SUPPORTING INFORMATION

Supplemental figure 1

Supplemental figure 1: CMB4563 is a potent and fast inhibitor of TOR1 and TORC2. a, Heterozygous single deletion mutant strains covering 6200 genes (Open Biosystems) were grown as a pool in the presence or absence of 0.5 μ M CMB4563 for 20 generations. The relative abundances of the individual strains were then compared. Sensitivity of individual deletion mutants are observed on the vertical axis and associated with a selectivity on the horizontal axis which was determined by statistical analysis to correct for how frequently particular mutants scored in multiple assays. The most selective and sensitive strains are found in the bottom left corner (1). **b**, Western blots assessing the respective activity of TORC1 and TORC2 after 12minute CMB4563 treatments to cells of the indicated genotypes. The corresponding merge channels version is in Fig. 1d. TORC1 activity is followed by Sch9^{P-S758} and TORC2 by Ypk1^{P-T662} phosphorylation. **c**, Western blot and corresponding quantification assessing the kinetics of Ypk1^{T662} dephosphorylation in *TOR1^{WT}* and *TOR1^{MT}* strains with 0.8 μ M CMB4563 treatment at indicated time points (above, minutes).

Supplemental figure 2

SLM2

SSO1 SSO2 TCB3 TOG1

YPR003c

YTA6

Membrane stress

 Vesicles traficking
 290

 Vesicles traficking
 295

 PI4P regulation
 1545

 Fatty acid metabolism
 794

Assymetric protein 754 -

656

unkown function 754 ddymmnmkRnSLDvegteeie

msyqrnsaRaSLDIrsqyqql

neeqashIRhSLDnfvaqato

seegemelRrSLDdyisgata InstsvtpRaSLDydpsvpnt griistmsRrSLDaolog

erktnyksRaSLDnfssssks

kidnslikRrSLDvvrtsger

71 572

255

278

YES NO YES NO YES NO

YES

YES

Supplemental figure 2: Fpk1 substrate screen. a, Organization of the 96-well-plate containing negative controls and the primer dimers corresponding to the 90 candidate peptide substrates. **b**, PCR products of the primer dimers analysed on 2% agarose gels **c**, Left Panel: Gibson assembly reactions were transformed into bacteria. 1/10 of the transformed cells were spotted onto LB plates containing kanamycin, including multiple negative controls corresponding to linearized vector without insert. Right Panel: Heat map reporting the cloning efficiency assessed with respect to the negative controls. The (*) indicated failed wells in which the cloning/transformation initially failed (these were subsequently repeated, successfully). **d**, Results of the initial *in vitro* kinase assays screen. Dashed lines define splicing of the gels. Bacterial lysates containing one of the 90 candidate peptides were individually incubated with GST-Fpk1 and ³²P-ATP for 30 min at 30°C. Reactants were subsequently resolved by SDS-PAGE, analysed by Coomassie stain (left panel) and autoradiography (right panel). **e**, Table recapitulating the peptides identified in both the initial and secondary screens (left) **f**, *In vitro* kinase assay assessing the ability of GST-Fpk1^{WT/KD} to phosphorylate GST-Akl1^{KD}, GST-Orm1 (aa 1-85; negative control) or GST-Dnf1 (aa 1404-1571; positive control).

Supplemental figure 3:

Supplemental figure 3: Akl1 is not a target of Fpk2 *in vitro*. **a**, ClustalX alignments of Fpk1 and Fpk2 protein sequences. The green box represents the conserved kinase domain and the dashed lines delimit sequence insertions. **b**, Coomassie blue and autoradiogram SDS-PAGE images after *in vitro* kinase assay assessing the ability of Fpk1 and Fpk2 to phosphorylate Akl1. Dashed lines define splicing of the gel.

Supplemental figure 4

Supplemental figure 4: The inhibition of TORC1 does not cause delay the endocytosis process. a, Pan1-GFP and Abp1-mCherry kymographs were generated from $TOR1^{MT}$ or $TOR2^{MT}$ strains treated or not with CMB4563 for 30 min. b, Quantification of Pan1-GFP and Abp1-mCherry patch lifetimes determined from $TOR1^{MT}$ or $TOR2^{MT}$ cells as assessed in a. Bar graphs of Pan1-GFP lifetimes means, +/- standard deviation. Statistical parameters were extracted (Student's test: P < 0.005(**)) based on five patches/kymograph. Five kymographs were analysed.

