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Supplementary Figures
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Supplementary Figure 1: Gene function prediction for genome-wide gene interaction networks
in human tissues using a leave-one-out cross-validation setting. We considered tissue-specific
gene interaction networks 1 (RAW) and their denoised versions, which we obtained by applying
MU, ND, DSD or NE to the original (RAW) networks. We then used the networks to predict gene
functions specific to each tissue as defined in Greene et al. 1. Each bar indicates the performance of
a random-walk based approach that was applied to a raw or a denoised network in order to predict
gene functions taking place in the tissue described by the network. Prediction performance is
measured using AUROC, where a high AUROC value indicates the approach successfully learned
to rank an actual gene-function association higher than a random gene-function pair. Error bars
indicate performance variation across all gene functions in a given tissue. Results are shown for all
22 human tissues considered in this study. The average AUROC values achieved by the methods
across 22 tissues are: NE: 0.742, ND: 0.662, DSD: 0.649, MU: 0.706, and RAW: 0.616.
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Supplementary Figure 2: Gene function prediction for genome-wide gene interaction networks
in human tissues using a 5-fold cross-validation setting. We considered tissue-specific gene
interaction networks 1 (RAW) and their denoised versions, which we obtained by applying MU,
ND, DSD or NE to the original (RAW) networks. We then used the networks to predict gene
functions specific to each tissue as defined in Greene et al. 1. Each bar indicates the performance of
a random-walk based approach that was applied to a raw or a denoised network in order to predict
gene functions taking place in the tissue described by the network. Prediction performance is
measured using AUROC, where a high AUROC value indicates the approach successfully learned
to rank an actual gene-function association higher than a random gene-function pair. Error bars
indicate performance variation across all gene functions in a given tissue. Results are shown for all
22 human tissues considered in this study. The average AUROC values achieved by the methods
across 22 tissues are: NE: 0.706, ND: 0.646, DSD: 0.621, MU: 0.669, and RAW: 0.572.
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Supplementary Figure 3: Results of NE on fine-grained species identification. (A) shows the
sensitivity to the hyper-parameter, σ, when constructing the similarity network on butterfly dataset.
(B) shows the sensitivity to the hyper-parameter k for this network. (C) is a mesh plot of different
values of K and α for our network enhancement on the butterfly dataset.

20 40 60 80 100
K

0.2

0.4

0.6

0.8

1

Id
en

tif
ic

at
io

n 
Ac

cu
ra

cy

MU
ND
DSD
OursNE

Supplementary Figure 4: Species Identification Accuracy with respect to different number
of K in K-NN pruning as a pre-processing step. We perform the same KNN pruning for all
methods and report the corresponding identification accuracy. It is observed that, NE outperforms
the alternative methods for various choices of K. Furthermore, both NE and MU perform better
for smaller K, the performance of DSD improves as K is increased and ND performs best at an
intermediate value in the range investigated.

4



Supplementary Note 1: Further Information on Datasets
Tissue-Specific Gene Interaction Networks

Tissue-specific gene interaction networks were retrieved from the GIANT (Genome-scale Inte-
grated Analysis of gene Networks in Tissues) database 1: http://giant.princeton.edu.
Networks were filtered to only include edges with evidence supporting a tissue-specific functional
interaction (i.e., network type “top edges” in the GIANT database). Each network was used as in-
put to a network denoising algorithm to clean the network edges. The resulting denoised network
was then used as input to a random-walk based algorithm to predict gene functions.

Gene functions were defined by the Gene Ontology (GO) terms 2. Gene-function associ-
ations were specified by the GO annotations 2 and retrieved from ftp://ftp.ncbi.nlm.

nih.gov/gene/DATA/gene2go.gz in August 2016. We only used high confidence annota-
tions associated with the experimental evidence codes: EXP, IDA, IMP, IGI, IEP, ISS, ISA, ISM
or ISO, and further removed all annotations with a non-empty “qualifier” column 3. The original
GO files only contained the most specific annotations explicitly. We therefore added all implicit
more general annotations by up-propagating the given annotations along the full GO tree.

We obtained the mapping of GO terms to tissues, that is, associations between tissues and
tissue-specific functions, from Greene et al. 1. Greene et al. used text matching followed by manual
curation to map GO terms to tissues. GO terms were filtered to only include those with at least 20
associated genes. As a result, there were 22 tissues with each having at least one tissue-specific
gene function. In total, there were 309 tissue-specific gene functions across all 22 tissues. Tissues
with the largest number of functions were: natural killer cell (49 GO terms), lymphocyte (43 GO
terms) and muscle (34 GO terms).

