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Appendix 11060

Symbols and their definitions1061

• x : Instantaneous configuration (positions, box vectors)1062

• N
H20
: Number of water molecules1063

• NNa+ : Number of cations1064

• NCl− : Number of anions1065

• N
NaCl
: Number of salt pairs beyond minimal neutralizing ions; equal to min{NNa+ , NCl−}1066

• N : Sum of total number of waters and ions in the system1067

• � : Vector species labels with N elements that identifies which molecules are waters and which
are ions; �i = 0 indicates water, �i = +1 indicates monovalent cations, and �i = −1 indicates
monovalent anions

1068

1069

1070

• z : total charge number of the macromolecules in the simulation1071

• n(�) : total charge number of the ions in the simulation1072

n(�) =
N
∑

i=1
�i (26)

1073

1074

1075

1076

• U (x, �) : Potential energy for a system with configuration x and water/ion identities �, units of
energy

1077

1078

• p : External pressure, units of energy ⋅ length−31079

• V : Instantaneous box volume, units of length31080

• T : Absolute temperature, units of temperature1081

• kB : Boltzmann constant, units of energy ⋅ temperature−11082

• � : Inverse temperature (≡ 1∕kBT ), units of energy−11083

• I : Ionic strength, where instantaneous ionic strength for configuration x is given by1084

I(x, �) ≡ 1
2

1
V (x)

(

z2 +
N
∑

i=1
�2i

)

(27)

Note that ionic strength includes minimal neutralizing counterions in the sum.

1085

1086

1087

1088

1089

• Δ� : Chemical potential difference for extracting a NaCl molecule from bulk water and depositing
two water molecules to bulk water; an abbreviation of Δ�2⋅H2O−NaCl

1090

1091

• f (NNaCl) : Free energy to replace 2NH2O water molecules with NNaCl salt pairs in bulk water; an

abbreviation of f (NNaCl, N, p, T ).
1092

1093

• Δf (NNaCl) : Free energy to add one more salt pair and remove two additional water molecules
in a box of water than contains NNaCl salt pairs already; equal to f (NNaCl + 1) − f (NNaCl); an
abbreviation of Δf (NNaCl, N, p, T )

1094

1095

1096

• Z(N
NaCl

, N, p, T ) : Isothermal-isobaric configurational partition function1097

Z(N
NaCl

, N, p, T ) ≡ ∫ dx e−�[U (x;NNaCl)+pV (x)] (28)

1098

1099

1100

1101

• Ξ(Δ�,N, p, T ) : Semigrand-isothermal-isobaric configurational partition function expressed as a
sum over all �

1102

1103

Ξ (Δ�,N, p, T ) =
∑

�
�(n(�),−z)∫ dx e−�[U (x,�)+pV (x)+Δ�NNaCl(�)], (29)

1104

1105

1106

1107

and expressed as a sum of number of ions and water molecules1108
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Ξ(Δ�,N, p, T ) ≡
∑N∕2

NNaCl=0
N!

N
Na+ !NCl− !NH20!

Z(N
NaCl

, N, p, T ) e�Δ�NNaCl , (30)

1109

1110

1111

1112

whereN
NaCl

= min{N
Na

+ , N
Cl
−} andN = N

Na
++N

Cl
−+N

H20
. The upper bound of the summation—

valid when z = 0 and N is even—is required as two water molecules are removed for every
N
NaCl
.

1113

1114

1115

• �(x, �;N, p, T , �) : Semigrand-isothermal-isobaric probability density with charge neutrality con-
straint

1116

1117

�(x, �; Δ�,N, p, T ) = 1
Ξ (Δ�,N, p, T )

�(n(�),−z) e−�[U (x,�)+pV (x)+Δ�NNaCl(�)], (31)

1118

1119

1120

1121

where the dependence of �(x, �; Δ�,N, p, T ) on z is omitted for brevity1122

• ⟨A⟩Δ�,N,p,T : Expectation of A(x, �) in (Δ�,N, p, T ) ensemble1123

⟨A⟩Δ�,N,p,T ≡ 1
Ξ (Δ�,N, p, T )

