**Supplementary Information** 

Bipolar dispersal of red-snow algae phylotypes

Segawa et al.

#### This PDF file includes:

Supplementary Figures 1-31

Supplementary Tables 1-12

### **Supplementary Figures**



Supplementary Figure 1: Phylogenetic relationship of 348 OTUs (98% OTU) based on ITS2 region sequences. A maximum likelihood tree was constructed with 1000 bootstrap replications using RAxML version 8.2.10 with the GTR+I+ $\Gamma$  model. In 98% OTUs, identical sequences were reduced to a single OTU. Taxonomic groups that were defined by the secondary structure of ITS2 are labeled and distinguished based on colour.



Supplementary Figure 2: Relationship of OTUs within Chlorophyceae or Trebouxiophyceae, based on ITS2 sequences. Bayesian phylogenetic tree was constructed using MrBayes version 3.2.6 with the GTR+I+ $\Gamma$  model. Within each group, species delimitations among the OTUs were carried out on ITS2 secondary structures. The nodal numbers represent posterior probabilities in Bayesian inference (left) and bootstrap values with 1000 replications (right) using RAxML version 8.2.10 with the GTR+I+ $\Gamma$  model. Representative sequences from OTUs generated in this study are shown in bold type.



Supplementary Figure 3: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Asterochloris* group (98%OTU-318). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGGU) on the 5' side of helix III (bold type).



Supplementary Figure 4: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Chlorella* group (98%OTU-9). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGGU) on the 5' side of helix III (bold type).



Supplementary Figure 5: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Chloroidium* group A (98%OTU-211). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGGU) on the 5' side of helix III (bold type).



Supplementary Figure 6: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Chloroidium* group B (98%OTU-71). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGGU) on the 5' side of helix III (bold type).



Supplementary Figure 7: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Chloroidium* group C (98%OTU-163). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGGU) on the 5' side of helix III (bold type).



Supplementary Figure 8: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the '*Chlamydomonas*'-snow group B (98%OTU-292). Differences between '*Chlamydomonas*'-snow group B (98%OTU-292) and '*Chlamydomonas*'-snow group A (98%OTU-137) are shown by characters just outside the secondary structure. The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. The position of the compensatory base change in helix III between the two is shown in a black background. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGGU) on the 5' side of helix III (bold type).



Supplementary Figure 9: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Chloromonadinia*-snow group A (98%OTU-375). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGG) on the 5' side of helix III (bold type).



Supplementary Figure 10: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Chloromonadinia*-snow group B (98%OTU-387). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGGGU) on the 5' side of helix III (bold type).



Supplementary Figure 11: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Chloromonadinia*-snow group C (98%OTU-395). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGGGU) on the 5' side of helix III (bold type).



Supplementary Figure 12: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Chloromonadinia*-snow group D (98%OTU-398). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads).



Supplementary Figure 13: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Chloromonadinia*-snow group E (98%OTU-356). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGG) on the 5' side of helix III (bold type).



Supplementary Figure 14: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Chloromonadinia*-snow group F (98%OTU-357). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (CGGU) on the 5' side of helix III (bold type).



Supplementary Figure 15: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Chloromonadinia*-snow group G (98%OTU-361). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGGU) on the 5' side of helix III (bold type).



Supplementary Figure 16: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Moewusinia* group A (98%OTU-114). Differences between *Moewusinia* group A (98%OTU-114) and *Moewusinia* group B (98%OTU-116) are shown by characters just outside the secondary structure. The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. The position of the compensatory base change in helix III between the two is shown in a black background. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (GGU) on the 5' side of helix III (bold type).



Supplementary Figure 17: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Pseudostichococcus* group (98%OTU-83). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGGU) on the 5' side of helix III (bold type).



Supplementary Figure 18: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Raphidonema* group (98%OTU-19). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGGU) on the 5' side of helix III (bold type).



Supplementary Figure 19: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Stephanosphaerinia* group (98%OTU-101). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGGGU) on the 5' side of helix III (bold type).



Supplementary Figure 20: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the *Trebouxia* group B (98%OTU-96). Differences between *Trebouxia* group B (98%OTU-96) and *Trebouxia* group A (98%OTU-18) are shown by characters just outside the secondary structure. The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. The positions of the compensatory base changes in helix III between the two are shown in black backgrounds. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGGU) on the 5' side of helix III (bold type).