To predict gene functions we used a random-walk based approach. Random walks were
used before to transfer GO annotations within networks (4–8 and many others) and were shown to
be among the top-perfoming approaches for gene function prediction 5, 6. We defined a random
walk starting from nodes that were known to be associated with a query gene function and were
included in the training set. At each time step, the walk had a probability r of returning to the initial
nodes. We set r = 0.75, as was done by Köhler et al. 4. Once the random walk process converged
(L2-distance between probability vectors in consecutive time steps< 10−6), predictions were made
for all nodes in the test set based on their visitation probability. Predictions were evaluated against
known gene-function associations using a leave-one-out cross-validation strategy.

Hi-C Interaction Networks

For each autosome, the provided contact matrix (counts per bin) from Rao et al. 9 was normalized
using SQRTVC as defined in 9. In their work Rao et al. also introduced the Arrowhead algorithm
as a way of detecting clusters within a Hi-C adjacency matrix. The Arrowhead algorithm produces
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clusters that may overlap. Since the true clusters are unknown, to generate a confident set of
labels, for each chromosome, we sub-sampled the first 15 non-overlapping clusters that contain
no sub-clusters as determined by the arrowhead algorithm 9. We chose non-overlapping clusters
as both of the community detection algorithm we use for post processing are limited to detecting
non-overlapping communities 10, 11. This sub-sampled adjacency matrix constitutes the contact
matrix for our new Hi-C interaction network. For visualization purposes, we only show the first 9
communities. We have chosen chromosome 16 as our visualization example. This example was
chosen to have a performance just below the median as measured by NMI of Louvian clustering
for 1kb resolution Hi-C.

Fine-Grained Image Datasets and Similarity Networks

First, we test our method on a dataset with 10 different classes of butterflies, each of which contain-
ing 55 to 100 images totaling to 832 butterflies 12. We use two different encoding methods (Fisher
Vector (FV) 13, 14 and Vector of Linearly Aggregated Descriptors (VLAD) 15 with dense SIFT 16)
to generate two different descriptors for these images. These two encoding methods describe the
statistics of the codebooks differently and therefore we use our method to combine them.

Given a feature set that describes a collection of images, denoted as X = {x1, x2, . . . , xn},
we want to construct a similarity graph N ∈ Rn×n in which W(i, j) indicates the kernel value
between the i-th and j-th object. The most widely used method assumes a Gaussian distribution
across pairwise similarities:

W(i, j) = exp

(
−‖xi − xj‖

2

2σ2

)
.

Here, σ is a hyper-parameter that needs careful manual tuning. To overcome the sensitivity to σ, a
more advanced method of constructing similarity kernels is proposed in 17 where the variance is
estimated using the local scales of the distances as follows. Assume k is the number of neighbors.
For each cell, e.g, xi, the associated local variance is estimated as:

εi =

∑
j∈KNN (i) ‖xi − xj‖

k
,

where KNN (i) denotes all the top k neighbors of the i-th cell. Thus the new kernel is defined as:

Wσ
k (i, j) = exp

(
− ‖xi − xj‖

2

σ2(εi + εj)2

)
.

We set k = 20 and σ = 0.5 as default values.
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Supplementary Note 2: Definition of Evaluation Metrics
Normalized Mutual Information

Throughout the paper, we used Normalized Mutual Information (NMI) 18 to evaluate the consis-
tency between the obtained clustering and the true labels of the cells. Given two clustering results
U and V on a set of data points, NMI is defined as: I(U, V )/max{H(U), H(V )}, where I(U, V )

is the mutual information between U and V , and H(U) represents the entropy of the clustering U .
Specifically, assuming that U has P clusters, and V has Q clusters, the mutual information

is computed as follows:

I(U, V ) =
P∑
p=1

Q∑
q=1

|Up ∩ Vq|
N

log
|Up ∩ Vq|

|Up|/N × |Vq|/N
,

where N is the number of points and |Up| denotes the cardinality of the p-th cluster in U . The
entropy of each cluster assignment is calculated as follows:

H(U) = −
P∑
p=1

|Up|
N

log
|Up|
N

,

H(V ) = −
Q∑
q=1

|Vq|
N

log
|Vq|
N

.

