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Materials and Methods

Plasma, white blood cell and tumor DNA samples

The study was approved by the Institutional Review Boards for Human Research
at each institution, and complied with Health Insurance Portability and Accountability
Act. Informed consent was obtained from all patients. Patients with cancers of the ovary,
liver, esophagus, pancreas, stomach, colorectum, lung or breast who were thought to have
Stage I to 111 disease prior to surgery were eligible for inclusion in the study. Peripheral
blood was collected after informed consent was obtained and prior to the patients
undergoing surgical resection. Patients who were later recognized to have received neo-
adjuvant therapy, patients who were found to have stage IV cancer at the time of surgical
resection, and patients in whom blood was documented to be collected while anesthesia
was administered (20), were excluded from the study. General demographics, surgical
pathology, and AJCC stage (7th edition) were documented. The ‘healthy’ cohort
consisted of peripheral blood samples obtained from 812 individuals of median age 55
(IQR interquartile range 28 to 65) with no history of cancer. The cancer and healthy
control samples were processed in an identical manner. Plasma samples from 46 of the
1,005 cancer patients and 181 of the 812 normal samples had been previously evaluated
with a different approach (20) (table S4).

DNA was purified from an average of 7.5 mL plasma (table S4) using a
QIASymphony circulating DNA kit (cat # 1091063), as specified by the manufacturer.
DNA from peripheral WBCs was also purified with the QIAsymphony DP DNA Midi
Kit (Cat # 937255) as specified by the manufacturer. Tumor tissues were formalin-fixed
and paraffin-embedded (FFPE) according to standard histopathologic procedures and also
purified with a QIAsymphony DP DNA Midi Kit (Cat # 937255).

Mutation detection and analysis

For amplification of DNA from plasma, 61 primer pairs were designed to amplify
66 to 80 bp segments containing regions of interest from 16 genes (table S1). The 61
primer pairs were divided into two non-overlapping sets each containing either 28 or 33
primer pairs. Each of these two primer sets were used to amplify DNA in six
independent 25 pl reactions as previously described (31) except that 15 cycles were used
for the initial amplification. We implemented this partitioning approach for two reasons.
First, it reduces the complexity of the template facilitating the detection of rare alleles,
and second provides duplicate signals for mutations that are detectable in multiple wells.
The choice of 6 wells was dictated by technical limitations rather than by optimal design.
Experimentally, we found that the optimal elution volume after DNA purification from
7.5 mL of plasma was 75 uL, and this volume allows the use of six wells per amplicon set
(one set contains 28 amplicons, the other contains 33 amplicons). Thus, a total of 12
wells (each containing 5 uL of template DNA) can be evaluated with our approach,
which represents one row of a standard 8 x 12 well PCR plate, easily handled robotically.
The PCR products were purified with AMPure XP beads (Beckman Coulter, PA, USA)
and 1% of the purified PCR products were then amplified in a second round of PCR as
described in (31), but using 21 cycles. PCR products from the second round of
amplification were then purified with AMPure and sequenced on an Illumina MiSeq or




HiSeq 4000 instrument. FASTQ files can be obtained from the European Genome-
phenome Archive (accession number EGAS00001002764).

The template-specific portion of the reads was matched to reference sequences using
custom scripts written in Python, SQL, and C# (Python version of analysis pipeline
available for download at https://github.com/InSilicoSolutions/SafeSeqs, In Silico
Solutions, Falls Church, VA). Reads from a common template molecule were then
grouped based on the unique identifier sequences (UIDs) that were incorporated as
molecular barcodes (24). Artefactual mutations introduced during the sample preparation
or sequencing steps were reduced by requiring a mutation to be present in > 90% of reads
in each UID family. Redundant reads arising from optical duplication were eliminated by
requiring reads with the same UID and sample index to be at least 5,000 pixels apart
when located on the same tile. Mutations that met one of the two following criteria were
considered (i) present in the COSMIC database (23), or (ii) predicted to be inactivating in
tumor suppressor genes (nonsense mutations, out-of-frame insertions or deletions,
canonical splice site mutations). Synonymous mutations, except those at exon ends (32),
and intronic mutations, except for those at splice sites, were excluded. The mutant allele
frequency within a positive well was defined as the proportion of UIDs in the positive
well that are mutant. Thus, the MAFs reflect the mutant fraction within each well and
represents an independent sampling of the mutant allele frequency in the sample of
interest. The MAF of a mutation in a sample (rather than the well) was defined as the
total number of supermutants present in all six wells divided by the total number of UIDs
in all six wells.