Supplemental table 1

а

Forward primers												
	1	2	3	4	5	6	7	8	9	10	11	12
A	TTTATTTTCAGGGC TCCATGCAGCCGCC GCCGCGCAGCAGC AAACGCCCGAGCC TGGATG	TTTATTTTCAGGGC TCCATGAGCAGCGT GAGCACCCGCCAG CCGCGCCAGAGCC TGGATCTGA	TTTATTTTCAGGGC TCCATGATGCGCAA AAGCTTCGCGCGC GCGCGCCAGAGCC TGGATCTGGA	TTTATTTTCAGGGC TCCATGCTGCCGAA ATTCTACGATAAAA AACGCATTAGCCTG GATCATG	TTTATTTTCAGGGC TCCATGAGCACCAG CGCGTTCAACAGCC GCCGCAACAGCCT GGATA	TTTATTTTCAGGGC TCCATGAGCGATAC CTTCAACCCGGAAT ACCGCACCAGCCT GGATA	TTTATTTTCAGGGC TCCATGCCGGCGA CCCCGAACCAGAA AATGCGCGATAGC CTGGATA	TTTATTTTCAGGGC TCCATGAGCTTCCA GTTCTACCGCGGCT ACCGCGCGCGAGCTA CGATG	TTTATTTTCAGGGC TCCATGAAAGTGCT GGAAGAAAACAAA GAACGCCTGAGCC TGGATG	TTTATTTTCAGGGC TCCATGGATGATCT GACCGAAGAACAG AAACGCCTGAGCCT GGATT	TTTATTTTCAGGGC TCCATGGCGCTGG AAATTCTGCGCAAA GTGCGCGATAGCC TGGATA	TTTATTTTCAGGGC TCCATGGCGTTCAG CCGCGGGCGCGCGC GTGCGCGAAAGCC TGGATC
В	TTTATTTTCAGGGC TCCATGCTGGCGG AMATGCTGAMACAG TTCCGCTGGAGCCT GGATC	TTTATTTTCAGGGC TCCATGAAAACCGT GGGCACCAGCGGC CCGCGCAGCAGCAGCC TGGATAGCA	TTTATTTTCAGGGC TCCATGTACCGCGT GAGCGCGGGATTAC GGCCGCCCGAGCC TGGATTACGA	TTTATTTTCAGGGC TCCATGGGCCGCG GCCCGAGCACCAA CGTGCGCAGCA	TITATITTCAGGGC TCCATGAACCGCTA CAGCGTGGAACGC GCGCGCACCAGCC TGGATCTGCCGGG CGTGAC	TTTATTTTCAGGGC TCCATGCGCAACAG CCGCAGCTTCGGC CCGCGCGGCAGCC TGGATAGCAT	TTTATTTTCAGGGC TCCATGTACCGCAT GAGCGCGGGATTTC GGCCGCCCGAGCC TGGATTACGA	TTTATTTTCAGGGC TCCATGGCGAGCG CGCGCGGCAACAA ACTGCGCACCAGC CTGGAT	TTTATTTTCAGGGC TCCATGACCCGCTA CAGCGTGGAACGC GCGCGCGCGAGCC TGGATCTGCCGGG CATT	TTTATTTTCAGGGC TCCATGGATGCGCC GATTGAAAAAGGC CATCGCCCGAGCCT GGATA	TTTATTTTCAGGGC TCCATGACCCGCAA CACCCATGAATACG CGCGCTTCAGCCTG	TTTATTTTCAGGGC TCCATGGAACTGCT GGATTACCATTTCG AACGCAAAAGCTAC GATAGCG
c	TTTATTTTCAGGGC TCCATGGAACCGG AAAAAGATGATATT ATTCGCAGCAGCCT GGATA	TTTATTTTCAGGGC TCCATGTACCTGGA TAACGATGCGATTC TGCGCAGCAGCCT GGAT	TTTATTTTCAGGGC TCCATGGTGCATGG CACCAGCCTGATG GATCGCAGCAGCC TGGATA	TTTATTTTCAGGGC TCCATGAACGGCAT TATTCGCTTCGTGA ACCGCAACAGCCT GGATC	TTTATTTTCAGGGC TCCATGGCGCGCCT GCTGGATAGCAAC AAACGCCATAGCCT GGAT	TTTATTTTCAGGGC TCCATGATGTTCAT TGCGCTGGATAAAA AACGCCTGAGCCT GGATG	TTTATTTTCAGGGC TCCATGGGCTACAC CGCGGAACAGCAG AGCCGCGCGAGCT ACGATGCGCAT	TITATTITCAGGGC TCCATGGGCGAAA GCAGCAAAGATITC ATTCGCCTGAGCCT GGATG	TTTATTTTCAGGGC TCCATGGCGCGCC TGGGCGCGCATTAA AAGCCGCCATAGC CTGGATA	TTTATTTTCAGGGC TCCATGAACAGCTT CCTGACCGATAACC TGCGCAACAGCCT GGATC	TTTATTTTCAGGGC TCCATGCAGCCGG AATTCGTGACCGAT CCGCGCCTGAGCC TGGATAGCT	TTTATTTTCAGGGC TCCATGCGCTGCTA CGATCGCTGGATTA ACCGCGAAAGCCT GGATA
D	TTTATTTTCAGGGC TCCATGGAAAACGC GTTCAGCGCGGACC CCGCGCGCGAGCC TGGATGGCCAGAT	TTTATTTTCAGGGC TCCATGACCTACAA ACGCAAATACAGCA CCCGCTACAGCCTG GATA	TTTATTTTCAGGGC TCCATGAGCCTGAC CAGCGGCGAATTC AACCGCCTGAGCCT GGATA	TTTATTTTCAGGGC TCCATGCGCAGCCA GAAAATTGTGACCG AACGCCTGAGCCT GGATA	TTTATTTTCAGGGC TCCATGACCAACGA ACTGGATGTGACCA TTCGCAAAAGCTAC GATGTGAGCCTG	TTTATTTTCAGGGC TCCATGTTCCCGAA CCATAAACTGATTA CCCGCGTGAGCCT GGAT	TTTATTTTCAGGGC TCCATGATTACCCC GACCCCGGCGTTC CAGCGCCGCAGCT ACGATA	TTTATTTTCAGGGC TCCATGAAAATTAG CGATAACTTCGAAC GCCGCTGGAGCTA CGATA	TTTATTTTCAGGGC TCCATGTGCACCTA CTGCGGCGTGTTCC GCCGCCAGAGCCT GGATCGCGGCGCG GCGAAACT	TTTATTTTCAGGGC TCCATGCAGTTCCT GCCGCCGGATGAT CCGCGCAGCAGCC TGGATTGGGA	TTTATTTTCAGGGC TCCATGAGCGAACT GCGCGATCAGATT GATCGCCCGAGCC TGGAT	TTTATTTTCAGGGC TCCATGGGCGGGC CGGGCAGCGAAAA CAAACGCGGCAGC CTGGATA