Supplementary Figure 21: Predicted secondary structure of the nuclear rDNA ITS2 transcript of the unnamed group (98%OTU-133). The 3' end of the 5.8S ribosomal RNA (rRNA) and the 5' end of the large subunit of rRNA (LSU rRNA) are indicated by dark lines. Note the U-U mismatch in helix II (arrowheads) and the YGGY motif (UGGU) on the 5' side of helix III (bold type).



Supplementary Figure 22: Phylogenetic relationship between the single-cell, Sanger clone and Illumina sequences of 18S rRNA gene. A maximum likelihood tree was constructed based on the 18S rRNA gene sequences with 1000 bootstrap replications using RAxML version 8.2.10 with the GTR+ I+ $\Gamma$  model. *Acrochaete leptochaete* was used as an outgroup. Sequences from single-cell PCR obtained in this study are shown in bold type.



Supplementary Figure 23: Shannon-Wiener index of snow algae communities in the various regions based on 98% OTU. The box plot indicates the median, first quantile, third quantile, and outliers. There were no significant differences between regions (P > 0.05; Student's t-test).



Supplementary Figure 24: Shannon-Wiener index of snow algae communities in the various regions based on unique sequences. The box plot indicates the median, first quantile, third quantile, and outliers. There were no significant differences between regions (P > 0.05; Student's t-test).



Supplementary Figure 25: Similarities among the ITS2 regions of unique sequences were evaluated by principal components analysis (PCA). Different algal community structure between samples as shown by PCA plot. The PCA plot was generated using the abundance matrix of the unique ITS2 sequences obtained from red snow samples. Each coloured point represents an amplicon from the red snow samples obtained from the following regions. red: Antarctica, green: Greenland, blue: Svalbard, yellow: Alaska.



Supplementary Figure 26: Bray-Curtis dissimilarity based on 98% OTU. The clustering figure shows clear separation of algal communities between the Arctic and Antarctica, indicating that geographical distribution has been affected by geographical distance.



Supplementary Figure 27: Bray-Curtis dissimilarity based on unique sequences. The clustering figure shows clear separation of algal communities between the Arctic and Antarctica, indicating that geographical distribution has been affected by geographical distance.

.



Supplementary Figure 28: Algal taxonomic compositions in the red snows based on 18S rRNA gene by Illumina sequences.



Supplementary Figure 29: Distribution pattern for endemic and cosmopolitan snow algae based on 18S rRNA gene (unique sequences) obtained from each region. Unique sequence numbers and read numbers from Illumina sequences are shown.



Supplementary Figure 30: Distribution pattern for the endemic and bipolar cosmopolitan snow algae based on ITS2 sequences (98% OTU) from Illumina sequencing obtained from each region. OTUs and sequencing read numbers are shown. a, Number of OTUs. b, read numbers of OTUs. Bars are coloured according to region in which the snow sample was obtained from a glacier and snow patch: blue: Antarctica, red: Svalbard, green: Greenland, and yellow: Alaska.



Supplementary Figure 31: Bipolar distribution in *Chlamydomonas*'-snow group B and *Raphi-donema* group of snow algal unique sequences. a, Unique sequences in total. b, Sequencing read numbers in total.

## **Supplementary Tables**

| Supplementary Table 1: List of red snow samples used in this | s study |
|--------------------------------------------------------------|---------|
|--------------------------------------------------------------|---------|