Evaluation of plasma proteins

The Bioplex 200 platform (Biorad, Hercules CA) was used to determine the
concentration of multiple target proteins in the plasma samples. Luminex bead based
immunoassays (Millipore, Bilerica NY) were performed following the manufacturers
protocols and concentrations were determined using 5 parameter log curve fits (using
Bioplex Manager 6.0) with vendor provided standards and quality controls. The
HCCBP1MAG-58K panel was used to detect FGF2, Osteopontin, sFas, IL-8/CXCLS,
Prolactin, HE4, HGF, AFP, CA125, IL6, CA15-3, TGFa, CYFRA21-1, CEA, CA19-9
and Leptin. The HANG2MAG-12K panel was used to detect PAR, SPECAM-1, TSP-2,
SEGFR, AXL and sHER2/sEGFR2/sErbB2. The HCMBMAG-22K panel was used to
detect DKK1, GDF15, Osteoprotegerin (OPG) and Neuron-specific enolase (NSE). The
HCCBP4MAG-58K panels was used to detect Kallikrein-6, CD44, Midkine and
Mesothelin. The HAGP1MAG-12K panel was used to detect Follistatin, G-CSF,
Angiopoietin-2 and Endoglin. The HCCBP3MAG-58K panel was used to detect SHBG,
Galectin and Myeloperoxidase. The HTMP1MAG-54K panel was used to detect TIMP-1
and TIMP-2. LRG-1 and Vitronectin were not included in this study since they could not
be reproducibly evaluated with a single immunoassay platform.

CancerSEEK algorithm for sample classification and tissue localization
The classification of a sample's ctDNA status was obtained from a statistical test
comparing the normalized mutation frequencies of the sample of interest to the
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distributions of the normalized mutation frequencies of, respectively, normal and cancer
samples in the training set. A step-by-step description of the algorithm is as follows:

1) MAF normalization. All mutations that did not have >1 supermutant in at least
one well were excluded from the analysis. The mutant allele frequency (MAF), defined
as the ratio between the total number of supermutants in each well from that sample and
the total number of UIDs in the same well from that sample, was first normalized based
on the observed MAFs for each mutation in a set of normal controls comprising the
normal plasmas in the training set plus a set of 256 WBCs from unrelated healthy
individuals. All MAFs with <100 UIDs were set to zero. This normalization was
performed by first calculating the average MAF (ave_i) for each mutation i=1, ... n,
found among the normal controls. Using the 25" percentile of the distribution generated
by these averages as the reference value (ave_ref), each MAF was normalized
multiplying it by the ratio ave_ref / ave_i. For example, if the observed average MAF of
a mutation in a set of controls was 10 times higher than ave_ref, then each MAF for that
mutation was multiplied by 1/10. If a mutation in a test sample was not observed in any
normal control, it was not normalized. Standard normalization, i.e. subtracting the mean
and dividing by the standard deviation, did not perform as well in cross-validation.

2) Reference distributions and p-values. Following this mutation-specific
normalization, the UID range was split in 10 intervals (<1,000, 1,000 - 2,000, ..., 8,000 -
9,000, > 9,000). Depending on the number of UIDs, the MAF of each mutation in each
well was compared to two reference distributions of MAFs built from samples in the
corresponding UID range: 1) a distribution built from all the normal control plasmas in
the training set plus a set of 256 WBCs from unrelated, healthy individuals; and 2) a
distribution built from the plasma samples from cancer patients in the training set. The
cancer training set included only those in which the same mutation was present in the
plasma and in the corresponding primary tumor, with an MAF > 5% in the tumor.
Corresponding p-values, pN and p€, were thus obtained. The reference distributions for
both the normal and cancer samples were built independently, from the training sets, in
each round and each iteration of 10-fold cross-validation, i.e., 90% of the samples in each
iteration were used for training and 10% of the samples were used for testing.

3) Log ratios and omega scores. For each mutation, the log ratio of these two p-
values, p¢/ pN was then calculated, and the minimum and maximum of these log ratios
across the six wells were eliminated so that the results would be less sensitive to outliers.
We considered the log ratio of the p-values rather than the standard log-likelihood ratio
because the relatively low number of data points available did not allow a robust
estimation of the densities of the MAF distributions (particularly for p©). An “omega”
score was then determined according to the following formula:
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where wi is the number of UIDs in well i divided by the total number of UIDs for
that mutation in the four wells that were included in the analysis (the two outlying wells



were excluded, as noted above). We weighted the log ratio of p-values so that those
wells containing more template molecules would have a greater impact on the final
statistic (the omega score). The rationale for this weighting was that the larger the
number of template molecules in a well, the more confidence in the result.