E	TTTATTTTCAGGGC TCCATGAGCTTCAA AATTAACCGCCATA CCCGCCCGAGCTA CGATA	TTTATTTTCAGGGC TCCATGATTGTGAA AAAAAGCCTGAAA GATCGCCATAGCCT GGATG	TTTATTTTCAGGGC TCCATGCCGTTCAT TGGCGGCGAAGAT CATCGCTACAGCCT GGATA	TTTATTTTCAGGGC TCCATGCTGGAAGT GCGCCTGAAAAGC ATTCGCCATAGCCT GGAT	TITATTITCAGGGC TCCATGGATGCGG ATCTGATTAAAGCG AAACGCATTAGCCT GGATGC	TTTATTTTCAGGGC TCCATGAGCGAAAT GGAAGTGGAAGAA CTGCGCCTGAGCCT GGATA	TTTATTTTCAGGGC TCCATGGAACATGA TCTGTACCTGCCGC AGCGCCTGAGCCT GGATGGCGCGACC GGCACCG	TTTATTTTCAGGGC TCCATGAAACATGC GAAAACCGTGTTCA ACCGCATTAGCTAC GATGG	TTTATTTTCAGGGC TCCATGCTGCTGCTGCC GAGCGGCGAAAGC TTCCGCCTGAGCCT GGATA	TTTATTTTCAGGGC TCCATGAAACATGC GAAAACCGTGTTCC AGCGCGTGAGCTA CGATG	TTTATTTTCAGGGC TCCATGTACGGCAT GAAATGCGATTACA CCCGCTACAGCCTG GATG	TTTATTTTCAGGGC TCCATGATGAAATA CCATAACCTGAGCC TGCGCCATAGCTAC GATC
F	TTTATTTTCAGGGC TCCATGCGCCAGAA AAGCAAAACCCATC AGCGCATTAGCTAC GATG	TTTATTTTCAGGGC TCCATGCGCAACAG CCTGATTCTGCTGC CGCGCATTAGCTAC GATC	TTTATTTTCAGGGC TCCATGATTGGCCT GGTGGAAGTGCTG ATGCGCTGCAGCCT GGATC	TTTATTTTCAGGGC TCCATGATGAGCTA CCAGCGCAACAGC GCGCGCGCGAGCC TGGATCTGCGCAG CCAGT	TTTATTTTCAGGGC TCCATGCGCGTGAC CTTCATTCCGCTGA ACCGCCTGAGCCT GGATA	TTTATTTTCAGGGC TCCATGGATGCGCT GCAGCTGAAATTCA GCCGCTTCAGCCTG GATG	TTTATTTTCAGGGC TCCATGAACGAAGA ACAGGCGAGCCAT CTGCGCCATAGCCT GGATA	TITATTITCAGGGC TCCATGAGCGAAG AACAGGAAATGGA ACTGCGCCGCAGC CTGGATGATT	TTTATTTTCAGGGC TCCATGCTGAACAG CACCAGCGTGACC CCGCGCGCGAGCC TGGATTACGA	TTTATTTTCAGGGC TCCATGCATACCCT GATGAACGTGCTG AGCCGCAACAGCC TGGATG	TTTATTTTCAGGGC TCCATGAACACCTA CCCGAAACTGCTGT ACCGCAACAGCCT GGATG	TTTATTTTCAGGGC TCCATGGGCCGCA TATTAGCACCATGA GCCGCCGCAGCCT GGATGCGGGCCTG AACCG
G	TTTATTTTCAGGGC TCCATGGATGATGA AATTGAAACCGCGT TCCGCCGCAGCCT GGATT	TTTATTTTCAGGGC TCCATGCTGGAAAC CGAACTGAAAAAC GTGCGCGATAGCC TGGATG	TTTATTTTCAGGGC TCCATGACCATTAC CGTGGATATGTTCG AACGCGAAAGCTA CGATG	TTTATTTTCAGGGC TCCATGACCCCGCG CGCGCGCCGCAGC AGCCGCCTGAGCC TGGATA	TTTATTTTCAGGGC TCCATGCAGCTGCC GGGCGATGCGCGC GTGCGCATTAGCCT GGATA	TTTATTTTCAGGGC TCCATGGTGCAGCA GTTCGGCTACGATT GGCGCCTGAGCCT GGATA	TTTATTTTCAGGGC TCCATGCCGGAACA TATTGATGAAATTTT CCGCATGAGCTAC GATTTC	TTTATTTTCAGGGC TCCATGGGCGAAC ATGATGCGAGCATT ACCCGCAGCAGCC TGGAT	TTTATTTTCAGGGC TCCATGAGCAACAG CAGCGTGGTGGCCG GTGCGCGTGAGCT ACGATG	TTTATTTTCAGGGC TCCATGTTCAGCCT GGATGAAGAACTG CATCGCGTGAGCCT GGATG	TTTATTTTCAGGGC TCCATGTTCAACCA GAAAAAAAGCCTG AAACGCAACAGCTA CGATGG	TTTATTTTCAGGGC TCCATGGATGATGATTA CATGATGAACATGA AACGCAACAGCCT GGATG
н	TTTATTTTCAGGGC TCCATGACCCTGCT GAAATACCGCTACG TGCGCACCAGCCT GGATA	TTTATTTTCAGGGC TCCATGCAGCCGG AAATTGTGACCGAT AGCCGCCTGAGCC TGGATA	TTTATTTTCAGGGC TCCATGGAACGCAA AACCAACTACAAAA GCCGCGCGCGAGCCT GGATAACT	TTTATTTTCAGGGC TCCATGAAAATTGA TAACAGCCTGATTA AACGCCGCAGCCT GGATG	TTTATTTTCAGGGC TCCATGTACTTCCC GAAAGTGAAACTG AGCCGCAACAGCT ACGATG	TTTATTTTCAGGGC TCCATGCAGCCGG AATTCGTGACCGAT CCGCGCCTGAGCC TGGATAGCT						