∑

�
�(n(�),−z)∫ dxA(x, �) e−�[U (x,�)+pV (x)+Δ�NNaCl(�)] (32)

1124

1125

1126

1127

• ⟨A⟩NNaCl ,N,p,T : Expectation of A(x) in (NNaCl, N, p, T ) ensemble

⟨A⟩NNaCl ,N,p,T ≡ 1
Z(N

NaCl
, N, p, T ) ∫

dxA(x) e−�[U (x;NNaCl)+pV (x)] (33)

1128

1129

1130

1131
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Appendix 21132

Salt concentration in the thermodynamic limit1133

The purpose of this section is to derive an expression that relates the chemical potential to the

salt concentration in a macroscopic saline reservoir (equation 19). This relationship is used in

the calibration of our osmostat. The derivation will proceed by first, justifying the macroscopic

concentration as the thermodynamic limit of the mean concentration, and second, rewriting the

resultant expression in a manner that is amenable to computation.

1134

1135

1136

1137

1138

The mean concentration in the thermodynamic limit1139

Following the definition of the concentration given in equation 20, the mean salt concentration in the

semigrand ensemble considered here is given by

⟨c⟩Δ�,N,p,T =
⟨

N
NaCl

(�)
V (x)

⟩

Δ�,N,p,T
. (34)

We seek an approximation to this expression that it is appropriate for large, macroscopic amounts

of liquid saline. For brevity, all expectation values with respect to the thermodynamic ensemble

(Δ�,N, p, T ) in this section will henceforth be abbreviated as ⟨⋅⟩.

1140

1141

1142

1143

1144

1145

1146

1147

The concentration is a function of two correlated random variables, the number of salt pairs

NNaCl(�) and the total volume V (x). A common way to approximate the expectation value, or mean, of
a function of random variables is to perform a Taylor expansion about the mean of the arguments.

The Taylor expansion (up to the second-order) of the function g(a, b) about the means ⟨a⟩ and ⟨b⟩, is

g(a, b) = g
(

⟨a⟩, ⟨b⟩
)

+
)g
)a

|

|

|⟨a⟩,⟨b⟩

(

a − ⟨a⟩
)

+
)g
)b

|

|

|⟨a⟩,⟨b⟩

(

b − ⟨b⟩
)

+ 1
2
)2g
)a2

|

|

|⟨a⟩,⟨b⟩

(

a − ⟨a⟩
)2

+ 1
2
)2g
)b2

|

|

|⟨a⟩,⟨b⟩

(

b − ⟨b⟩
)2 +

)2g
)a )b

|

|

|⟨a⟩,⟨b⟩

(

a − ⟨a⟩
)(

b − ⟨b⟩
)

+… (35)

This expansion is particularly useful because the first order terms of the expanded mean ⟨g(a, b)⟩ are
zero i.e. ⟨a − ⟨a⟩⟩ = 0 and ⟨b − ⟨b⟩⟩ = 0. Hence, truncating the expansion to the second order leaves us
with the approximation

⟨

g(a, b)
⟩

≈ g(⟨a⟩, ⟨b⟩) + 1
2
)2g
)a2

|

|

|⟨a⟩,⟨b⟩

⟨

(a − ⟨a⟩)2
⟩

+ 1
2
)2g
)b2

|

|

|⟨a⟩,⟨b⟩

⟨

(b − ⟨b⟩)2
⟩

+
)2g
)a )b

|

|

|⟨a⟩,⟨b⟩

⟨

(a − ⟨a⟩)(b − ⟨b⟩)
⟩

= g(⟨a⟩, ⟨b⟩) + 1
2
)2g
)a2

|

|

|⟨a⟩,⟨b⟩
Var(a) + 1

2
)2g
)b2

|

|

|⟨a⟩,⟨b⟩
Var(b) +

)2g
)a )b

|

|

|⟨a⟩,⟨b⟩
Cov(a, b), (36)

where Var(a) and Cov(a, b) denote the variance and covariance, respectively. Returning to the salt
concentration, we relate c to the above with g(N

