∥∥
2

−
∥∥∥∥β0

G,j

∥∥∥∥
2

)
,

S
(N)
5,k = n

−3/2
k

1

6
φ′′′(Xkβ̃k,·)(Xkuk,· ◦Xkuk,· ◦Xkuk,·),

where β̃k,· is between β0
k,· and β0

k,· + 1√
nk
uk,·. φ

′(Xkβ
0
k,·) is a nk-dimensional vector with

transformation φ′ on each entry ofXkβ
0
k,·, and similar notations are adopted with φ′′(Xkβ

0
k,·)

and φ′′′(Xkβ̃k,·). To investigate the asymptotic property of û(N), we can find the limit of

DN(u) for each fixed u. By the properties of exponential families, we have

EkS
(N)
1,k = 0,

and

VarkS
(N)
1,k = u>k,·I

k(β0
k,·)uk,·.

Thus, by central limit theorem, the first term S
(N)
1,k

d−→ u>k,·Np(0, Ik(β0
k,·)). By LLN, it is

obvious that S
(N)
2,k

p−→ 1
2
u>k,·I

k(β0
k,·))uk,·. Let us discuss about the behaviour of S

(N)
3 and S

(N)
4 .

Our discussion here is the same as that in the proof of Theorem 4. We directly use the

following two results from Theorem 4:

For all G ∈ GH·,j ,
√
NλλG,j

√
N

(∥∥∥∥β0
G,j + 1√

nG
◦ uG,j

∥∥∥∥
2

−
∥∥∥∥β0

G,j

∥∥∥∥
2

)
p−→ 0. Thus, S

(N)
3 =

op(1).
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For all G ∈ GcH·,j ,
√
NλλG,j

√
N

(∥∥∥∥β0
G,j + 1√

nG
◦ uG,j

∥∥∥∥
2

−
∥∥∥∥β0

G,j

∥∥∥∥
2

)
p−→∞, if uG,j 6= 0, and

√
NλλG,j

√
N

(∥∥∥∥β0
G,j +

1
√
nG
◦ uG,j

∥∥∥∥
2

−
∥∥∥∥β0

G,j

∥∥∥∥
2

)
p−→ 0,

if uG,j = 0. Thus, S
(N)
4 = op(1) if uG,j = 0 for all j, and S

(N)
4

p−→∞ otherwise.

The fifth term can be bounded by the condition (C.2) as

6
√
nkS

(N)
5,k 6 n−1k Mk(Xk)(|Xkuk,·| ◦ |Xkuk,·| ◦ |Xkuk,·|)

p−→ Ek[Mk(xk)|xkuk,·|3] <∞,

where | · | takes absolute value of each entry of a vector, and Mk(Xk) is a nk-dimensional

vector with transformation Mk(·) on each row of Xk.

By using Slutsky’s theorem we have that DN(u)
d−→ D(u) for every u, where

D(u) =


∑K

k=1

(
1
2
u>Hk,·

IkHk,·Hk,·
uHk,· + u>Hk,·

WHk,·

)
if uHc

k,·
= 0, ∀k = 1, . . . ,K,

∞ otherwise.

where WHk,· = N(0, IkHk,·Hk,·
). For DN(u) is convex and D(u) is strictly convex with unique

minimum ((IkHk,·Hk,·
)−1WHk,· ,0). By the same argument in the proof of Theorem 3, we have

û
(N)
Hk,·

d−→ (IkHk,·Hk,·
)−1WHk,· and û

(N)
Hc

k,·

d−→ 0. (19)

where (IkHk,·Hk,·
)−1WHk,· ∼ N|Hk,·|(0, (IkHk,·Hk,·

)−1), and hence (4) is verified.

Now we show the model selection consistency. For any j ∈ Hk,·, the asymptotic normality

implies that P (k ∈ Ĵj,·) → 1. It is sufficient to show that for any k′ such that j ∈ Hc
k′,·

which implies that k′ 6∈ Hull(J·,j), P (k′ ∈ Ĵ·,j) → 0. Suppose β̂k′,j 6= 0 and j ∈ Hc
k′,·, there

exists G0 ⊂ {1, . . . ,K} such that k′ ∈ G0 ⊂ Hc
·,j. Assume without lose of generality that

G0 = {1, . . . , k0}. Then by optimality condition of Lemma 14 in Jenatton et al. (2011), we
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must have

0 =


X1,j(Y 1 − φ′(X1β̂1,·))

...

Xk0,j(Y 1 − φ′(Xk0β̂k0,·))

+ λ


v1,j

...

vk0,j

 = Φ + λv,

where Xk,j is the jth covariate for subpopulation k,

vk′,j = N(
∑

G∈Gs.t.k′∈G

λG,j

β̂k′,j

||β̂G,j||2
)

is the subgradient of N
∑

G∈G λG,j||β̂G,j||2 with respect to β̂k′,j.

Thus, P (k′ ∈ Ĵ ·,j) 6 P (|| 1√
N

Φ||2 = || 1√
N
λv||2).