b

Reverse primers												
	1	2	3	4	5	6	7	8	9	10	11	12
А	AATTCGGATCCCCG ATATCCTTAGAAGT AGCGCGCGCGCTTTC GTTATCATCCAGGC TCGGGCGTTT	AATTCGGATCCCCG ATATCCTTACAGGT TCACTTCCTGGAAG TTCAGATCCAGGCT CTGGCG	AATTCGGATCCCCG ATATCCTTACGCTT CGCGGCGCACGCG TTCCAGATCCAGGC TCTGGC	AATTCGGATCCCCG ATATCCTTACCACC ACACTTTCACATGA TCATGATCCAGGCT AATGCG	AATTCGGATCCCCG ATATCCTTACATGC CCTGTTTGTTGCTG CTTTTATCCAGGCT GTTGCGGCG	AATTCGGATCCCCG ATATCCTTAGCTCA GGAAATCGCTATCC ATGTTATCCAGGCT GGTGCGGTA	AATTCGGATCCCCG ATATCCTTAGGTTTT GCTCAGGCGGCCG GTGGTATCCAGGCT ATCGCGCAT	AATTCGGATCCCCG ATATCCTTAATGCA GCAGGCTGCTGCT CGCCGCATCGTAG CTCGCGCGGGTA	AATTCGGATCCCCG ATATCCTTATTCCG GGTTCATCAGTTTC TGTTCATCCAGGCT CAGGCGTTC	AATTCGGATCCCCG ATATCCTTAGCTCT GCAGAATATCCTGC AGGAAATCCAGGC TCAGGCGTTT	AATTCGGATCCCCG ATATCCTTACAGGT TCAGCTGCACATCT TCGTTATCCAGGCT ATCGCGCAC	AATTCGGATCCCCG ATATCCTTAGCGTT TGTAGAAGCTGCTT TTCTGATCCAGGCT TTCGCGCAC
В	AATTCGGATCCCCG ATATCCTTAGGTCA GTITTTCTTCCCATT CCGGATCCAGGCT CCAGCGGAA	AATTCGGATCCCCG ATATCCTTAGCTCA CGCGGTAGCTATCA ATGCTATCCAGGCT GCTGCG	AATTCGGATCCCCG ATATCCTTACGCGC CCTGTTCCAGGTTA TCGTAATCCAGGCT CGGGC	AATTCGGATCCCCG ATATCCTTACGCAA TCATCTGTTCGCGG GTGCGATCCAGGC TGCTGCGCACGTTG GTGCT	AATTCGGATCCCCG ATATCCTTACGCCG CGTTGGTCACGCCC GGCAGATCCA	AATTCGGATCCCCG ATATCCTTAGCTCA TGCGGTAGCTGCC AATGCTATCCAGGC TGCCGC	AATTCGGATCCCCG ATATCCTTACATGG TCTGGTTCAGGTTT TCGTAATCCAGGCT CGGGC	AATTCGGATCCCCG ATATCCTTACGCCA GCATTTCTTCGCGG GTGCGATCCAGGC TGGTGCGCAGT	AATTCGGATCCCCG ATATCCTTATTCCG CATGGTTAATGCCC GGCAGATCCAGG	AATTCGGATCCCCG ATATCCTTAGCTGT TGCGGCTTTTCGGG AAGTTATCCAGGCT CGGGCGATG	AATTCGGATCCCCG ATATCCTTATTCGCT ATCTTCTTCCGCCA GCGGATCCAGGCT GAAGCGCGCGCGTAT	AATTCGGATCCCCG ATATCCTTACACGC TCAGCACGTTAATC ACGCTATCGTAGCT TTTGCG
с	AATTCGGATCCCCG ATATCCTTAGTTGTT GTTGCCATGGAAGT TTTTATCCAGGCTG CTGCGAAT	AATTCGGATCCCCG ATATCCTTAGTAGT TCGGCAGGAAGAA CAGTTCATCCAGGC TGCTGCGCAGA	AATTCGGATCCCCG ATATCCTTATTTCAG GTTGTTCAGCAGGC GCATATCCAGGCTG CTGCGATC	AATTCGGATCCCCG ATATCCTTAATGAT CCAGGCAATCTTTC ACCGGATCCAGGC TGTTGCGGTT	AATTCGGATCCCCG ATATCCTTAAATGG TGTTTTTTTGCTCA GAATATCCAGGCTA TGGCGTTTG	AATTCGGATCCCCG