TITTLE PAGE

ICAM1 expression is induced by proinflammatory cytokines and associated with TLS formation in aggressive breast cancer subtypes.

Stine L. Figenschau¹, Erik Knutsen¹, Ilona Urbarova², Christopher Fenton³, Bryan Elston⁴, Maria Perander¹, Elin S. Mortensen^{1,5}, Kristin A. Fenton¹

¹ RNA and Molecular Pathology Research group, Department of Medical Biology, Faculty of Health Science, UiT – The Arctic University of Norway, N-9037 Tromsø, Norway

² Tromsø University Proteomics Platform, Department of Medical Biology, Faculty of Health Science, UIT – The Arctic University of Norway, N-9037 Tromsø, Norway

³ The Microarray Platform, Faculty of Health Science, UIT – The Arctic University of Norway, N-9037 Tromsø, Norway

⁴ Histopath Diagnostic Specialists, Suite 201, 4 Drake Avenue, Building B Pinnacle Office Park, Macquarie Park NSW 2113, Australia

⁵ Department of Clinical Pathology, University Hospital of North Norway, N-9038 Tromsø, Norway

Correspondence to:

Kristin A. Fenton, RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, MH-building, 9037 Tromsø, Norway.

Phone: +4777664834.

E-mail: kristin.fenton@uit.no

Table S1. R script for differential expression analysis in DESeq2

Tumor vs. Normal:

```
#load counts
counts <- read.table("counts.tab", header=T, row.names=1, sep="\t")</pre>
#clean pheno file
pheno <- rep("N", ncol(counts))</pre>
pheno[grep("T", colnames(counts))] <- "T"</pre>
#sync counts with pheno
#remove empty reads
counts <- counts[which(rowSums(counts) > 0),]
pheno <- cbind("ID"=colnames(counts), "pheno"=pheno)</pre>
rownames(pheno) <- pheno[,1]</pre>
#DEseq2
library(DESeq2)
dds <- DESeqDataSetFromMatrix(countData = counts, colData=pheno, design = ~</pre>
pheno)
res <- results(dds, lfcthreshold=2) #logFoldChange greater or around 2</pre>
res <- res[which(res$baseMean > 10),] #remove low count transcripts
res <- res[which(res$padj < 0.05),] #only those that have a padj less than
0.05
res <- res[order(res$padj),] #order by padjust</pre>
library(gProfileR)
#annotate
xx <- gconvert(rownames(res), organism = "hsapiens", target = "ENSG",</pre>
region_query = F,numeric_ns = "",
mthreshold = Inf, filter_na = T, df = T)
dups <- which(duplicated(xx[,2]))</pre>
xx <- xx[-dups,]
rownames(xx) <- tolower(xx[,2])</pre>
test <- as.data.frame(res)</pre>
dd <- cbind(test, xx[rownames(test),])</pre>
write.table(dd, "kristin tumour normal.tab", sep="\t")
png("kristin up down.png")
plotCounts(dds, "uc003thr.4", intgroup="pheno")
dev.off()
```