Further details on NMI can be found in Vinh et al.19. NMI takes on values between 0 and 1 where
a higher NMI indicates a higher concordance between the two sets, i.e., a more consistent label
assignment.

Retrieval Accuracy

We use retrieval accuracy for evaluation of fine-grained image retrieval. For a single query q, the
accuracy on k retrievals is defined as:

acc(q, k) =
# of correct retrievals

min(k,Nq)
,

where Nq is the number of objects with the same label of q. Here, “correct retrievals” mean the
retrieved images from the same class of q. We also report the mean accuracy Acc over all the
images in the dataset:

Acc =
1

n

n∑
i=1

acc(qi, Nqi),

where n is the number of images in the dataset.
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Supplementary Note 3: Theoretical Analysis of Network Enhancement
Doubly Stochastic Matrix

Here, we state the definition of a Doubly Stochastic Matrix (DSM):

Definition 1. Given a matrix M ∈ Rn×n, M is a Doubly Stochastic Matrix (DSM) if it satisfies the
following two conditions:

1. Mi,j ≥ 0 i, j ∈ {1, 2, . . . , n},
2.
∑

iMi,j =
∑

jMi,j = 1.

Remark. The largest eigenvalue of a DSM matrix is 1. It is easy to check that 1 = (1, 1, . . . 1)T

is a right eigenvector with eigenvalue 1. Similarly, 1T is a left eigenvector with eigenvalue 1.
For an irreducible DSM, Perron-Frobenius theorem implies that the (1, 1) pair is unique and 1 is
the largest eigenvalue. When M is reducible, its indices can be split to construct k irreducible
DSM’s. Any eigenvector of M needs to be an eigenvector of all of these matrices. Since the
eigenvalue corresponding to each of these matrices cannot be greater than 1 we conclude that the
largest eigenvalue of a reducible DSM is 1 corresponding to eigenvector 1 and potentially other
eigenvectors.

Next, we show that the transition matrix is a DSM. First we re-state the construction of
transition matrices:

Pi,j ←
Wi,j∑
k∈Ni

Wi,k

∗ I{j ∈ Ni}, Ti,j ←
n∑
k=1

Pi,kPj,k∑n
v=1 Pv,k

. (1)

Where I{·} is an indicator function. By checking the conditions from the definition of DSM, we
verify that T is a symmetric DSM.

Given a weighted graph W ∈ Rn×n, the transition probability matrix P = D−1W , where D
is the diagonal matrix whose entries are the degree of the vertices, i.e., Dii =

∑n
j=1Wi,j . In other

words, we have:

Pi,j =
Wi,j∑n
k=1Wi,k

. (2)

It is easy to verify that, P l = l, i.e., the row sum of P is always 1. Note P is not symmetric. Now
we construct the DSM matrix T as follows:

Ti,j ←
n∑
k=1

Pi,kPj,k∑n
v=1 Pv,k

. (3)

It is easy to see that, T ∈ Rn×n is symmetric:

Ti,j =
n∑
k=1

Pi,kPj,k∑n
v=1 Pv,k

=
n∑
k=1

Pj,kPi,k∑n
v=1 Pv,k

= Tj,i.
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It remains to show that T is a DSM.
Since weights are assumed to be non-negative, Wi,j ≥ 0. This implies that Pi,j as defined in

equation 2 is non-negative and therefore, Ti,j ≥ 0

Next we show that the second property of DSM holds by by first proving T l = l:

(T l)i =
n∑
j=1

n∑
k=1

Pi,kPj,k∑n
v=1 Pv,k

=
n∑
k=1

Pi,k

∑n
j=1 Pj,k∑n
v=1 Pv,k

=
n∑
k=1

Pi,k = 1. (4)

This implies that, each row sum of T is 1, so T l = l. If we take transpose on both sides, we have
l′T ′ = l′, and since T is symmetric (i.e., T ′ = T ), then we obtain l′T = l′. So, we conclude that
the row sums and the column sums of T are always 1. This proves that T is a DSM. Put together,
we have that T is symmetric doubly stochastic matrix.

Further, we can see that T will be positive semi-definite. To show this, for any vector z, we
need to prove z′T z ≥ 0:

z′T z =
n∑
i=1

n∑
j=1

zizjTi,j =
n∑
i=1

n∑
j=1

zizj

n∑
k=1

Pi,kPj,k∑n
v=1 Pv,k

=
n∑
k=1

∑n
i=1

∑n
j=1 zizjPi,kPj,k∑n
v=1 Pv,k

=
n∑
k=1

(
∑n

i=1 ziPi,k)
2∑n

v=1 Pv,k
≥ 0.