ATATCCTTACATGTT AATCAGGTTATGAT CATCATCCAGGCTC AGGCGTTT	AATTCGGATCCCCG ATATCCTTAGCCGG TATGGCCGGTTTTA TGCGCATCGTAGCT CGCG	AATTCGGATCCCCG ATATCCTTAGGTGT TCACGTAGGTGGTC ACATCATCCAGGCT CAGGCGAAT	AATTCGGATCCCCG ATATCCTTACTGCT GCTGCTGATCGCCC GGGCTATCCAGGC TATGGCCGCT	AATTCGGATCCCCG ATATCCTTACAGCG GGTTATCCGCCTGG TTCAGATCCAGGCT GTTGCGCAG	AATTCGGATCCCCG ATATCCTTACACGC GAATCATTTCGAAG AAGCTATCCAGGCT CAGGCG	AATTCGGATCCCCG ATATCCTTAATCGT AATCGTTGCCGGTC AGAATATCCAGGCT TTCGCGGTT
D	AATTCGGATCCCCG ATATCCTTACAGGC TTTTGCCCAGCATC TGGCCATCCAGGCT CG	AATTCGGATCCCCG ATATCCTTAGCGCA CGCTCGGGCTTTCG CTGGTATCCAGGCT GTAGCGGGT	AATTCGGATCCCCG ATATCCTTAAATTTT GCGCGCCCAGCCG AAGTTATCCAGGCT CAGGCGGTT	AATTCGGATCCCCG ATATCCTTAGGTGC AGCTTTCGCCCGCG GTGCTATCCAGGCT CAGGCGTTC	AATTCGGATCCCCG ATATCCTTACAGGC GGCAGCTGTACAG GCTCACATCGTAGC TT	AATTCGGATCCCCG ATATCCTTAGTAGA AGGTTTTCGGCAGC GCTTCATCCAGGCT CACGCGGGTA	AATTCGGATCCCCG ATATCCTTATTTGAA GCTGCTGTTCATGC TAATATCGTAGCTG CGGCGCTG	AATTCGGATCCCCG ATATCCTTAGTTGG TCAGTTCTTTTTCA TTTTATCGTAGCTC CAGCGGCG	AATTCGGATCCCCG ATATCCTTAAATGC CCAGTTTCGCCGCG CCGCGAT	AATTCGGATCCCCG ATATCCTTAGTACA GCTGGCTCTGCAG ATCCCAATCCAGGC TGCTGC	AATTCGGATCCCCG ATATCCTTAAATCG CCGCTTTTTCTTTCA GCACATCCAGGCTC GGGCGATCA	AATTCGGATCCCCG ATATCCTTAGAAGT AATCGAACACATGT TCGCTATCCAGGCT GCCGCGTTT
E	AATTCGGATCCCCG ATATCCTTAAATGT AATCGCTCGGTTTC ATAATATCGTAGCT CGGGCCGGGT	AATTCGGATCCCCG ATATCCTTATTTGCT TTCATCGCGTTTCG GATCATCCAGGCTA TGGCGATC	AATTCGGATCCCCG ATATCCTTATTCCA GATCGCTGTAATCC AGAATATCCAGGCT GTAGCGATG	AATTCGGATCCCCG ATATCCTTAGCCCG GCAGCAGTTTGGT GTTTTTATCCAGGC TATGGCGAATG	AATTCGGATCCCCG ATATCCTTAGCCCG CCGGGTAGTTGGTT TTCGCATCCAGGCT AATGCGTT	AATTCGGATCCCCG ATATCCTTAGCCGG TGCCTTTAATTTTAA TGTTATCCAGGCTC AGGCGCAG	AATTCGGATCCCCG ATATCCTTAGCTTTC ATCGGTGCCGGTC GCGCCATC	AATTCGGATCCCCG ATATCCTTAGCATTT CACAATGCTGGTTT TGCCATCGTAGCTA ATGCGGT	AATTCGGATCCCCG ATATCCTTAAATAAT GCCGCCTTTGCTCG GGCTATCCAGGCTC AGGCGGAA	AATTCGGATCCCCG ATATCCTTAGCATTT CACAATGCTGGTCT GGCCATCGTAGCTC ACGCGCTG	AATTCGGATCCCCG ATATCCTTAATCGTT CCAATCCGGCAGCT GTTCATCCAGGCTG TAGCGGGT	AATTCGGATCCCCG ATATCCTTATTTATC CGCGCGGGCTTTTCA GCAGATCGTAGCTA TGGCGCAG