Notice that

1
√
nk
Xk,j(Y k − φ′(Xkβ̂k, ·)) = T

(N)
1 + T

(N)
2 + T

(N)
3 , (20)

with

T
(N)
1 = Xk,j(Y k − φ′(Xkβ

0
k,·))/

√
nk,

T
(N)
2 = (

1

nk
Xk

>diag{φ′′(Xkβ
0
k,·)}Xk,j)

√
nk(β

0
k − β̂k),

T
(N)
3 =

1

nk
φ′′′(Xkβ̃k,·)

(
Xk,j ◦ (Xk

√
nk(β

0 − β̂)) ◦ (Xk

√
nk(β

0 − β̂))
)
/
√
nk,

where β̃k,· is between β̂k,· and β0
k,·.

By the previous analysis, the first term T
(N)
1 = Op(1). By LLN and normality (4), the

second term is also Op(1). By the regularity condition (C.2)(C.3) and normality (4), the

third term is Op(
1√
N

). Thus, || 1√
N

Φ||2 = Op(1). However, by the same arguments that show

(16) and definition of G0, we have ||
√
NλλG,j

β̂G0,j

||β̂G0,j
||2
||2

p−→∞.

It implies that || 1√
N
λv||2

p−→∞. Thus, P (k′ ∈ Ĵ·,j)→ 0.
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Web Appendix D. Computational Details for ADMM Algorithm

We utilize an alternating direction method of multipliers (ADMM) (Glowinski and Marroco,

1975; Gabay and Mercier, 1976; Boyd et al., 2011) algorithm for maximization. The ADMM

algorithm works by decomposing an objective function and solving the decomposed sub-

problems iteratively. Each subproblem has a computationally tractable form. ADMM solves

problems of the form

minimize f(β) + P (γ)

subject to Aβ +Bγ = c

where β ∈ RKp, γ ∈ Rm, A ∈ Rr×Kp, B ∈ Rr×m, and c ∈ Rr. Both f and P must be

convex functions. Typically f represents some loss function and P represents a penalty. In

the simplest case the constraint is of the form β = γ. To solve the above problem, the

augmented Lagrangian is formed as:

Lρ(β,γ,ν) = f(β) + P (γ) + ν>(Aβ +Bγ − c)

+ (ρ/2)||Aβ +Bγ − c||22

and ADMM iterates by alternatingly minimizing with respect to β and γ and updating the

Lagrangian parameter ν

β(t+1) = argmin
β

Lρ(β,γ(t),ν(t)) (21)

γ(t+1) = argmin
γ

Lρ(β
(t+1),γ,ν(t)) (22)

ν(t+1) = ν(t) + ρ(Aβ(t+1) +Bγ(t+1) − c)

where t indexes the iteration number. ADMM has been shown to converge for any ρ > 0.

The following describes ADMM applied to the overlapping group lasso problem. Let m =∑
G∈G |G|, g = |G|, and suppose G = {G1, · · · ,Gg}, let F = (F1, . . . ,Fg) be an m×Kp matrix

where Fl is a |Gl|×Kp matrix with the (i, j)th entry equals to 1 if j is the ith element of group
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Gl, and 0 otherwise, ∀j = 1, . . . , g. Then Fβ is a vector of length m comprised components

of β where each element of β appears in Fβ the total number of times it appears in any

group. For example, if p=1, K=3, β = (β1, β2, β3)
> and G = {{1, 2}, {2, 3}}, then

F =



1 0 0

0 1 0

0 1 0

0 0 1


, and Fβ =



β1

β2

β2

β3


.

In this example, the penalty P (γ) is

P (γ) = λ(||(γ1,γ2)||2 + ||(γ3,γ4)||2).

In general, the penalty P (γ) is

P (γ) = λ

g∑
l=1

λl||γ l||2,

where γ = (γ1, . . . ,γg) and γ l is a |Gl|-dimensional vector. Note that for the nonoverlapping

group lasso, A = IKp. The ADMM algorithm for the overlapping group lasso is constructed

by taking A = F as defined above, B = −Im, and c = 0. When f(β) = 1
2
||Y −Xβ||22,

step (21) for the overlapping group lasso is simply the solution of (X>X + ρF>F )β =

X>Y +F>ν(t)+ρF>γ(t). For our case,X is a diagonal block matrix of dimension n×Kp with

Xk the kth block, and Y = (Y 1, . . . ,Y K). When f(β) is the negative log-likelihood, step

(21) can be carried out by Newton-Raphson or other standard optimization techniques. As

step (22) is group-separable, it can be minimized by minimizing with respect to each group γ l

independently. This is achieved by the block soft-thresholding operator SλλGl
/ρ((Fβ

(t+1))l −

ν
(t)
l /ρ), where Sλ(u) = u (1− λ/||u||2)+ and (Fβ(t+1))l and ν

(t)
l are defined in the same

way as γ l. Our convergence criterion is the same as suggested in Section 3.3.1 of Boyd et al.