NaCl
, V ) = N

NaCl
∕V , and evaluate the partial derivatives

to find that

⟨c⟩ ≈ ⟨NNaCl⟩
⟨V ⟩

+ ⟨NNaCl⟩
⟨V ⟩3

Var(V ) − 1
⟨V ⟩2
Cov(V ,N

NaCl
). (37)

The leading term ⟨N
NaCl

⟩∕⟨V ⟩ is the macroscopic expression that we seek. Thus, we require that
the variance and covariance terms vanish in the thermodynamic limit. To show that they indeed

do, we exploit the useful correspondence between partial derivatives and covariance in statistical

thermodynamics. First, note that

Var(V ) = (kBT )2
)2 ln(Ξ)
)p2

= −kBT
)⟨V ⟩
)p
, (38)
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where Ξ ≡ Ξ(Δ�,N, p, T ) and is defined in equation 7. Also, note that

Cov(V ,N
NaCl

) = (kBT )2
)2 ln(Ξ)
)p )Δ�

= kBT
)⟨V ⟩
)Δ�

. (39)

Second, we make use of the isothermal compressibility

�T ≡ − 1
⟨V ⟩

)⟨V ⟩
)p

, (40)

and introduce the isothermal susceptibility of the volume with respect to the chemical potential

�T ≡ 1
⟨V ⟩

)⟨V ⟩
)Δ�

, (41)

The susceptibilities �T and �T are bulk properties that measure the relative amount the volume of
a system responds to changes in pressure and chemical potential, respectively. They are intensive

quantities, such that they do not scale with the size of the system. These allow us to re-write the

approximation of the mean concentration (equation 37) as

⟨c⟩ ≈
⟨N

NaCl
⟩

⟨V ⟩
− 1
kBT

⟨N
NaCl

⟩

⟨V ⟩2
�p −

1
kBT

1
⟨V ⟩

�T . (42)

To proceed, note that in the second term, both N
NaCl
and ⟨V ⟩ are extensive, and rise in proportion

to the total number of molecules in the system N . Thus, approximating the mean concentration
as ⟨N

NaCl
⟩∕⟨V ⟩ incurs an error that is (⟨V ⟩−1), which tends to zero in the thermodynamic limit. We

therefore define the macroscopic concentration of a saline reservoir as

⟨ĉ⟩ ≡
⟨N

NaCl
⟩

⟨V ⟩
. (43)

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

We require the macroscopic concentration to be amenable to computational analysis1200

While the expression for the macroscopic concentration above does not appear immediately use-

ful, we now show how ⟨ĉ⟩ can be calculated for wide range of applied chemical potentials by pre-
calculating the free energies to insert salt into a system, f (NNaCl) (≡ f (NNaCl,Δ�,N, p, T )), and the
average volume as a function of the number of salt pairs, ⟨V ⟩NNaCl (≡ ⟨V ⟩NNaCl ,N,p,T ).

1201

1202

1203

1204

To begin, it is useful to expand the definition of ⟨NNaCl⟩ given by equation 17 into

⟨NNaCl⟩ =

∑

NNaCl=0
NNaCl e−f (NNaCl)+�Δ�NNaCl

∑

NNaCl=0
e−f (NNaCl)+�Δ�NNaCl

. (44)

Next, we derive an expression for ⟨V ⟩ that will cancel with the denominator of equation 44 when
evaluating ⟨ĉ⟩. Using the representation of the semigrand density given by equation 8, the mean
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volume is given by

⟨V ⟩ =

∑

NNaCl=0
∫ dxV (x) e−�(U (x;NNaCl)+pV (x)+Δ�NNaCl(�))
∑

NNaCl=0
e−f (NNaCl)+�Δ�NNaCl

=

∑

NNaCl=0
e�Δ�NNaCl ∫ dxV (x) e−�(U (x;NNaCl)+pV (x))
∑

NNaCl=0
e−f (NNaCl)+�Δ�NNaCl

=

∑

NNaCl=0
e�Δ�NNaCl ∫ dxV (x) e−�(U (x;NNaCl)+pV (x)) ⋅ ∫ dx′ e−�(U (x′;NNaCl)+pV (x′))
∑