We thus confirmed that T is positive semi-definite.
Furthermore, we can easily verify that convex combinations of symmetric DSMs is still a

symmetric DSM.

Proof. This proof follows immediately from the definition. GivenmDSMs,Ai, for i = 1, 2, . . . ,m,
a convex combination is

∑m
i βiAi, such that

∑m
i βi = 1 and βi ≥ 0, i = 1, . . . ,m. The symmetry

of a convex combination of symmetric matrices is trivial. The first property of DSM follows since
all values involved are non-negative and are added or multiplied. The second property is also easy
to confirm using (

∑
i βiAi)l =

∑
i βi(Ail) = l. Transposing this equation and using symmetry

shows the results for the column sums.

Network Enhancement Preserves Properties of DSM

Network enhancement diffusion process is given by:

Wt+1 = αT ×Wt × T + (1− α)T , (5)

where initialization is done by Wt=0 ← W , with α a regularization parameter, and t representing
the iteration number.

9



Theorem 1. In each iteration t of network enhancement (NE) as defined by Eqn. (5), the following
properties hold :

1. Wt remains a symmetric DSM.

2. Wt converges to a non-trivial equilibrium graph that is a symmetric DSM.

3. Wt remains positive-semi definite if Wt=0 is positive semi-definite.

Proof. To prove the first statement, we focus on checking the definitions. Given that Wt=0 and the
local graph T are symmetric DSMs, we can proceed by induction on t. Assume Wt is a symmetric
DSM, we want to verify that Wt+1 is again symmetric and a DSM. We start by proving symmetry:

W ′
t+1 = α(TWtT )′ + (1− α)T = α(T ′W ′

tT ′) + (1− α)T = α(TWtT ) + (1− α)T = Wt+1.

Here, we use W ′
t = Wt and T ′ = T . Hence, Wt+1 is symmetric.

We proceed to show that Wt+1 remains doubly stochastic. It is obvious that each element of
Wt+1 is non-negative. To show the rows and columns remain normalized, we note that:

Wt+1l = αTWtT l + (1− α)T l = αTWtl + (1− α)T l = αT l + (1− α)T l = T l = l.

here we have used T l = l and Wtl = l, since they are both DSMs. This shows that Wt+1 is row
normalized. We can appeal to symmetry to show that the matrix will also be column normalized
which shows statement 1.

Next we show that it is possible to find a closed form solution for the final, converged net-
work. We start by first providing an expression for the network at iteration t. Then we find the
network in the limit of large number of iterations.

Define W0 = Wt=0. For iteration t, the following holds true:

Wt = αtT tW0T t + (1− α)T
t−1∑
k=0

(αT 2)k. (6)

which can be shown by induction. For t = 1, Wt=1 = αTW0T + (1 − α)T , and clearly satisfies
Eqn. (6). Assume Eqn. (6) is true for iteration t. Then:

Wt+1 = αTWtT + (1− α)T

= αT (αtT tW0T t + (1− α)T
t−1∑
k=0

(αT 2)k)T + (1− α)T

= αt+1T t+1W0T t+1 + (1− α)T
t∑

k=0

(αT 2)k.

10



which satisfies Eqn. (6). Let t→∞, then:

Wt→∞ = (1− α)T (I − αT 2)−1.

This proves that the network enhancement process converges to a non-trivial equilibrium
graphWt→∞ = (1−α)T (I−αT 2)−1. Note that this result is the limit of symmetric DSM matrices.
The set of symmetric n × n doubly stochastic matrices can be described by {M : M −MT =

0,Mi,j ≥ 0,
∑

iMi,j = 1,
∑

jMi,j = 1}. Since these conditions are inverse images of closed sets
({0}, [0,∞), {1}, {1} respectively) under continuous maps, the set of symmetric DSMs is closed
and contains the limit point corresponding to the converged diffusion network in NE.

Lastly, we argue that if W0 is positive semi-definite, then the NE diffusion process preserves
this property at every iteration. By induction, let Wt be positive semi-definite then for any vector
z ∈ Rn:

z′Wt+1z = αz′TWtT z + (1− α)z′T z = α(T z)′Wt(T z) + (1− α)z′T z ≥ 0.

