Capacity for instantaneous catabolism of preferred and non-preferred carbon sources in *Escherichia coli* and *Bacillus subtilis*

Marieke F. Buffing^{1,2}, Hannes Link³, Dimitris Christodoulou^{1,2}, and Uwe Sauer^{1,*}

¹ Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland

² Life Science Zurich PhD Program on Systems Biology, Zurich, Switzerland

³ Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

* Corresponding author. Tel: +41 44 633 36 72; E-mail: sauer@imsb.biol.ethz.ch

Supplementary information

Supplement – table S1

Table S1 – Growth rate and carbon source uptake rates. C = concentration, μ = growth rate, q_s = uptake rate.

Carbon source	μ h ⁻¹	Substrate	C g L ⁻¹	q₅ mmol h ⁻¹ gcdw ⁻¹	Reference
Bacillus subtilis 168 trp+					
glucose	0.59 ± 0.02	glucose	3	7.63 ± 0.11	19
pyruvate	0.17 ± 0.01	pyruvate	5	8.26 ± 0.23	19
malate	0.57 ± 0.05	malate	5	26.51 ± 2.01	19
glucose and malate	0.75 ± 0.01	glucose	2	5.95 ± 1.10	19
		malate	4	14.60 ± 1.56	19
Escherichia coli BW 25113					
glucose	0.65 ± 0.01	glucose	3	9.65 ± 0.04	6
pyruvate	0.39 ± 0.01	pyruvate	5	26.71 ± 0.79	6

Supplement – model description

Irreversible reactions

Reaction 1 – glucose specific phosphotransferase system (PTSg)

 $v_{PTSg} = v_{max,PTSg} \frac{c_{glucose}}{c_{glucose} + K_{PTSg,glucose}}$

Reaction 2 – 6-phosphofructokinase (Pfk) $v_{Pfk} = v_{max,Pfk} \frac{c_{F6P}}{c_{F6P} + K_{Pfk,F6P}}$

Reaction 3 – fructose-1,6-biphosphatase (Fbp) $v_{Fbp} = v_{max,Fbp} \frac{c_{FBP}}{c_{FBP} + K_{Fbp,FBP}}$

Reaction 4 – glucose 6-phosphate dehydrogenase (G6PDH)

 $v_{G6PDH} = v_{max,G6PDH} \frac{c_{G6P}}{c_{G6P} + K_{G6PDH,G6P}}$

Reaction 5 – phosphoenolpyruvate carboxykinase (Pck) $v_{Pck} = v_{max,Pck} \frac{c_{OAA}}{c_{OAA} + K_{Pck,OAA}}$

Reaction 6 – pyruvate kinase (Pyk) C_{PEP}

 $v_{Pyk} = v_{max,Pyk} \frac{c_{PEP}}{c_{PEP} + K_{Pyk,PEP}}$

Reaction 7 – pyruvate carboxylase (Pyc) $v_{Pyc} = v_{max,Pyc} \frac{c_{PYR}}{c_{PYR} + K_{Pyc,PYR}}$

Reaction 8 – pyruvate uptake

 $v_{PYRup} = v_{max,PYRup}$ if $c_{PYR,extern} \neq 0$

 $v_{PYRup} = 0$ if $c_{PYR,extern} \neq 0$

Reaction 9 – pyruvate dehydrogenase (Pdh) $v_{Pdh} = v_{max,Pdh} \frac{c_{PYR}}{c_{PYR} + K_{Pdh,PYR}}$

Reaction 10 – glyceraldehyde-3-phosphate dehydrogenase A (GapA) $v_{GapA} = v_{max,GapA} \frac{c_{DHAP}}{c_{DHAP} + K_{GapA,DHAP}}$

Reaction 11 – glyceraldehyde-3-phosphate dehydrogenase B (GapB)

 $v_{GapB} = v_{max,GapB} \frac{c_{xPG}}{c_{xPG} + K_{GapB,xPG}}$

Reversible reactions

Reaction 12/13 – glucose 6-phosphate isomerase (Pgi) $v_{Pgi}^+ = k_{Pgi}^+ \times c_{G6P}$

 $v_{Pgi}^- = k_{Pgi}^- \times c_{F6P}$

Reaction 14/15 – fructose-1,6-biphosphate aldolase (Ald) GAP and DHAP are assumed to be in equilibrium by triose phosphate isomerase

$$v_{Ald}^+ = k_{Ald}^+ \times c_{FBP}$$

 $v_{Ald} = k_{Ald} \times c_{DHAP} \times c_{DHAP}$

Reaction 16/17 – enolase (Eno) $v_{Eno}^+ = k_{Eno}^+ \times c_{xPG}$

 $v_{Eno}^- = k_{Eno}^- \times c_{PEP}$

Allosteric interactions

$$v_{max,i}^* = v_{max,i} \times \prod_j (\frac{c_j}{c_{j,0}})^{a_{i,j}}$$

In which v = kinetic rate, c = concentration, a = allosteric interaction, i = enzyme catalyzing reaction, j = effector metabolite. In the base model all values for a are set to zero, making the power law equal to one.

Parameterization

Futile cycling between Pfk and Fbpase $\frac{v_{Fpb} - v_{Pfk}}{v_{Fbp}} = 0.5 - 1$

 $\frac{\text{Futile cycling between GapA and GapB}}{v_{GapB}-v_{GapA}}=0-1$

Pyk flux $F_{Pyk} = (0 - 0.2) \times F_{PYRup}$

Pdh flux $F_{Pdh} = (0.7 - 0.75) \times F_{PYRup}$

Pyc flux $F_{Pyc} = F_{PYRup} + F_{Pyk} - F_{Pdh}$

Model ranking

Sum of squared errors

$$SSE = \sum_{m}^{6} \sum_{n}^{6} (\tilde{c}_{m,n}^{*} - \tilde{c}_{m,n})^{2}$$

With m = 6 metabolite concentrations, n = 6 time points, $\tilde{c}_{m,n}^*$ = simulated relative metabolite concentrations, $\tilde{c}_{m,n}$ = measured relative metabolite concentrations.

Akaike information criterion $AIC = N \log \left(\frac{SSE}{N}\right) + 2K$

 $\Delta AIC_{pairwise\ model} = \ AIC_{base\ model} - \ AIC_{pairwise\ model}$

With N = total number of residuals, and K = number of parameters.

The final ranking of an interaction was the sum of the Δ AIC and the frequency with which the interaction improved a model compared with respect to the base model.