NNaCl=0
e−f (NNaCl)+�Δ�NNaCl ⋅ ∫ dx′′ e−�(U (x′′ ;NNaCl)+pV (x′′))

=

∑

NNaCl=0
e�Δ�NNaCl ⟨V ⟩NNaCl ⋅ e

−f (NNaCl)

∑

NNaCl=0
e−f (NNaCl)+�Δ�NNaCl

=

∑

NNaCl=0
⟨V ⟩NNaCl e

−f (NNaCl)+�Δ�NNaCl

∑

NNaCl=0
e−f (NNaCl)+�Δ�NNaCl

, (45)

where the third and fourth line exploit the definition of the ensemble average for a fixed NNaCl.

Inserting the expressions for the average number of salt pairs (equation 44) and the average volume

(equation 45) into the macroscopic concentration (equation 43), we arrive at

⟨ĉ⟩ =

∑

NNaCl=0
NNaCl e−f (NNaCl)+�Δ�NNaCl

∑

NNaCl=0
⟨V ⟩NNaCl e

−f (NNaCl)+�Δ�NNaCl
,

which is the same as equation 19 from the main text. Pertinently, the denominators in equations 44

and 45 have canceled, which greatly simplifies the evaluation of the macroscopic concentration for a

given Δ�.

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

The magnitude of salt fluctuations1224

The concentration of salt fluctuates in osmostat simulations. This section briefly outlines how one

would expect the magnitude of salt fluctuations to vary with the size of the system based on statistical

mechanical principles. By differentiating equation 17, one can show that the variance of the number

of salt pairs NNaCl is proportional to the gradient of ⟨NNaCl⟩ with respect to the chemical potential Δ�,
specifically

Var(NNaCl) = kBT
)⟨NNaCl⟩

)Δ�
. (46)

By dividing both sides by ⟨NNaCl⟩, i.e.

1
⟨NNaCl⟩

Var(NNaCl) =
1

⟨NNaCl⟩
kBT

)⟨NNaCl⟩

)Δ�
, (47)

reveals that
1

⟨NNaCl⟩
Var(NNaCl) is proportional to the relative change in the mean of NNaCl in response to

altering the chemical potential. As the right-hand-side of the above equation is an intensive quantity,

1
⟨NNaCl⟩

Var(NNaCl) is also an intensive, implying that

Var(NNaCl) ∝ NNaCl. (48)

Therefore, the scale of the fluctuations in salt amount, as measured by the standard deviation, grows

as ⟨NNaCl⟩
1∕2.

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

In contrast to the amount of salt, the size of the fluctuations of salt concentration decreases with

the size of aqueous systems. Water is a highly incompressible fluid, such that small changes in

pressure have a very small effect on the volume of aqueous systems. From equations 38 and 40, a

low isothermal compressibility implies that the variance of the volume is small with respect to the

mean volume (i.e. the relative variance). Assuming that the relative variance of the volume is smaller
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than the relative variance of the number of salt pairs, one can use the same approach as that of

equation 35 to show that

Var(c) = Var
(

NNaCl

V

)

(49)

≈ 1
⟨V ⟩2

Var(NNaCl) (50)

Using the fact that, for bulk-like water, ⟨V ⟩ ∝ ⟨NH2O⟩ ∝ ⟨NNaCl⟩ along with equation 48, we arrive at

Var(c) ∼ ⟨NNaCl⟩
−1 for systems with large amounts of water. Thus, the standard deviation of the salt

concentration scales like ⟨NH2O⟩
−1∕2 or ⟨NNaCl⟩

−1∕2 for a fixed chemical potential.