F	AATTCGGATCCCCG ATATCCTTAATCTTT GAAGGTGCGCTGC GCTTCATCGTAGCT AATGCGCTG	AATTCGGATCCCCG ATATCCTTACGGCG GCGGGCCCAGGCT GTAGCGATCGTAG CTAATGCGCCG	AATTCGGATCCCCG ATATCCTTACAGCA GGAAGCCCTGGCT GTACAGATCCAGG	AATTCGGATCCCCG ATATCCTTACAGCT GCTGGTACTGGCT GCGCAGATCCAG	AATTCGGATCCCCG ATATCCTTAGTTGC TCGGGAATTTCACA TCGCTATCCAGGCT CAGGCGGTT	AATTCGGATCCCCG ATATCCTTAATCCA CCAGAATGGTTTTG CTATCATCCAGGCT	AATTCGGATCCCCG ATATCCTTAATCGG TCGCCTGCGCCAC GAAGTTATCCAGGC TATGGCGCAG	AATTCGGATCCCCG ATATCCTTAATCGG TCGCCTGGCTAATG TAATCATCCAGGCT GCGGCG	AATTCGGATCCCCG ATATCCTTAGGTGT TCGGCACGCTCGG ATCGTAATCCAGGC TCGCGC	AATTCGGATCCCCG ATATCCTTAGTATTT GCTGCATTTCACGT TTTCATCCAGGCTG	AATTCGGATCCCCG ATATCCTTACACGG TCAGGAACAGAATC AGATCATCCAGGCT GTTGCGCTA	AATTCGGATCCCCG ATATCCTTAGTATTC CCAGCGGTTCAGG CCCGCATCCA
G	AATTCGGATCCCCG ATATCCTTAAATTTT GCGCACGGTCGGT TTGTAATCCAGGCT GCGGCGGAA	AATTCGGATCCCCG ATATCCTTACACAT CGCGCAGCTGGGT CATTTCATCCAGGC TATCGCGCAC	AATTCGGATCCCCG ATATCCTTACAGGT TAATTTCGCGAATA ATTTCATCGTAGCT TTCGCGTTC	AATTCGGATCCCCG ATATCCTTAGAAGC TGCGGCGCGGGGGT AATGCTATCCAGGC TCAGGCGGCT	AATTCGGATCCCCG ATATCCTTATTCGC GCACCATGGTCAGT TCGGTATCCAGGCT AATGCGCAC	AATTCGGATCCCCG ATATCCTTAGGTGG TCAGATGTTTCGCG CTAATATCCAGGCT CAGGCGCCA	AATTCGGATCCCCG ATATCCTTATTTGCT GCTGCGCTGTTCCA GGAAATCGTAGCTC ATGCGG	AATTCGGATCCCCG ATATCCTTAGCTCG GGTTAATGGTGCCT TTGCGATCCAGGCT GCTGCGGGTA	AATTCGGATCCCCG ATATCCTTACACGG TGCTGGTGCTGCTG CTCGCATCGTAGCT CACGCGCAC	AATTCGGATCCCCG ATATCCTTACACTTT AATATCGTTTTTTTT ATCATCCAGGCTCA CGCGATG	AATTCGGATCCCCG ATATCCTTACTGTTC TTCGTTTTTTTCAG GCCATCGTAGCTGT TGCGTT	AATTCGGATCCCCG ATATCCTTATTCAAT TTCTTCGGTGCCTT CCACATCCAGGCTG TTGCGTTT
н	AATTCGGATCCCCG ATATCCTTAGCTGC TTTTTTCGCTGCCC AGCATATCCAGGCT GGCGCGCAC	AATTCGGATCCCCG ATATCCTTACACTTT AATCACTTCCAGGA AGCTATCCAGGCTC AGGCGGCT	AATTCGGATCCCCG ATATCCTTAGCTTTT GCTGCTGCTGCTGCTGA AGTTATCCAGGCTC GCGCG	AATTCGGATCCCCG ATATCCTTAGCGTT CGCCGCTGGTGCG CACCACATCCAGGC TGCCGCGTTT	AATTCGGATCCCCG ATATCCTTAGCGGG TGTAGTTCAGGGTG TAATCATCGTAGCT GTTGCGGCT	AATTCGGATCCCCG ATATCCTTACACGC GAATCATTTCGAAG AAGCTATCCAGGCT CAGGCG						