| Supplementary rable 1. List of red show samples used in this study |                                                  |               |           |            |              |               |                                 |  |
|--------------------------------------------------------------------|--------------------------------------------------|---------------|-----------|------------|--------------|---------------|---------------------------------|--|
| Region                                                             | Sample location                                  | Site          | Lat       | Long       | Altitude (m) | Year          | Site condition                  |  |
| Greenland                                                          | Greenland Ice sheet, Tugto Glacier               | IF13          | 77.89473  | -68.77335  | 1001         | 2012.July     | snow on the glacier             |  |
| Greenland                                                          | Greenland Ice sheet                              | IH2           | 69.56110  | -49.34715  | 1107         | 2011.August   | snow on the glacier             |  |
| Svalbard                                                           | Foxfonna glacier                                 | SBFX.S3       | 78.13747  | 16.15794   | 642          | 2011.August   | snow on the glacier             |  |
| Svalbard                                                           | Foxfonna glacier                                 | SBFX.S4       | 78.12687  | 16.20279   | 755          | 2011.August   | snow on the glacier             |  |
| Svalbard                                                           | Longyearbreen glacier                            | SBLY.S3       | 78.17579  | 15.49680   | 417          | 2011.August   | snow on the glacier             |  |
| Svalbard                                                           | Longyearbreen glacier                            | SBLY.S4       | 78.16565  | 15.46344   | 580          | 2011.August   | snow on the glacier             |  |
| Svalbard                                                           | Austre Brøggerbreen                              | SP            | 78.89904  | 11.82895   | 130          | 2008.July     | snow on the glacier             |  |
| Alaska                                                             | Juneau ice field                                 | TK1           | 58.64446  | -134.21068 | 1040         | 2001.July     | snow on the glacier             |  |
| Alaska                                                             | Gulkana glacier                                  | GU.S5         | 63.28771  | -145.40551 | 1680         | 2001.August   | snow on the glacier             |  |
| Alaska                                                             | Gulkana glacier                                  | GU.S4         | 63.28068  | -145.41242 | 1585         | 2005.August   | snow on the glacier             |  |
| Alaska                                                             | Harding ice field                                | HD            | 60.15278  | -149.77992 | 1150         | 2014.August   | snow on the glacier             |  |
| Antarctica                                                         | Riiser-Larsen                                    | Riiser-Larsen | -66.78765 | 50.56543   | 500          | 2008.February | non-glacier based seasonal snow |  |
| Antarctica                                                         | Yukidori Valley                                  | Yukidori      | -69.23935 | 39.76112   | 50           | 2008.January  | non-glacier based seasonal snow |  |
| Antarctica                                                         | Johnsons Glacier, Livingston Island              | CH.1          | -62.65595 | -60.36640  | 5            | 2015.January  | non-glacier based seasonal snow |  |
| Antarctica                                                         | Johnsons Glacier, Livingston Island              | CH.5          | -62.65588 | -60.36582  | 5            | 2015.January  | non-glacier based seasonal snow |  |
| Antarctica                                                         | Johnsons Glacier, Livingston Island              | CH.6          | -62.65563 | -60.36594  | 5            | 2015.January  | non-glacier based seasonal snow |  |
| Antarctica                                                         | Johnsons Glacier, Livingston Island              | CH.7          | -62.65604 | -60.36558  | 5            | 2015.January  | non-glacier based seasonal snow |  |
| Antarctica                                                         | Glaciar Rocoso, Livingston Island                | RC.4          | -62.71219 | -60.40879  | 35           | 2015.January  | non-glacier based seasonal snow |  |
| Antarctica                                                         | Glaciar Rocoso, Livingston Island                | RC.5          | -62.71250 | -60.40926  | 30           | 2015.January  | non-glacier based seasonal snow |  |
| Antarctica                                                         | Glaciar Rocoso, Livingston Island                | RC.7          | -62.71508 | -60.41130  | 10           | 2015.January  | non-glacier based seasonal snow |  |
| Antarctica                                                         | Hurd Glacier-Sally Rocks lobe, Livingston Island | SA.1R         | -62.70138 | -60.41831  | 35           | 2015.January  | non-glacier based seasonal snow |  |
| Antarctica                                                         | Hurd Glacier-Sally Rocks lobe, Livingston Island | SA.2R         | -62.70153 | -60.41784  | 12           | 2015.January  | non-glacier based seasonal snow |  |
| Antarctica                                                         | Hurd Glacier-Sally Rocks lobe, Livingston Island | SA.3R         | -62.70243 | -60.41806  | 0            | 2015.January  | non-glacier based seasonal snow |  |
| Antarctica                                                         | Hurd Glacier-Sally Rocks lobe, Livingston Island | SA.4R         | -62.70299 | -60.41846  | 0            | 2015.January  | non-glacier based seasonal snow |  |