Table S2. R script for differential expression analysis in DESeq2

TLS pos vs. negative:

```
#load counts
counts <- read.table("counts.tab", header=T, row.names=1, sep="\t")</pre>
#clean pheno file
pheno
                <- read.table("New_groups.txt", header=T, sep="\t")
                <- pheno[!is.na(pheno[, ncol(pheno)]),]
pheno
rownames(pheno) <- paste(paste("x", pheno$ID, sep=""), "T", sep="")</pre>
rownames(pheno) <- gsub("xT", "x", rownames(pheno))</pre>
#sync counts with pheno
counts <- counts[, rownames(pheno)]</pre>
#remove empty reads
counts <- counts[which(rowSums(counts) > 0),]
#DEseq2
library(DESeq2)
pheno$Nye.Grupper <- as.factor(pheno$Nye.Grupper)</pre>
dds
                               <- DESeqDataSetFromMatrix(countData = counts,
colData=pheno, design = ~ Nye.Grupper)
#normalized principle component
library(matrixStats)
library(genefilter)
ntop <- 500
       <- rlog(dds, blind=FALSE)
rld
       <- rowVars(assay(rld))
rv
select <- order(rv, decreasing = TRUE)[seq len(min(ntop,length(rv)))]</pre>
       <- prcomp(t(assay(rld)[select, ]))
рса
colors <- as.character(pheno[rownames(pca$x), "Nye.Grupper"]) colors[colors ==</pre>
"1"] <- "blue"
colors[colors == "2"] <- "red"</pre>
png("normalized_pca_inflammed_vs_non_tumour.png", width=800, height=800)
plot(pca$x[,1], pca$x[,2], col=colors, pch=20) labels <-</pre>
paste(rownames(pca$x), pheno[rownames(pca$x), "Nye.Grupper"], sep=" ")
text(pca$x[,1], pca$x[,2], labels, pos=2)
dev.off()
#dds analysis
    <- DESeq(dds)
dds
res
    <- results(dds)
sig <- res[which(res$pvalue < 0.05),] #too many</pre>
      <- sig[which(sig$padj < 0.1),] #too few with padj 0.05
sig
      <- sig[which(sig$baseMean > 10),] #too many with very low means
sig
#annotate
library(gProfileR)
      <- gconvert(rownames(sig), organism = "hsapiens", target =
хх
"ENTREZGENE_ACC", region_query = F,numeric_ns = "", mthreshold = Inf,
filter na = T, df = T)
annot <- cbind(sig[as.character(tolower(xx[,2])),], xx)</pre>
path <- gprofiler(unique(as.character(xx$name)), organism = "hsapiens")</pre>
#results
write.table(annot, "DEseq inflammed non inflammed tumour.txt", sep="\t")
write.table(path, "DESeq inflammed pathways.txt", sep="\t")
```

Sample name	No. of raw reads ¹	No. of mapped SAGE tags ²	% of mapped SAGE tags ³
SAGE_1T	24,258,091	15,635,747	64.5
SAGE_3T	31,994,239	22,032,673	68.9
SAGE_4T	27,083,634	17,166,279	63.4
SAGE_6T	25,124,284	17,469,710	69.5
SAGE_7T	28,390,731	18,592,583	65.5
SAGE_9T	22,038,727	15,183,800	68.9
SAGE_10T	23,928,559	15,617,125	65.3
SAGE_11T	19,578,639	13,898,273	71.0
SAGE_12T	17,530,938	10,975,834	62.6
SAGE_13T	14,968,593	10,050,627	67.1
SAGE_15T	16,579,277	10,450,145	63.0
SAGE_16T	23,487,429	15,651,523	66.6
SAGE_17T	18,818,245	13,272,280	70.5
SAGE_18T	18,570,125	13,024,410	70.1
SAGE_20T	23,858,957	15,148,028	63.5
SAGE_21T	28,704,826	20,521,979	71.5
SAGE_22T	24,963,695	17,859,750	71.5
SAGE_24T	22,028,079	15,559,328	70.6
SAGE_25T	20,377,702	15,245,459	74.8
SAGE_26T	40,919,575	31,972,672	78.1
SAGE_27T	25,596,230	14,629,812	57.2
SAGE_30T	18,867,822	13,284,918	70.4
SAGE_31T	15,744,015	8,997,525	57.2
SAGE_1N	45,402,414	26,550,066	58.5
SAGE_3N	36,374,516	25,581,619	70.3
SAGE_4N	39,144,024	27,277,375	69.7
SAGE_6N	26,433,945	16,552,837	62.6
SAGE_7N	32,676,707	23,166,747	70.9
SAGE_9N	36,049,982	25,041,739	69.5
SAGE_10N	35,718,425	26,435,374	74.0
SAGE_11N	29,510,280	18,878,549	64.0
SAGE_12N	33,231,009	24,714,464	74.4
SAGE_13N	27,230,170	19,016,580	69.8
SAGE_14N	27,595,512	18,745,805	67.9
SAGE_15N	18,915,521	12,325,515	65.2
SAGE_16N	16,193,475	11,207,480	69.2
SAGE_17N	27,621,901	18,502,102	67.0
SAGE_18N	20,753,933	14,083,017	67.9
SAGE_20N	20,130,803	12,262,315	60.9
SAGE_21N	22,473,505	12,455,426	55.4
SAGE_22N	19,623,149	13,774,768	70.2
SAGE_23N	19,750,852	13,249,316	67.1
SAGE_24N	17,813,930	11,789,423	66.2
SAGE_25N	26,411,798	17,838,380	67.5
SAGE_26N	99,480,765	71,968,531	72.3
SAGE_27N	23,354,973	17,036,342	73.0
SAGE_30N	29,471,098	16,642,362	56.5
SAGE_31N	25,819,634	18,290,879	70.8

 Table S3. The amount of reads gained from SAGE sequencing.