(2011) with εabs = εrel = 10−5. Further details on an improvement of this algorithm for

GLMs is described in the Online Supplementary Materials.
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Web Appendix E. Additional Computational Details for GLMs

While the ADMM algorithm we described in the Appendix can be used for any convex

negative log-likelihood, it is inefficient for high dimensional problems for generalized linear

models due to the requirement of the iterative minimization with respect to β when there

is no analytical solution. Instead, we consider using the ADMM algorithm inside a proximal

Newton algorithm. Proximal Newton methods are a generalization of Newton-type methods

for nonsmooth objectives. Proximal Newton methods are essentially an iteratively reweighted

penalized least squares procedure where a quadratic approximation to the likelihood plus

a penalty is solved in each iteration. This quadratic subproblem can be solved using the

ADMM algorithm described above for weighted least squares plus the overlapping group

lasso penalty. For more details and theory on proximal Newton methods see Lee et al.

(2012); Schmidt (2010); Patriksson (2013). A well-known example of a proximal algorithm

is glmnet (Friedman et al., 2010).

Web Appendix F. Additional Simulation Results

First we present simulation results pertaining to the variable selection properties of our

estimator for logistic regression models. The simulation setup is the same as described

in Section 4 of the main text. While prediction is the primary interest of this paper, we

also investigate the variable selection properties of vennLasso and vennLasso Adaptive. We

investigate the average number of false positives, number of false negatives, sensitivity, and

specificity in Figure 1. The vennLasso adaptive method performs better than the vennLasso

in terms of false negatives and performs similarly to the vennLasso in terms of false positives.

The vennLasso adaptive method tends to perform best in terms of variable selection among

all methods and has balanced performance across the selection measures. Note that we did

not report these results for the Interaction Lasso and Interaction HierLasso methods because
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a covariate with non-zero coefficient in the interaction models can potentially influence the

outcomes of all subpopulations, regardless whether the subpopulation indicators interact

with the covariate or not. For example, the main effects in these models are relevant across

all subpopulations. Hence, while these models can flexibly capture heterogeneity, the specific

meanings of the estimated effects have an entirely different interpretation. Therefore it is not

very satisfactory or sensible to report these results for the interaction models.

The coverage results of the vennLasso Adaptive method are presented in Table 1. The

average empirical coverages are typically higher than the nominal level, but improve with

larger sample sizes. The coverage of a particular covariate is considered to be zero if a

truly nonzero coefficient is estimated to be zero and hence the coverage simulation is also a

reflection of the selection properties of our penalty.

[Figure 1 about here.]

[Table 1 about here.]

Here we present additional simulation results with the same simulation setup as described

in Section 4 of the main text, but where the total sparsity of the true coefficients is smaller

and larger than the results from in the main text. Specifically, here we choose the overall

average coefficient sparsity to be 0.75 and 0.95. The results here indicate that the superiority

of vennLasso is largely unaffected by the overall coefficient sparsity.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

Furthermore, we present computing time results for the analysis of the hospital admissions

data. All tuning parameters for all methods are chosen via 10-fold cross validation and the



Modeling for Heterogeneous Populations 15

model for each fold is computed in parallel using a total of 10 computing cores. Computing

times are listed in Table 2

[Table 2 about here.]
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Figure 1. The number of covariates is set to 100 and the average sparsity of the coefficients
is 0.875 for this simulation. The results depicted above are for the setting with 250
observations per subpopulation, and a maximum effect size c = 1.
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Figure 2. The number of covariates is set to 100 and the average sparsity of the coefficients
is 0.75 for this simulation. The number of observations listed is the number of observations
per subpopulation. Hence, the number of coefficients to be estimated and the number of
total observations increase together, but their ratio is consistent.
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Figure 3. The number of covariates is set to 100 and the average sparsity of the coefficients
is 0.95 for this simulation. The number of observations listed is the number of observations
per subpopulation. Hence, the number of coefficients to be estimated and the number of
total observations increase together, but their ratio is consistent.
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Figure 4. The number of covariates is set to 100 and the average sparsity of the coefficients
is 0.875 for this simulation. Displayed above are the average computing times for the
vennLasso and vennLasso Adaptive for the simulations. The number of iterations displayed
are the number of outside Newton iterations of the proximal Newton algorithm described in
the Appendix.
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Table 1
Empirical coverage results of the vennLasso Adaptive penalty under the same simulation settings as the simulation

presented in Section 4 of the main text of this paper. The numbers above are the average coverage over 500
simulations.

Coverage

Max Effect Size

nk Conditions 0.25 0.5 1

150 2 0.918 0.958 0.988
3 0.931 0.977 0.994
4 0.955 0.989 0.996

250 2 0.946 0.984 0.993
3 0.976 0.991 0.989
4 0.988 0.992 0.964

500 2 0.970 0.982 0.973
3 0.983 0.982 0.976
4 0.989 0.981 0.976
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Table 2
All computation times shown below for the admissions data are performed on a Microsoft Windows Server 2008

Enterprise system with 64 Intel® Xeon® E5-4650 CPU cores and 768 Gigabytes of RAM.

Method Computing Time (sec)

vennLasso 3874
vennLasso Adaptive 4119

Separate Lasso 44
Expanded Lasso 517
Interaction Lasso 678

Interaction HierLasso 4395