| •                            | 98% OTU | 98% OTU | Unique sequences | Unique sequences |
|------------------------------|---------|---------|------------------|------------------|
|                              | numbers | (%)     | numbers          | (%)              |
| 'Chlamydomonas'-snow group A | 33      | 9.5     | 5946             | 9.3              |
| 'Chlamydomonas'-snow group B | 163     | 46.8    | 36701            | 57.3             |
| unnamed group                | 1       | 0.3     | 1                | 0.0              |
| Stephanosphaerinia group     | 3       | 0.9     | 49               | 0.1              |
| Moewusinia group A           | 5       | 1.4     | 137              | 0.2              |
| Moewusinia group B           | 1       | 0.3     | 1                | 0.0              |
| Chlorella group              | 1       | 0.3     | 5                | 0.0              |
| Raphidonema group            | 74      | 21.3    | 15515            | 24.2             |
| Trebouxia group A            | 3       | 0.9     | 5                | 0.0              |
| Trebouxia group B            | 2       | 0.6     | 16               | 0.0              |
| Chloroidium group A          | 1       | 0.3     | 2                | 0.0              |
| Chloroidium group B          | 5       | 1.4     | 14               | 0.0              |
| Chloroidium group C          | 1       | 0.3     | 1                | 0.0              |
| Pseudostichococcus group     | 1       | 0.3     | 1                | 0.0              |
| Asterochloris group          | 2       | 0.6     | 9                | 0.0              |
| Chloromonadinia-snow group A | 12      | 3.4     | 418              | 0.7              |
| Chloromonadinia-snow group B | 8       | 2.3     | 387              | 0.6              |
| Chloromonadinia-snow group C | 3       | 0.9     | 247              | 0.4              |
| Chloromonadinia-snow group D | 6       | 1.7     | 24               | 0.0              |
| Chloromonadinia-snow group E | 5       | 1.4     | 39               | 0.1              |
| Chloromonadinia-snow group F | 4       | 1.1     | 140              | 0.2              |
| Chloromonadinia-snow group G | 14      | 4.0     | 4389             | 6.9              |

Supplementary Table 2: Numbers and ratio for each group based on Illumina unique sequences and 98% OTU analysis, respectively

| 8                            | Antarctica | Svalbard  | Greenland | Alaska  | Total     |
|------------------------------|------------|-----------|-----------|---------|-----------|
| 'Chlamydomonas'-snow group A | 136,038    | 36,754    | 5,291     | 4,332   | 182,415   |
| 'Chlamydomonas'-snow group B | 156,173    | 1,012,397 | 221,624   | 687,329 | 2,077,523 |
| unnamed group                | 16         | 0         | 0         | 0       | 16        |
| Stephanosphaerinia group     | 386        | 0         | 0         | 0       | 386       |
| Moewusinia group A           | 1,598      | 47        | 0         | 0       | 1,645     |
| Moewusinia group B           | 3          | 0         | 0         | 0       | 3         |
| Chlorella group              | 22         | 0         | 0         | 0       | 22        |
| Raphidonema group            | 141,750    | 160,090   | 39,181    | 112,163 | 453,184   |
| Trebouxia group A            | 52         | 0         | 0         | 0       | 52        |
| Trebouxia group B            | 187        | 6         | 8         | 26      | 227       |
| Chloroidium group A          | 11         | 0         | 0         | 0       | 11        |
| Chloroidium group B          | 40         | 0         | 0         | 0       | 40        |
| Chloroidium group C          | 0          | 0         | 0         | 8       | 8         |
| Pseudostichococcus group     | 4          | 0         | 0         | 0       | 4         |
| Asterochloris group          | 0          | 136       | 0         | 4       | 140       |
| Chloromonadinia-snow group A | 428        | 582       | 6         | 5,699   | 6,715     |
| Chloromonadinia-snow group B | 778        | 0         | 908       | 2,061   | 3,747     |
| Chloromonadinia-snow group C | 2,535      | 0         | 0         | 0       | 2,535     |
| Chloromonadinia-snow group D | 0          | 19        | 0         | 294     | 313       |