Finally, we argue that since the set of positive semi-definite matrices can be represented by
{M : f(M) ≥ 0} where f(M) = min‖x‖=1〈x,Mx〉 is a continuous function, the set of positive
semi-definite matrices is closed (and thus contains it’s limit points) as it is the inverse image of
[0,∞) under f .

This theorem demonstrates that the diffusion process in NE preserves some important prop-
erties of the original network. Importantly, at every stage of the diffusion process, the results
corresponds to an undirected network with the same normalization as the initial network.

Spectral Analysis of Network Enhancement

Now we present our main novel finding that the proposed network enhancement process does not
change eigenvectors of the initial symmetric DSM while mapping eigenvalues via a non-linear
function.

Theorem 2. Let (λ0,v0) denote the eigen-pair of a symmetric DSM T0. Then the network en-
hancement process defined in Eqn. (5) does not change the eigenvectors and the final converged
graph has an eigen-pair (fα(λ0),v0), where fα(x) = (1−α)x

1−αx2 .

Proof. Let T0 denote the initial symmetric DSM and T∞ denote the final symmetric DSM. From
the proof above, it is easy to see that the final network T∞ is given by T∞ = (1−α)T0(I−αT 2

0 )−1.
Since T0 is a symmetric DSM, then we have T0 = UΣU−1 where U is the set of eigenvectors and

11



Σ is a diagonal matrix whose entries are eigenvalues of T0, i.e., Σi,i = λi. Clearly,

T∞ = (1− α)T0(I − αT 2
0 )−1

= (1− α)UΣU−1(I − αUΣU−1UΣU−1)−1.

= (1− α)UΣU−1(UU−1 − αUΣU−1UΣU−1)−1.

= (1− α)U(Σ(I − αΣ2)−1)U−1.

Hence, we obtain the eigen-decompostion of T∞. That is, the eigenvectors are still U but the
eigenvalues becomes Σ′i,i = (1− α)λi(1− αλ2i )−1. This completes the proof of the theorem.

This theorem shows that, the defined network enhancement process using a DSM is a nonlin-
ear operator on the eigenvalue-spectrum of the network. This theorem not only provides us with a
closed-form expression for obtaining the final network at convergence but also sheds light on how
network enhancement process improves the graph. First, if the original eigenvalues are either 0 or
1, the network enhancement process preserves these eigenvalues. Second, network enhancement
process always decreases the eigenvalues since (1−α)λ0

1−αλ20
≤ λ0. More importantly, NE increases

the eigengaps between large eigenvalues (Lemma 1) and thereby enhances the robustness of the
obtained graph (Theorem 3) and influences clustering. Third, while all eigenvalues are reduced,
the non-linear function fα reduces small eigenvalues more aggressively than large eigenvalues. In
this sense, NE acts similar to a smoothed out version of PCA but does not completely diminish any
singular value.

Consider the initial graph T0 ∈ Rn×n and the obtained graph T∞ ∈ Rn×n after the network
enhancement process. Then,

Lemma 1. Let, c(α) =
√
−
√
α2−10α+9+α−3

2α
, for all eigenvectors with eigengap contained in

[1, c(α)] (i.e. λi+1 ≥ c(α)) the eigengap is larger in T∞ than in T0.

Proof. First we note that by Theorem 2, T∞, T0 share the same eigenvectors. Let k be the last
eigenvector with λk+1 ≥ c(α). The lemma reduces to showing:

‖λj − λj+1‖ ≤ ‖λ(∞)
j − λ(∞)

j+1‖, with j ≤ k

where λ(∞)
j is the j-th eigenvalues of the final graph. By Theorem 2, we have λ(∞)

j =
(1−α)λj
1−αλ2j

,
therefore, the preceding equations becomes:

λj −
(1− α)λj
1− αλ2j

≤ λj+1 −
(1− α)λj+1

1− αλ2j+1

.
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Since λj ≥ λj+1, the claim holds where gα(x) = x− (1−α)x
1−αx2 is a decreasing function. Differentiat-

ing gα(x), gives the following condition:

∂gα(x)

∂x
= 1− (1− α)

(1 + αx2)

(1− αx2)2
≤ 0.

Since 0 < α < 1, this condition implies that: x4α + x2(α− 3) + 1 ≥ 0, or that:

|x| ≥

√
−
√
α2 − 10α + 9 + α− 3

2α
= c(α).

