

Supplementary Material

Concentration and community composition of airborne bacteria staged responding to the haze events in Beijing, China

Weilin Li¹, Jinshui Yang¹, Daizhou Zhang², Baozhen Li¹, Entao Wang³, Hongli Yuan1,*

* Correspondence:

Corresponding Author: Hongli Yuan;

E-mail address: <u>hlyuan@cau.edu.cn</u>

Supplementary Figures and Tables

Supplementary Figure 1. Pollutant concentrations and meteorological data when samples were collected to enumerate airborne bacterial concentration. (A) SO_2 concentration, (B) NO_2 concentration, (C) CO concentration, (D) O_3 concentration, (E) Temperature, (F) Relative humidity, and (G) atmospheric pressure.

Supplementary Material

Supplementary Figure 2. Pollutant concentrations and meteorological data when samples were collected to analyze airborne bacterial community structure. (A) SO_2 concentration, (B) NO_2 concentration, (C) CO concentration, (D) O_3 concentration, (E) Temperature, (F) Relative humidity, and (G) atmospheric pressure.

Supplementary Figure 3. Daily temperature and concentration of PM2.5 and SO2 during October 1st 2015 to January 5th 2016. During this period, nine independent haze events (No. 1-No. 9) occurred and were divided into three stages for comparison.

Supplementary Figure 4. Rarefaction curves of all the samples

Supplementary Figure 5. Principal component analysis of the bacterial community. G, SP, Y, O, and R respectively represent haze pollution levels "Green", "Slightly Polluted", "Yellow", "Orange" and "Red". No.1-No.9 represent the nine haze events during Oct. 1st 2015 to Jan. 5th 2016.

Supplementary Figure 6. Redundancy analysis (RDA) of biological with environmental parameters at Stage I (A), Stage II (B) and Stage III (C) independently. G, SP, Y, O, and R respectively represent haze pollution levels "Green", "Slightly Polluted", "Yellow", "Orange" and "Red". No. 1-No. 9 represent the nine haze events during Oct. 1st 2015 to Jan. 5th 2016. Only significant environmental variables are shown in this figure.

Supplementary Figure 7. The concentration of non-viable airborne bacteria, $PM_{2.5}$, and PM_{10} during nine haze events from October 1st 2015 to January 5th 2016. Error bars represent SD of samples from non-haze or haze days in each haze event, respectively.

1.2 Supplementary Tables

Supplementary Table 1. Spearman's correlation coefficients between airborne bacterial concentration and pollutants, meteorological parameters.

	PM _{2.5}	PM_{10}	SO_2	NO_2	O ₃	СО	AP	Т	RH	WS
C_{ab}^{a}	0.624**	0.655^{**}	0.447^{**}	0.561**	-0.268	0.543**	-0.015	-0.297	0.421**	-0.340*

** *P* <0.01 (2-tailed), * *P* < 0.05 (2-tailed)

^a C_{ab}: concentration of airborne bacteria.

Supplementary Table 2. Spearman's correlation coefficients between airborne bacterial concentration and pollutants, meteorological parameters at each stage, respectively.

	Concentration of airborne bacteria					
	Stage I	Stage II	Stage III			
PM _{2.5}	0.697**	0.687**	0.495*			

Supplementary Table 3. Pearson's correlation coefficients between pollutants, meteorological parameters and alpha diversity indexes.

and alpha diversi	ty muches	•								
	PM _{2.5}	PM_{10}	SO_2	NO_2	O_3	СО	AP	Т	RH	WS
Shannon index	-0.281	-0.299*	0.244	-0.175	-0.390**	-0.021	0.620**	-0.763**	-0.241	0.223
observed_species	-0.376*	-0.345*	0.058	-0.252	-0.256	-0.185	0.468**	-0.565**	-0.397**	0.200
PD_whole_tree	-0.368*	-0.338*	0.071	-0.222	-0.283	-0.176	0.491**	-0.561**	-0.363*	0.148
fisher_alpha	-0.368*	-0.334*	0.040	-0.244	-0.237	-0.185	0.460**	-0.554**	-0.393**	0.202

** p <0.01 (2-tailed), * P < 0.05 (2-tailed)

Supplementary Table 4. ANOSIM tests on the bacteria communit	y between	each stage and	between	haze &
non-haze samples.				

	R value	P value
Stage I vs Stage II	0.4584	0.001
Stage I vs Stage III	0.7677	0.001
Stage II vs Stage III	0.3503	0.001
Stage I	0.2791	0.030
Stage II	0.3580	0.011
Stage III	0.1111	0.039
	Stage I vs Stage II Stage I vs Stage III Stage II vs Stage III Stage I Stage II Stage III	<i>R</i> valueStage I vs Stage II0.4584Stage I vs Stage III0.7677Stage II vs Stage III0.3503Stage I0.2791Stage II0.3580Stage III0.1111

Supplementary Table 5. Redundancy analysis (RDA) of bacterial community and environmental factors

	RDA1	RDA2	r^2	Pr(>r)
Т	-0.98792	0.15494	0.8043	0.001***
RH	-0.0596	-0.99822	0.3775	0.001***
O ₃	-0.92025	0.39133	0.2568	0.001***
SO ₂	0.85398	-0.52031	0.2245	0.002**
СО	0.29844	-0.95443	0.2232	0.005**
AP	0.52018	0.85406	0.1975	0.010**
PM_{10}	-0.56326	-0.82628	0.1516	0.022*
NO_2	-0.16413	-0.98644	0.0984	0.112
WS	0.69831	0.7158	0.0709	0.204

*** *P* <0.001, ** *P* <0.01, * *P* < 0.05