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257
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Appendix 31258

Algorithmic implementation of the osmostat1259

This section describes the Metropolis-Hastings procedure from Saltswap [0.52] used to insert and

delete salt. Insertion and deletion moves were enhanced with NCMC32. To describe its implemen-

tation of NCMC within SaltSwap, a more compressed notation is used compared to the original

publication. For a more general and detailed exposition on NCMC, we refer readers to the original

manuscript.

1260

1261

1262

1263

1264

The osmostat move begins with the random choice of whether to insert or delete salt. The protocol

is denoted Λ ∈ { Λ
insert

,Λ
delete

}, and the time reversed protocol is denoted Λ̃, where Λ̃
insert

= Λ
delete

and Λ̃
delete

= Λ
insert

. The probability to insert or delete a salt pair, P (Λ|NNaCl), depends on the number
of salt molecules, NNaCl, in the system in the following way:

1265

1266

1267

1268

P (Λ
insert

|NNaCl) =

⎧

⎪

⎨

⎪

⎩

1 if NNaCl = 0;
1∕2 if 0 < NNaCl < NNaCl,max,
0 if NNaCl = NNaCl,max;

(51)

1269

1270

1271

1272

P (Λ
delete

|NNaCl) =

⎧

⎪

⎨

⎪

⎩

0 if NNaCl = 0;
1∕2 if 0 < NNaCl < NNaCl,max,
1 if NNaCl = NNaCl,max;

(52)

where for all simulations except the SAMS calibration simulations, NNaCl,max =
1
2
(N − (N mod 2)) was

chosen as two water molecules are required for the insertion of a Na+ and Cl− pair. In the SAMS

calibration simulations, NNaCl,max was set to twenty. The particular choices of P (Λdelete|NNaCl) and
P (Λ

insert
|NNaCl) ensure that insertions are always attempted when there is no salt in the system, and

deletions are always attempted when the number of salt pairs has reached maximum capacity.

1273

1274

1275

1276

1277

1278

1279

1280

1281

For the insertion of salt, any two water molecules could be selected for transformation into Na+

and Cl−. Similarly, for the removal of salt, any Na+ ion and Cl− ion could be selected for transformation

into two water molecules. Formally, let S(N) denote the set {1, 2, ..., N}, i.e. the set of indices for all
water molecules and ions. For salt insertion, the index of candidate Na+ ion was a random uniform

sample from the set {i ∈ S(N) ∶ �i = 0} and the index of the Cl− ion was a random uniform sample
from the set {j ∈ S(N) ∶ �j = 0, i ≠ j}. For salt removal, indices were selected randomly and
uniformally from the sets {i ∈ S(N) ∶ �i = +1} and {j ∈ S(N) ∶ �j = −1}. As indices were chosen
with equal probability within each set of possible candidates, the ratio of selection probabilities for

molecule indices for forward and reverse protocols are given by

P (i, j|Λ
insert

)
P (i, j|Λ

delete
)
=

NH2O(NH2O − 1)
(NNa+ + 1)(NCl− + 1)

, (53)

and

P (i, j|Λ
delete

)
P (i, j|Λ

insert
)
=

NNa+NCl−

(NH2O + 1)(NH2O + 2)
(54)

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

Following the choice of protocol and pair of molecules that would be transmuted, NCMC was

used to enhance the efficiency of the insertion or deletion attempt. This implementation of NCMC

consists of a fixed series of perturbation and propagation kernels over a fixed alchemical path. For

both insertion and deletion moves, the alchemical path is a linear interpolation the nonbonded

parameters of the water model and the ions. This particular alchemical path ensured that charge

neutrality was maintained throughout the NCMC procedure.