0

0

0

440,021

*Chloromonadinia*-snow group E *Chloromonadinia*-snow group F

Chloromonadinia-snow group G

Total

0

0

6

1,210,037

0

0

0

267,018

396

1,482

167,739

981,533

396

1,482

167,745

2,898,609

Supplementary Table 3: Number of Illumina raw reads for each taxonomy group in the various regions

|                              | Proportion of       |            | Region   |           |        |
|------------------------------|---------------------|------------|----------|-----------|--------|
|                              | each group in total | Antarctica | Svalbard | Greenland | Alaska |
| 'Chlamydomonas'-snow group A | 6.3                 | 30.9       | 3.0      | 2.0       | 0.4    |
| 'Chlamydomonas'-snow group B | 71.7                | 35.5       | 83.7     | 83.0      | 70.0   |
| unnamed group                | 0.001               | 0.004      | 0        | 0         | 0      |
| Stephanosphaerinia group     | 0.01                | 0.09       | 0        | 0         | 0      |
| Moewusinia group A           | 0.1                 | 0.4        | 0.004    | 0         | 0      |
| Moewusinia group B           | 0.0001              | 0.001      | 0        | 0         | 0      |
| Chlorella group              | 0.001               | 0.005      | 0        | 0         | 0      |
| Raphidonema group            | 15.6                | 32.2       | 13.2     | 14.7      | 11.4   |
| Trebouxia group A            | 0.002               | 0.01       | 0        | 0         | 0      |
| Trebouxia group B            | 0.008               | 0.04       | 0.0005   | 0.003     | 0.003  |
| Chloroidium group A          | 0.0004              | 0.002      | 0        | 0         | 0      |
| Chloroidium group B          | 0.001               | 0.01       | 0        | 0         | 0      |
| Chloroidium group C          | 0.0003              | 0          | 0        | 0         | 0.001  |
| Pseudostichococcus group     | 0.0001              | 0.001      | 0        | 0         | 0      |
| Asterochloris group          | 0.005               | 0          | 0.01     | 0         | 0.0004 |
| Chloromonadinia-snow group A | 0.2                 | 0.10       | 0.05     | 0.002     | 0.6    |
| Chloromonadinia-snow group B | 0.1                 | 0.2        | 0        | 0.3       | 0.2    |
| Chloromonadinia-snow group C | 0.1                 | 0.6        | 0        | 0         | 0      |
| Chloromonadinia-snow group D | 0.01                | 0          | 0.002    | 0         | 0.03   |
| Chloromonadinia-snow group E | 0.01                | 0          | 0        | 0         | 0.04   |
| Chloromonadinia-snow group F | 0.1                 | 0          | 0        | 0         | 0.2    |
| Chloromonadinia-snow group G | 5.8                 | 0          | 0.0005   | 0         | 17.1   |
| Total                        | 100                 | 100        | 100      | 100       | 100    |

Supplementary Table 4: Proportion of Illumina read sequences for each taxonomy group in the various regions

Supplementary Table 5: PERMANOVA analysis of Illumina ITS2 sequences based on 98% OTU

|            | Antarctica   | Svalbard   | Alaska | Greenland |
|------------|--------------|------------|--------|-----------|
| Antarctica |              |            |        |           |
| Svalbard   | $0.0001^{*}$ |            |        |           |
| Alaska     | $0.0016^{*}$ | $0.0074^*$ |        |           |
| Greenland  | 0.0682       | 0.2381     | 0.3333 |           |

\* statistically significant after Bonferroni's correction at P < 0.01.

Supplementary Table 6: PERMANOVA analysis of Illumina ITS2 sequences based on unique sequences

|            | Antarctica   | Svalbard | Alaska | Greenland |
|------------|--------------|----------|--------|-----------|
| Antarctica |              |          |        |           |
| Svalbard   | $0.0001^{*}$ |          |        |           |
| Alaska     | $0.0006^{*}$ | 0.1425   |        |           |
| Greenland  | 0.0226       | 0.381    | 0.1333 |           |
|            |              |          |        |           |

\* statistically significant after Bonferroni's correction at P < 0.01.