Supplemental table 1: List of primers used for the Fpk1 substrate library. a, Forward primers organized following the order found in Supp. Fig1a. The consensus motif sequence is surrounded by 5 codons unique for each peptide. b, Corresponding reverse primers.

Supplemental table 2

Protein	Function	Size (aa)	Motif	Putative Phospho-S Position	Detected S- Phospho	Protein	Function	Size (aa)	Motif	Putative Phospho-S Position	Detected S- Phospho
AFR1	Shmoo formation	620	qppprsskRpSLDdnesaryf	472	YES	MTH1	Glucose sensing	433	fpnhklitRvSLDealpktfy	161	NO
A.K. 1	Endonitaria	1109	ssvstrqpRqSLDlnfqevnl	960	YES	MSN4	Transcription regulation	630	itptpafqRrSYDismnssfk	488	YES
AKLI	Endocytosis	1108	mrksfaraRqSLDlervrrea	1072	YES	MUB1	Ubiquitin/Proteasome	620	kisdnferRwSYDkmkkeltn	448	NO
AMS1	Mannose metabolism	1083	lpkfydkkRiSLDhdhvkvww	48	NO	NCS6	tRNA modification	359	ctycgvfrRqSLDrgaaklgi	167	NO
47613	Vesicles traficking/Autophagy/TOR	720		501	VEC	NTG1	DNA repair	399	qflppddpRsSLDwdlqsqly	334	NO
AIGIS	g13 pathway factor		stsafnsrRnSLDkssnkqgm	201	163	NUM1	Organel migration	2748	selrdqidRpSLDvlkekaai	2049	NO
BAS1	Purine/histidine metabolism	811	sdtfnpeyRtSLDnmdsdfls	513	NO	NUT1	Transcription regulation	1132	gvpgsenkRgSLDsehvfdyf	958	NO
BEM2	Cytokeleton organisation	2167	patpnqkmRdSLDttgrlskt	1046	YES	OAF3	Oleate metabolism	863	sfkinrhtRpSYDimkpsdyi	431	NO
BPL1	Biotinylation	690	sfqfyrgyRaSYDaasssllh	327	NO	ORT1	Arginine metabolism	292	ivkkslkdRhSLDdpkrdesk	202	NO
COG6	Vesicles traficking	839	kvleenkeRlSLDegklmnpe	179	NO	PIG1	Glycogen metabolism	648	pfiggedhRySLDildysdle	108	NO
0068	Vesicles traficking	607	dditeeakRisinfiadilas	21	NO	PML39	RNA maturation	334	levrlksiRhSLDkntkllpg	16	NO
СТРО	Transcription	1077	-1-il-lendorn-derlei	727	NO	PROZ	Proline metabolism	456	dadiikakkisiDaktnypag	247	NO
CIKS	Budding	1405	aleiiikvkastoneavqini	727	NO	PKP5	RNA maturation	679	selleveeikisibhikikgtg	239	NO
CTKI	Budding	1495	aisrgalvReSLDqksslykr	706	NU	PIRS	+PNA modification	462	khaktufaRiSVDaktaiuka	220	NO
DIT2	Sporulation	489	laemlkqfRwSLDpeweeklt	459	NO	P039	DNA sessio	1200	ANARCVINKISIDGKESIVKE	1122	- 110
			ktvgtsgpRsSLDsidsyrvs	348	NO	RAD9	DNA repair	1309	lipsgesikisibspskggii	202	NO
DNF1	Lipid transport	1571	yrvsadygRpSLDydnleqga	365	YES	RIBZ	Translation regulation	591	KNAKEVIGRVSIDGGESIVKC	293	NO
	cipia cianspore		grgpstnvRsSLDrtreqmia	1526	YES	RM12	I ranslation regulation	412	ygmkcaytKyStDeqtpawna	383	NU
_		-	nrysveraRtSLDlpgvtnaa	1552	YES	SDP1	Sit2 phosphatase regulation	209	mkynnisiknSYDiiksradk	166	NU
DNF2	Lipid transport	1612	rnsrsfgpRgSLDsigsyrms	386	YES	SEG1	Eisosome	960	rgkskthgRiSYDeagrtfkd	145	NO
			yrmsadigRpSLDyenInqtm	403	YES	SET1	Chromatin	1080	rnslillpRiSYDryslgppp	236	NO
			asargnkiRtSLDrtreemia	1566	YES	SKI3	RNA degradation	1432	iglvevlmRcSLDlysqgfll	818	NO
			trysverakaSLD1pginnae	1592	YES	SLM2	Membrane stress	656	msyqrnsaRaSLDlrsqyqql	11	YES
DNF3	Lipid transport	1656	dapiekgnkpsibnipksins	651	YES	SMC3	Mitosis	1230	rvtfiplnRlSLDsdvkfpsn	597	NO
EN14	Trafficking	247	trntheyaRfSLDplaeedse	213	NO	SRO77	Vesicles traficking	1010	dalqlkfsRfSLDdsktilvd	566	NO
ERG1	Ergosterol metabolism	496	elldyhfeRkSYDsvinvlsv	386	NO	\$\$01	Vesicles traficking	290	neeqashlRhSLDnfvaqatd	79	YES
ESC1	Telomeres	491	epekddiiRsSLDknfhgnnn	477	NO	5502	Vesicles traficking	295	seegemeikrsibdyisqata	83	NO