1298

1299

1300

1301

1302

1303
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The alchemical path is broken up into T segments that are uniformally spaced with respect to
the nonbonded parameters. At state t, the configuration of the system will be denoted as xt and the
values of the nonbonded parameters for molecules i and j will be denoted as �ijt . A single NCMC step
corresponds to the application of the perturbation kernel followed by a the propagation kernel. When

in state t, the perturbation kernel updates the nonbonded parameters (xt, �
ij
t ) → (xt, �

ij
t+1), and the

propagation kernel updates the configuration (xt, �
ij
t+1) → (xt+1, �

ij
t+1). Each propagation kernel consists

of K steps of Langevin dynamics using the parameters described in Simulation Details. A propagation
kernel is also applied to the system before the first perturbation kernel to ensure the time symmetry

of the protocol. The instantaneous change in the potential energy that results from the application

of the perturbation kernel is recorded for each NCMC step and summed to produce the total work

performed on the system by the protocol:

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

W ij(XT ,Λ) =
T
∑

t=1
U (xt, �

ij
t+1) − U (xt, �

ij
t ), (55)

where the nonequilibrium trajectory XT ≡ (x0, x1, ..., xT ). The difference between the protocol work
and applied chemical potential Δ�, along with the move proposal probabilities, determines whether a
move is accepted or rejected. For the insertion of salt Δ�(Λ

insert
) = 2�H2O − �NaCl, and for the deletion

of salt Δ�(Λ
delete

) = 2�NaCl − �H2O. Attempts are accepted with the following probability

Aij(XT ,Λ) =min
{

1,
P (i, j|Λ̃)P (Λ̃|ÑNaCl)
P (i, j|Λ)P (Λ|NNaCl)

exp
(

− �W ij(XT ,Λ) + �Δ�(Λ)
)

}

. (56)

To preserve pathwise detailed balance, velocities were reversed upon acceptance. If a move is

accepted, �i and �j are updated to reflect the new molecule identities.

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

Pseudo-code for the NCMC osmostat with molecular dynamics1328

This section contains the pseudo-code of the production osmostat simulations.1329

1330

Begin algorithm1331

Choose a macroscopic salt concentration ĉ.1332

Infer the chemical potential Δ� by inverting equation 19.1333

Initialize position and velocity (x0, v0), state vector �0, and maximum number of iterationsM .1334

for i ∈ {1, 2, ...,M} do1335

Sample conformations1336

Perform 4 ps of Langevin integration with a fixed amount of salt:1337

(x∗i , v
∗
i ) ← Integrate

(

(xi−1, vi−1), 4 ps
)

.1338

Sample salt concentration1339

Randomly select whether to add or remove salt as well as which molecules will be transmuted.1340

Define the trial state vector as �∗.1341

Define initial and final nonbonded parameters: (qinitial, �initial, �initial) and (qf inal, �f inal, �f inal).1342

procedure NCMC((qinitial, �initial, �initial),(qinitial, �initial, �initial), (x∗i , v∗i ), �∗)1343

Initialize variables, including protocol workW :1344

W 0 ← 01345

(q0, �0, �0) ← (qinitial, �initial, �initial)1346

(x0i , v
0
i ) ← Integrate

(

(x∗i , v
∗
i ), 20 fs

)

1347

for k ∈ {1, 2, ..., 1000} do1348

Linear interpolation of the nonbonded parameters:1349

f k = k∕10001350

for all atoms in the molecule do1351
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qk ← (1 − f k)qinitial + f kqf inal1352

�k ← (1 − f k)�initial + f k�f inal1353

�k ← (1 − f k)�initial + f k�f inal1354

end for1355

Update the protocol work:1356

W k ← W k−1 + U (xk−1i ; qk, �k, �k) − U (xk−1i ; qk−1, �k−1, �k−1)1357

Propagate the system:1358

(xki , v
k
i )← Integrate

(

(xk−1i , vk−1i ), 20 fs
)

1359

end for1360

Accept or reject using acceptance criterion A(W k,Δ�, �∗)1361

if Accept move then1362

Keep final positions and state vector but reverse velocities:1363

(xi, vi) ← (xki ,−v
k
i )1364

�i ← �∗1365

else1366

Return positions, velocities and the state vector to after equilibrium sampling:1367