One implication of this lemma is an increased robustness. For H ∈ Rn×n, a symmetric per-
turbation, define M := M + H as the perturbed version of M . Further, denote the eigenspace
spanned by the largest k eigenvectors of M by VM,k. Then, let dist(VM , VM) indicates the dis-
tance between projected eigenspaces of M and M (see detailed definition in the review by Von
Luxburg 20).

Theorem 3. (Perturbation Analysis) T∞ has a better resistance to noise than T0 in the following
sense:

sup
‖H‖=h
T0

{dist(VT0,k, VT0,k)} ≥ sup
‖H‖=h
T0

{dist(VT∞,k
, VT∞,k)},

for all k with λk+1 ≥ c(α) in T0.

To prove this theorem, the key observation lies in the fact that for large eigenvalues, the
eigengap of T0 is always smaller than the corresponding eigengap of T∞.

Proof. First, we directly use a modified version of Davis-Kahan theorem (Theorem 2 from 21).
The text of theorem 2 from 21 is reproduced below for completeness:

Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues λ1 ≥ · · · ≥ λp and λ̂1 ≥ · · · ≥ λ̂p

respectively. Fix 1 ≤ r ≤ s ≤ p and assume that min(λr−1 − λr, λs − λs+1 > 0) where λ0 :=∞
and λp+1 := −∞. Let d := s − r + 1, and let V = (vr, vr + 1, . . . , vs) ∈ Rp×d and V̂ =

(v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have orthogonal columns satisfying Σvj = λjvj and Σ̂v̂j = λ̂j v̂j for
j = r, r + 1, . . . , s. Then:

‖ sin Θ(V̂ , V )‖F ≤
2 min(d1/2‖Σ̂− Σ‖op), ‖Σ̂− Σ‖F)

min(λr−1 − λr, λs − λs+1)
.

Moreover, there exists an orthogonal matrix Ô ∈ Rd×d such that:

‖V̂ Ô − V ‖F ≤
23/2 min(d1/2‖Σ̂− Σ‖op, ‖Σ̂− Σ‖F)

min(λr−1 − λr, λs − λs+1)
.
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Here, ‖sin(Θ(V1, V̂1))‖ is the angle between subspaces V1 and V̂1.
Let λ(∞)

i denote the ith eigenvalue of T∞ and λ(0)i denote the ith eigenvalue of T0. Then from
Lemma 1, we see that any T∞ corresponds to a T0 with a smaller eigengap between eigenvalues
(λi − λi+1) for i ≥ k Then, using the theorem above, we can conclude that for i ≤ k, the upper
bound is smaller for T∞ than for T0. Since this upper bound is sharp 21, this proves the theorem.

Remark 1. Note that Theorem 3 holds true for any V = span(λi, . . . , λi+j) for i + j ≤ k, j ≥ 0,
that is, the subspace spanned by any range of (j + 1) “large” eigenvalues.

Here, the focus on large eigenvalues is particularly relevant for the problem of community
detection. To see this, consider an undirected network with k connected components. Such a
network can be represented as a block-diagonal, symmetric DSM with k degenerate eigenvalues
equal to 1. In a real-world setting, there may be true edges that violate the block-diagonal structure.
If we treat these edges as small perturbations over the block-diagonal matrix, by Weyl’s inequality,
we expect the eigenvalues of the perturbed matrix to remain close to those of the original (block-
diagonal) matrix. i.e., the eigenvalues remain close to 1.

Remark 2. Lemma 1 provides insight about the role of α. Recall that c(α) is an increasing
function of α. In our experiments we have used α = 0.85 corresponding to c(α) = 0.78. Since the
eigenvalues are restricted to stay within the [0, 1] interval and to preserve their signs, the algorithm
compresses the gap between small eigenvalues (i.e., eigenvalues below c(α)) in order to expand
the gap between large eigenvalues (i.e., eigenvalues above c(α)). We make the following three
observations: α controls: (1) which interval will go through compression and which interval will
go through expansion, (2) the intensity of this compression/expansion, and (3) the non-linearity of
this compression/expansion.

Supplementary Figure 3C empirically shows that the results of NE are not sensitive to the
value of α. This stability is due to the relative flatness of c(α), c(0.15) = 0.6, c(0.85) = 0.78,
indicating that the expansion region is not very sensitive to the value of α away from the extreme
ends. At the end points of α, c(α) changes rapidly. For example, when α = 1 the algorithm reduces
to a simple diffusion algorithm (without a restart). In that case, the expansion region is only {1}
and all other eigenvalues are compressed to {0} as is expected in a pure diffusion algorithm.
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