Supplementary Table 7: Mantel test of Illumina ITS2 sequences of algae in red snow samples from the polar regions

|                  | Both Polars  | Within Arctic region | Within Antarctic region |
|------------------|--------------|----------------------|-------------------------|
| Unique sequences | 0.0001 *     | 0.0726               | $0.0067^*$              |
| 98% OTUs         | $0.0002^{*}$ | 0.0333               | 0.366                   |

\* statistically significant after Bonferroni's correction at P < 0.01.

| Category      | Detecting region                           |
|---------------|--------------------------------------------|
| Endemic       | Antarctica                                 |
|               | Greenlang                                  |
|               | Svalbard                                   |
|               | Alaska                                     |
| Multiple area | Antarctica Svalbard                        |
|               | Antarctica - Greenland                     |
|               | Antarctica - Alaska                        |
|               | Svalbard - Antarctica                      |
|               | Svalbard - Greenland                       |
|               | Svalbard - Alaska                          |
|               | Greenland - Antarctica                     |
|               | Greenland - Svalbard                       |
|               | Greenland - Alaska                         |
|               | Alaska - Antarctica                        |
|               | Alaska - Svalbard                          |
|               | Alaska - Greenland                         |
|               | Antarctica - Svalbard - Greenland          |
|               | Antarctica - Svalbard - Alaska             |
|               | Svalbard - Greenland - Alaska              |
| Arctic group  | Svalbard - Greenland - Alaska              |
| Cosmopolitan  | Antarctica - Svalbard - Greenland - Alaska |

## Supplementary Table 8: Classification of distribution category for this study

|                              |            | Endemic  |         |           | Multiple area | Total     |
|------------------------------|------------|----------|---------|-----------|---------------|-----------|
|                              | Antarctica | Svalbard | Alaska  | Greenland |               |           |
| Chlamydomonas-snow group A   | 136,035    | 9,388    | 4,042   | 5,200     | 27,750        | 182,415   |
| Chlamydomonas-snow group B   | 37,533     | 57,434   | 138,819 | 3,057     | 1,840,680     | 2,077,523 |
| unnamed group                | 16         | 0        | 0       | 0         | 0             | 16        |
| Stephanosphaerinia group     | 386        | 0        | 0       | 0         | 0             | 386       |
| Moewusinia group A           | 1,598      | 47       | 0       | 0         | 0             | 1,645     |
| Moewusinia group B           | 3          | 0        | 0       | 0         | 0             | 3         |
| Chlorella group              | 22         | 0        | 0       | 0         | 0             | 22        |
| Raphidonema group            | 10,6101    | 16,483   | 21,825  | 4,241     | 304,534       | 453,184   |
| Trebouxia group A            | 52         | 0        | 0       | 0         | 0             | 52        |
| Trebouxia group B            | 111        | 3        | 0       | 8         | 105           | 227       |
| Chloroidium group A          | 11         | 0        | 0       | 0         | 0             | 11        |
| Chloroidium group B          | 40         | 0        | 0       | 0         | 0             | 40        |
| Chloroidium group C          | 0          | 0        | 8       | 0         | 0             | 8         |
| Pseudostichococcus group     | 4          | 0        | 0       | 0         | 0             | 4         |
| Asterochloris group          | 0          | 21       | 0       | 0         | 119           | 140       |
| Chloromonadinia-snow group A | 428        | 147      | 2,847   | 6         | 3,287         | 6,715     |
| Chloromonadinia-snow group B | 778        | 0        | 2061    | 908       | 0             | 3,747     |
| Chloromonadinia-snow group C | 2,535      | 0        | 0       | 0         | 0             | 2,535     |
| Chloromonadinia-snow group D | 0          | 18       | 202     | 0         | 93            | 313       |
| Chloromonadinia-snow group E | 0          | 0        | 396     | 0         | 0             | 396       |
| Chloromonadinia-snow group F | 0          | 0        | 1,482   | 0         | 0             | 1482      |
| Chloromonadinia-snow group G | 0          | 0        | 65,265  | 0         | 102,480       | 167,745   |
| Total                        | 285,653    | 83,541   | 236,947 | 13,420    | 2,279,048     | 2,898,609 |