GNT1	Glycans modifications	491	yldndailRsSLDelfflpny	206	NO	TEL1	Telomeres	2787	ht impuls 20 SI Depukceku	1082	NO NO
GPB2	PKA inhibitor	880	vhats1mdRsSLDmr11nn1k	580	NO	TEP1	PI3P Phosphatase	434	ntvpkllvRnSLDdlilfltv	69	NO
GUD1	Guanine metabolism	489	ngiirfwnPnSIDnwkdaldh	56	NO	TOG1	Fatty acid metabolism	794	griistmsRrSLDaglnrwey	350	NO
LICE1	DNA synthesis	602	ingititi vinni bibp v kacitar	202	NO	TRL1	tRNA modification	827	ddeietafRrSLDykptvrki	601	NO
HC31	DIVA synthesis	085	ariiosnkkhSLDiiskkhti	230	740	USO1	Vesicles traficking	1790	letelknvRdSLDemtqlrdv	805	NO
HUL5	Ubiquitin/Proteasome	910	mfialdkkRlSLDddhnlinm	532	NO	VPS3	Vesicles traficking/Vacuole	1011	titvdmfeReSYDeiireinl	648	NO
IRA2	cAMP metabolism	3079	gytaeqqsRaSYDahktghtg	547	NO	VPS54	Protein recycling	889	tprarrssRlSLDsitprrsf	69	YES
IRC3	DNA synthesis	689	gesskdfiRlSLDdvttvvnt	640	NO	VTC4	Vesicles traficking/Vacuole	721	q1pgdarvRiSLDteltmvre	375	NO
	the large from a black	076		750		YJR098c	Unkown function	656	pahidaifRmSVDflagreek	332	NO
JIP4	Unkown function	876	aalgaiksRhSLDspgdqqqq	752	NO	YML35	Translation regulation	367	penderitReSIDileqissk	77	NO
KNS1	TOR pathway factor	737	nsfltdnlRnSLDlnqadnpl	66	NO	YPK1	TOR pathway factor	680	snssvvpvRvSYDassststv	71	VES
MAL33	Maltose metabolism	468	apefvtdpR1SLDsffemirv	267	NO	ҮРКЗ	TOR pathway factor	525	fsldeelhRvSLDdkkndikv	13	NO
MDM20	Ubiguitin /Protocomo	500	apervedphibibblicality	60	NO	YMR114C	Unkown function	368	fnqkkslkRnSYDglkkneeq	305	YES
WIDWISU	obiquitity Proteasonile	338	rcyarwinkesibiitgndyd	03	110	YPR003c	Unkown function	754	ddymmnmkRnSLDvegteeie	572	NO
MDS3	FOR pathway factor	1487	enafsatpRaSLDgqmlgksl	934	YES	YPR078c	Unkown function	372	tllkyryvRtSLDmlgsekss	259	NO
MIF2	Kinetochore	549	tykrkystRySLDtsespsvr	154	YES	YPR196w	Unkown function	470	qpeivtdsRlSLDsflevikv	267	NO
MKT1	Transcription regulation	830	sltsgefnRlSLDnfgwarki	719	NO	VTAG	Assymptric protein	754	erktnyksRaSLDnfssssks	255	YES
MMS22	Ubiquitin/Proteasome	1454	rsqkivteRlSLDstagesct	55	NO		Assymetric protein	7.54	kidnslikRrSLDvvrtsger	278	YES
MNL2	Mannose metabolism	849	tneldvtiRkSYDvslyscrl	551	NO	YUR1	Protein modification	428	yfpkvklsRnSYDdytlnytr	70	NO
						ZEN1	Respiratory transition	465	apefytdpRlSLDsffemirv	267	NO

Supplemental table 2: Table recapitulating all the peptides containing one or more **RXSLD/E motif(s) in the** *Saccharomyces Cerevisae* proteome. The table provides (from the left to the right) the name of the protein, its function, its length in amino acids (aa), the sequence used for cloning i.e. the consensus motif surrounded by 5 aa on both sides, the position(s) in the sequence of the serine (S) present in the consensus motif, and whether this motif was phosphorylated *in vitro*.

REFERENCE

 Hoepfner, D., Helliwell, S. B., Sadlish, H., Schuierer, S., Filipuzzi, I., Brachat, S., Bhullar, B., Plikat, U., Abraham, Y., Altorfer, M., Aust, T., Baeriswyl, L., Cerino, R., Chang, L., Estoppey, D., Eichenberger, J., Frederiksen, M., Hartmann, N., Hohendahl, A., Knapp, B., Krastel, P., Melin, N., Nigsch, F., Oakeley, E. J., Petitjean, V., Petersen, F., Riedl, R., Schmitt, E. K., Staedtler, F., Studer, C., Tallarico, J. A., Wetzel, S., Fishman, M. C., Porter, J. A., and Movva, N. R. (2014) High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. Microbiol Res 169, 107-120