(xi, vi) ← (x∗i , v
∗
i )1368

�i ← �i−11369

end if1370

end procedure1371

end for1372

End algorithm1373
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Appendix 41374

Validation: Ideal Mixing with the osmostat1375

In the Results section, Figure 4 top left indicates that the chemical potential has been properly

calibrated, and Figure 6 shows that the osmostat produces samples that are concordant with physical-

chemical intuition. In this section, we apply our osmostat to sample ideal mixing to provide further

validation of the SaltSwap code base. Ideal mixing can be simulated with our osmostat by ensuring

that salt insertion and deletion accrue no protocol work. This is implemented by using the same

forcefield parameters for Na+ and Cl− as the water model. As our osmostat also gives the ions the

same mass as water, the “ions" sampled over in this section are identical to water except for their

labeling.

1376

1377

1378

1379

1380

1381

1382

1383

To validate the sampling of the osmostat, we require an analytical relationship between the

chemical potential Δ� and the numbers of salt NNaCl and water molecules NH2O. The chemical

potential used in our osmostat is the difference between the chemical potential of water multiplied

by two and Na+ and Cl−:

Δ� = 2�H2O − �Na+ − �Cl− . (57)

In order to relate Δ� to NNaCl and NH2O, we will first consider a solution of water and ions in the

(N, p, T ) ensemble with fixed particle identities, and then relate the result to the (Δ�,N, p, T ) ensemble.
For this fixed identity solution, let N = NH2O +NNa+ +NCl− and NNa+ = NCl− . In the (N, p, T ) ensemble,
the chemical potential for a species s can be expressed as

�(N, p, T ) = �os − kT ln(xss(N, p, T )), (58)

where �os is the chemical potential of s in some reference state, xs is the mole fraction of s, and
s(N, p, T ) is the activity coefficient of s. In general, the chemical potential is also dependent on the
composition of the system. When Na+ and Cl− have the same forcefield parameters and mass as

water (i.e they are physically identical), the reference state and activity coefficients must be the same.

So using equation 58 and 57 we have

Δ�(N, p, T ) = 2kT ln(xH2O) − kT ln(xNa+ ) − kT ln(xCl− ).

= 2kT ln(xH2O) − 2kT ln(xNaCl)

= 2kT ln
(NH2O
NNaCl

)

(59)

where the second line follows from the fact that there are equal numbers of Na+ and Cl− ions. In the

semigrand canonical (Δ�,N, p, T ) ensemble that is sampled by our osmostat, the chemical potential
Δ� is a controlled by the user. As this conjugate to the number of salt pairs, equation 59 will apply to
the averages ⟨NNaCl⟩Δ�,N,p,T and ⟨NH2O⟩Δ�,N,p,T, so that we have

⟨NNaCl⟩Δ�,N,p,T

⟨NH2O⟩Δ�,N,p,T
= e−

1
2 �Δ� . (60)

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

To test whether our osmostat correctly samples the average salt to water ratio given in equation 60,

ideal mixing simulations were performed using SaltSwap on a small box of TIP3P water containing five

hundred molecules for a range of chemical potentials. Ten thousand insertion and deletion attempts

were made for salt pairs that had the same forcefield parameters as water. Only one perturbation

step was used for the ideal NCMC insertion and deletion and the configuration of the system was

not propagated during attempts. Figure 1 shows that there is excellent agreement between the

relationship predicted by equation 60 and the simulation data.

1413

1414

1415

1416

1417

1418

1419
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1420 Appendix 4 Figure 1. Validating the osmostat by comparing the observed average salt-water fractions toanalytical values for ideal mixing. The relationship between the chemical potential and fraction of average
number of salt pairs to water molecules is known exactly for ideal mixing, and is given by equation 60. Ideal

mixing was implemented for the osmostat by giving the ions the same forcefield parameters as water. For each

simulation at a chemical potential, the equilibration time and statistical inefficiency for the average number

of salt pairs ⟨NNaCl⟩Δ�,N,p,T and water molecules ⟨NH2O⟩Δ�,N,p,T was determined using the timeseries module of

pymbar75. The automatically determined equilibration times ranged from 361 and 723 insertion or deletion

attempts. Effectively independent samples were extracted using the statistical inefficiency, and the means and

95% confidence intervals were estimated using bootstrap analysis.