Supplementary Table 9: Numbers of endemic distribution sequences for each group of Illumina read sequences

|                              |            | Endemic  |        |           | Multiple area | Total |
|------------------------------|------------|----------|--------|-----------|---------------|-------|
|                              | Antarctica | Svalbard | Alaska | Greenland | -             |       |
| 'Chlamydomonas'-snow group A | 74.6       | 5.1      | 2.2    | 2.9       | 15.2          | 100   |
| 'Chlamydomonas'-snow group B | 1.8        | 2.8      | 6.7    | 0.1       | 88.6          | 100   |
| unnamed group                | 100        | 0        | 0      | 0         | 0             | 100   |
| Stephanosphaerinia group     | 100        | 0        | 0      | 0         | 0             | 100   |
| Moewusinia group A           | 97.1       | 2.9      | 0      | 0         | 0             | 100   |
| Moewusinia group B           | 100        | 0        | 0      | 0         | 0             | 100   |
| Chlorella group              | 100        | 0        | 0      | 0         | 0             | 100   |
| Raphidonema group            | 23.4       | 3.6      | 4.8    | 0.9       | 67.2          | 100   |
| Trebouxia group A            | 100        | 0        | 0      | 0         | 0             | 100   |
| Trebouxia group B            | 48.9       | 1.3      | 0.0    | 3.5       | 46.3          | 100   |
| Chloroidium group A          | 100        | 0        | 0      | 0         | 0             | 100   |
| Chloroidium group B          | 100        | 0        | 0      | 0         | 0             | 100   |
| Chloroidium group C          | 0          | 0        | 100    | 0         | 0             | 100   |
| Pseudostichococcus group     | 100        | 0        | 0      | 0         | 0             | 100   |
| Asterochloris group          | 0          | 15.0     | 0      | 0         | 85.0          | 100   |
| Chloromonadinia-snow group A | 6.4        | 2.2      | 42.4   | 0.1       | 49.0          | 100   |
| Chloromonadinia-snow group B | 20.8       | 0        | 55.0   | 24.2      | 0             | 100   |
| Chloromonadinia-snow group C | 100        | 0        | 0      | 0         | 0             | 100   |
| Chloromonadinia-snow group D | 0          | 5.8      | 64.5   | 0         | 29.7          | 100   |
| Chloromonadinia-snow group E | 0          | 0        | 100    | 0         | 0             | 100   |
| Chloromonadinia-snow group F | 0          | 0        | 100    | 0         | 0             | 100   |
| Chloromonadinia-snow group G | 0          | 0        | 38.9   | 0         | 61.1          | 100   |

Supplementary Table 10: Proportion of endemic distribution sequences for each group of Illumina read sequences

# Supplementary Table 11: Distribution of the whole-Arctic region group based on Illumina unique ITS2 sequences

|                              |           | Unique       | Unique       |            | Sequencing   | Sequencing   |
|------------------------------|-----------|--------------|--------------|------------|--------------|--------------|
|                              | Unique    | sequences    | sequences    | Sequencing | reads        | reads        |
|                              | sequences | in group (%) | in total (%) | reads      | in group (%) | in total (%) |
| 'Chlamydomonas'-snow group A | 5         | 0.1          | 0.01         | 21,852     | 12.0         | 0.8          |
| 'Chlamydomonas'-snow group B | 965       | 2.6          | 1.5          | 528,992    | 25.5         | 18.2         |
| Raphidonema group            | 255       | 1.6          | 0.4          | 4,842      | 1.1          | 0.2          |
| Total                        | 1,225     |              | 1.9          | 555,686    |              | 19.2         |

#### Supplementary Table 12: Cosmopolitan distribution based on Illumina unique ITS2 sequences

| -                            | Unique<br>sequences | Unique<br>sequences<br>in group (%) | Unique<br>sequences<br>in total (%) | Sequencing<br>reads | Sequencing<br>reads<br>in group (%) | Sequencing<br>reads<br>in total (%) |
|------------------------------|---------------------|-------------------------------------|-------------------------------------|---------------------|-------------------------------------|-------------------------------------|
| 'Chlamydomonas'-snow group B | 62                  | 0.17                                | 0.10                                | 842,052             | 40.5                                | 29.1                                |
| Raphidonema group            | 850                 | 5.48                                | 1.33                                | 240,260             | 53.0                                | 8.3                                 |
| Total                        | 912                 | -                                   | 1.42                                | 1,082,312           | -                                   | 37.3                                |