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Fig. S1 Fumarate concentration throughout tomato fruit development. Time-course of fumarate
content in tomato fruit pericarp measured by *H-NMR throughout the tomato fruit development

and every 3 h (zoom in the box) from 24 to 25 days post anthesis.
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Fig. S2 Fit of the accumulated metabolites and biomass compounds. Time-course of the 16
accumulated metabolites and biomass compounds (left panel) and the corresponding flux
calculated by derivative of the best fit (solid line), minima and maxima outfluxes considering a
95% interval of prediction from the biological variability (dotted lines) under control (blue),

water stress (red) and shading (green) conditions .
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Fig. S3 Importance of dissipating fluxes, AOX and UCP, on calculated fluxes. Time-course of

(a, b) sucrose uptake, (c, d) CO; released, and fluxes involved in tomato fruit energetic

metabolism: (e, f) the total ATP flux, (g, h) ATP dissipated in maintenance, (i, j) dissipating

fluxes through AOXs and (k, I) UCPs. Fluxes expressed on the fruit-basis (left panel) and on the

gFW-basis (right panel) with the model solved on a daily basis with the best fit for outfluxes
(black), without UCP (light blue), without AOX (dark blue), and without AOX and UCP (green).
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Fig. S4 Plant culture and fruit characterisation. Characterization of tomato cultures under control
(black), water stress (red) and shading (green) conditions with (a) electrical conductivity and (b)
hygrometry measured into slabs and (c) drainage during the culture. Characterization of fruits
with: (d) fruit FW : DW ratios; (e) fruit (closed symbols) and pericarp (open symbols) dry weight
contents and (f) carbon and nitrogen contents in (% DW) at several stages (DPA) of

development.
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Fig. S5 Fruit composition throughout development. Mass balance of tomato fruit pericarp
analyzed at nine stages of development under (a) control, (b) water shortage and (c) shading
conditions. Accumulated metabolites (sugars, organic acids and free amino acids) and biomass
components (starch, cell wall, protein, lipids and nucleic acids) are experimental values

expressed in g g 'DW.
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Fig. S6 Origin of CO, released throughout tomato fruit development. Percentage of the five
calculated fluxes — Vidh and Vkgdh for TCA, Vpdh, Vme and Vg6pdh — on the total CO, released
with the model solved on a daily basis using data obtained under (a) control, (b) water stress and

(c) shading conditions.
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Fig. S7 Galactose and galacturonate throughout the tomato fruit development. Time-course of
free galactose (closed symbols) and galacturonate (open symbols) content in tomato fruit

pericarp under control (squares), water shortage (triangles) and shading (circles) conditions.

80 -
]
~ 70 -
2 R
2 60
> ]
S L .
S 50 - m Ce @
< AA o)
°
S 40 - A Lo
I ™ ]
= e* O
s 30 - i e,
o
S A 0°
o)
10 -
o)
ﬁ O
0 7 - OO ———OTY OO : .
10 20 30 40 50 60

Days Post Anthesis



= New
Phytologist

Fig. S8 Estimated heat from metabolic activities. Time-course of the heat production rate
estimated from respiration (CO, released) with the tomato fruit model solved on a daily basis

using data obtained under control (black), water stress (red) and shading (green) conditions.

8.E-03 -+

=== control
7.E-03 -
== \vater stress

6.E-03 -

shading

5.E-03

4.E-03

3.E-03

2.E-03

1.E-03

Q: Estimated heat from respiration (W)

0.E+00 ! ! L L 1 v v = = v v V ¥ L lul]

10 15 20 25 30 35 40 45 50

Days Post Anthesis



= New
N Phytologist
Fig. S9 Fruit temperature and fruit energy variations. (a, e) Fruit age, (b, ) air and median fruit
temperatures and (c, g) median fruit energy variations under control (black), water stress (red)
and shading (green) conditions and (d, h) a scatter plot of fruit energy variation for the (a, b, c, d)
second and the (e, f, g, h) last recording periods.
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Video S1 Flux maps of water stress compared to control. Short movie with one map per second
comparing fluxes (expressed in mmol fruit™ d™) calculated solving the model on a daily basis
from 2 to 53 DPA for tomato fruit grown under control (on the left) and water stress (on the
right) conditions. Flux maps drew with OMIX with red arrows for positive fluxes and blue

arrows for negative fluxes, accorded to the convention (Table S1).
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Notes S2 Mathematical demonstration of unicity of the flux solution.

Let us recall a standard result on strictly convex functions.

Let f be a continuous strictly convex function on R™int and A; a non-empty compact (closed and
bounded) subset of R™int,

Theorem 2: The optimization problem of finding some V;;,, € R™int such that

fV) = min{f (Vine); Vine € A;} admits a unique solution V.

Proof: The function f is continuous and is strictly convex that is

fAX+A-DY) <Af X))+ @A -A1D)f(Y)forX #Y and VA € 10,1

From the Weierstrass extreme values theorem, f continuous from A; c R™int, A; compact then
the minimization problem minf (X) with X € A; admits an optimal solution with X* € A;.
The optimal solution is unique. Indeed if we assume that X # Y are two minima of fin 4;
Then we have f(X) = f(Y) =min f

But as f is strictly convex, f(%) < @ + @ = f(X) which leads to a contradiction.

Theorem 1: The problem
Minimize f(V) = $1-,(v)? (3)
Subject to the constraints:
NV =0
Vilnt,min < Vine < Vilnt,max and  Vexr = Viye
admits a unique solution.
Proof: The stoichiometry matrix N can be reordered to be partitioned into 1x2 blocks N =

(N1 N)
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where N; iS a m,:Xn;,, Matrix, N, is a m;,;Xn,,; matrix so that the steady state constraints

dXI,int

NV = 0 can be rewritten by( at ) = (N1 Ny) (QZE) =0 NiVipe = —NoVex:-

dXE,int
dt

Then problem (3) is the optimization problem of finding some V. € R™nt such that

int
f Wine) = min{f (Vine); Vine € A}
Where, for 1=1,...,50 (corresponding to the stages of fruit development),

g = (Vs € BN Vi = =NV Vimin < Vi < 1

l .
int,min = mt,max'} c [RM"int

is the feasible set and f: R™int — R is the objective function.

As A, is a compact convex subset of R"int (see lemma 1 below) and f is a strictly convex and
continuous function on R™nt | from theorem 2, this strictly convex problem admits a unique
solution V;;,; (for each I = 1...50).

Lemma 1: A; is a compact convex subset of R™int

Proof : set

Ay, ={Vipe € RMnt; Vi < Vine < Vi max)
Ay, = Vine € RMnt; NiVipe = —NyVere}

1. A, isbounded because A; c A;; which is bounded.

2. Setb = —N,Vy ;. We check numerically that rank(N; |b) = rank(N;). So according to the
Rouché-Capelli theorem, the linear system N;V;,,, = b admits solutions. The subset A, is not
empty and is closed. Then 4, is closed as intersection of two closed subsets 4;;.

3. For i €{1,2},V(X,Y) € Ay, itis easy to prove that VA € [0,1] we also have AX + (1 — )Y €

A;. A is convex as intersection of two convex subsets.

So A, is a compact convex subset.
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