1421

1422

1423

1424

1425

1426

1427

1428

14291430

It was also verified that the protocol work was effectively zero for the ideal NCMC transformations.

While the protocol work should be exactly zero, the numerical imprecision of our implementation

meant this could not always be achieved. The average protocol work for the transformations shown

in Figure 1 (which were performed on a CPU Intel Core i7 with one perturbation step) was 1 × 10−7 kT
with a maximum absolute value of 8 × 10−5 kT. The NCMC protocol used throughout this study has
one thousand perturbation steps and ten propagation steps per perturbation. With this protocol,

the average protocol work was estimated using one thousand attempts on a GTX1080 GPU to be

2 × 10−8 kT with a maximum absolute value of 5 × 10−4 kT.

1431

1432

1433

1434

1435

1436

1437

1438
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Appendix 51439

Supplementary figures1440

Appendix 5 Figure 1. A Comparison of the salt insertion free energies as estimated by SAMS and BAR. The individual
SAMS estimates from ten repeats of the relative free energy Δf (NNaCl) to insert an Na+ and Cl− and remove two water
molecules in boxes of TIP3P (left) and TIP4P-Ew (right) for each SAMS simulations. Each color represents an estimate of

Δf (NNaCl) from each repeat. The relative free energy as calculated by BAR using all the SAMS simulation data is shown
for reference (dotted black line). Five of the SAMS repeats were started with the maximum of 20 salt pairs in the system,

and the other five started with none. The significant variation between the individual SAMS repeats is due to the rapid

accumulation of the biasing potential in the initial stages of the algorithm. This biased the sampling away from the initial

states of the simulations and prevented the uniform sampling over the salt numbers.
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Appendix 5 Figure 2. The statistical uncertainty of the predicted macroscopic concentration as a function ofthe chemical potential for different standard errors of the free energies f (NNaCl) in a box of 887 TIP3P watermolecules. Using the data from the SAMS calibration simulations, Gaussian noise, with a mean of zero, was added to each
estimated free energy f (NNaCl) N ∈ {0, 1,… , 20}, for a fixed values of ⟨V ⟩NNaCl . Three thousand noisy sample of f (NNaCl)
N ∈ {0, 1,… , 20}, equation 19 were used to predict the macroscopic concentration for a range of chemical potentials. This
figure shows the 95% confidence range of the resultant ensemble of concentrations for different standard deviations

of the Gaussian noise about the free energies. One needs to evaluate the free energies f (NNaCl) to within 4 kcal/mol to
achieve an error in the concentration that is no larger than roughly 80 mM. The tapering of the statistical error in the

concentration at lower values of the chemical potential is due to maximum number of salt pairs used in the calibration

(20), which limits that maximum concentration that can be predicted.

Appendix 5 Figure 3. The relative efficiency of salt insertions/deletions in TIP3P water for different numbers ofNCMC propagation steps between each perturbation step. Due to the manner in which the nonbonded parameters
are updated in the SaltSwap code, it is faster—for a fixed protocol time-length—to perform multiple propagation steps

for each perturbation (i.e. update of the nonbonded parameters) during an NCMC insertion/deletion attempt. More

propagation steps limit the amount of communication between the CPU and GPU. However, for a fixed total protocol

time-length, fewer perturbations increases the thermodynamic length each perturbation must traverse, which decreases

the mean acceptance rate of the attempts. Thus, there is a (code-dependent) trade-off in the sampling efficiency between

the number of perturbations and propagations steps. This figure shows the efficiency, defined by equation 25, for different

numbers of propagation steps at different protocol time-lengths relative to the efficiency of instantaneous insertions and

deletions. Ten propagation steps per perturbation step achieve the highest efficiencies, and so were used in all production

osmostat simulations.
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