 $^{\rm 1}$ Number of raw reads gained by SOLiD SAGE sequencing.

² Number of 26bp tags mapping to human genome reference GRCh38 in color space using bowtie.
 ³ Percentage of SAGE tags mapped from the amount of raw reads gained by SAGE sequencing.

Figure S1

Figure S1: ITGAL expression in breast cancer patients.

Tumor sections from TNBC patients showing ITGAL immunoreactivity in **(a)** immune cell aggregates in close proximity to the tumor cells, and **(b)** in tumor-associated stroma. Prominent ITGAL expression was detected in tumor-associated TLS both **(c, d)** in the central tumor and **(e, f)** the periphery of the tumor. Original magnification, X200.

Figure S2. Full-length membranes of ICAM1 expression in HMLE cells after stimulation with

proinflammatory cytokines. (a) Lane 1 and 13: Magic marker MW standard. Lane 2: control after 0h. Lane 3: TNF α 24h. Lane 4: IFN γ 24 h. Lane 5: IL1 β 24h. Lane 6: IFN α 24h. Lane 7: Control 24h. Lane 8: TNF α 48h Lane 9: IFN γ 48 h. Lane 10: IL1 β 48h. Lane 11: IFN α 48h. Lane 12: control 48h. (b) Actin beta of the membrane in **a**.)

Figure S2

Figure S3

Figure S3. Full-length gels of ICAM1 expression in MCF7 cells after stimulation with

proinflammatory cytokines. (a) Lane 1 and 13: Magic marker MW standard. Lane 2: nonstimulated MCF7 cells after 0h. Lane 3-6: MCF7 cells stimulated with TNF α (lane 3), IFN γ (lane 4), IL1 β (lane 5) and IFN α (lane 6) for 24h. Lane 7: nonstimulated MCF7 cells at 24h. Lane 8-11: MCF7 cells stimulated with TNF α (lane 8), IFN γ (lane 9), IL1 β (lane 10) and IFN α (lane 11) for 48h. Lane 12: nonstimulated MCF7 cells at 24h (b) Actin beta detection of the membrane in **a**.

Figure S4. Full-length gels of ICAM1 expression in MDA-MD-468 cells after stimulation with proinflammatory cytokines. (a) Lane 1 and 13: Magic marker MW standard. Lane 2: nonstimulated MDA-MD-468 cells after 0h. Lane 3-6: MDA-MD-468 cells stimulated with TNF α (lane 3), IFN γ (lane 4), IL1 β (lane 5) and IFN α (lane 6) for 24h. Lane 7: nonstimulated MDA-MD-468 cells at 24h. Lane 8-11: MDA-MD-468 cells stimulated with TNF α (lane 8), IFN γ (lane 9), IL1 β (lane 10) and IFN α (lane 11) for 48h. Lane 12: nonstimulated MCF7 cells at 48h (b) Actin beta detection of the membrane in **a**.

Figure S5. Full-length gels of ICAM1 expression in SKBR3 cells after stimulation with proinflammatory cytokines. (a) Lane 1 and 13: Magic marker MW standard. Lane 2: nonstimulated SKBR3 cells after 0h. Lane 3-6: SKBR3 cells stimulated with TNF α (lane 3), IFN γ (lane 4), IL1 β (lane 5) and IFN α (lane 6) for 24h. Lane 7: nonstimulated SKBR3 cells at 24h. Lane 8-11: SKBR3 cells stimulated with TNF α (lane 8), IFN γ (lane 9), IL1 β (lane 10) and IFN α (lane 11) for 48h. Lane 12: nonstimulated SKBR3 cells at 48h (b) Actin beta detection of the membrane in **a**.