To further illustrate how the omega score is obtained, a specific example of its
calculation is provided here. Consider the KRAS p.G12S, ¢.34G>A mutation found in
sample INDI 256 PLS 1. The number of supermutants and UIDs in each of the six wells
were (161, 3755), (78, 2198), (99, 2966), (84, 2013), (177, 3694), (117,3427),
respectively. These pairs yield the six MAFs (0.043, 0.035, 0.033, 0.042, 0.048, 0.034,
or (0.0057, 0.0047, 0.0044, 0.0056, 0.0064, 0.0045) after normalization. These
normalized MAFs correspond to the six p-values (1.06E-06, 5.70E-06, 1.02E-05, 1.03E-
06, 3.09E-07, 8.83E-06) when compared to the reference MAF distribution among
controls in the training set, and to the six p-values (0.100, 0.124, 0.128, 0.114, 0.094,
0.112) when compared to the reference MAF distribution among cancers in the training
set. The ratio of those two vectors yields the vector p©/ pN = (94243, 21716, 12510,
110752, 305090, 12680). By eliminating the minimum and maximum values of those
ratios, and applying the above formula for omega, we obtain the omega score for that
mutation:

3755 2198 2013 3427

= 11393 In(94243) + 11393ln(21716) + 11393 In(110752) + 11393
= 10.60.

Q
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When a mutation identified in a plasma sample had Q > 1, and was not identified in the
primary tumor of the patient, we evaluated DNA from white blood cells (WBCs) of the
same patient whenever WBCs were available (23% of the cancer patients). WBC DNA
was tested with the same 61-amplicon panel to ensure that the plasma mutation was not a
result of Clonal Hematopoiesis of Indeterminate Potential (33). WBCs from the normal
individuals were evaluated identically whenever a mutation with Q > 1 was found in the
plasma. Any mutation that was identified in the WBCs as well as in the plasma was
excluded from the analysis. The requirement for exclusion was that the ratio between the
max MAF in the plasma and the max MAF in the WBC was less than 100. The mutation
with the greatest Q score in each patient or normal control was then deemed the "top
mutation” and is listed in table S5.

4) Protein’s normalization and transformation. To account for the variations in the
lower and upper limits of detection across different experiments, we set all values smaller
than m, defined as the maximum among all lower limits of detection for a given protein
among all experiments, equal to m. By symmetry, we set all values larger than M,
defined as the minimum among all upper limits of detection for that protein across all
experiments, equal to M. To be conservative, a further transformation was applied to the
proteins levels. Specifically, if a protein’s concentration in the sample of interest was
lower than the 95™ percentile of the concentration found for that same protein among the
normal samples in the training set, then the protein’s concentration was set equal to zero;
otherwise its original concentration value was used. For the Q score, the same threshold



transformation was used but with a constant threshold equal to 0, because Q > 0 indicates
an MAF that is more likely to originate from a cancer than from normal tissue.

5) Logistic Regression. The omega score was used as a feature in logistic regression
(LR). The other 8 features used in LR were the concentrations of the following 8
proteins, selected from the original 39 proteins via a straightforward optimization: CA-
125, CA19-9, CEA, HGF, MPO, OPN, PRL, TIMP-1. The optimization first eliminated
any protein that, according to a Mann-Whitney-Wilcoxon test, had higher median values
in normal than in cancer samples, eliminating 13 proteins and leaving 26 proteins to be
evaluated. This was followed by a forward selection based on the importance of each
feature, as evaluated by the decrease in accuracy of the same logistic regression when
that protein alone was dropped from the remaining 26 protein features. The R glmnet
package (version 2.10-13) was then used to perform the Logistic Regression, with the
lambda parameter set to zero (34). Ten rounds of 10-fold cross-validations were
performed. The classification calls obtained in an average round of 10-fold cross-
validation (CV) are listed for each of the 812 normal individuals and the 1,005 cancer
patients in table S4.

5) Tissue localization. For the prediction of the cancer type, we used the same 9
features (mutation omega score and levels of eight proteins) plus patient gender and the
other 31 proteins evaluated in this study (table S3). Cancer type prediction was
performed only on the cancer samples that were correctly classified as cancer by LR.
Random Forest, as implemented in the randomForest package (version 4.6-12) (35) was
used for this prediction. Ten rounds of 10-fold CV were performed and, for consistency,
in each round and in each fold the same partition used by LR was used by Random
Forest. The classification calls obtained in an average round of 10-fold CV (the same
round for which cancer status is reported in table S5), are listed in table S8.

For determining the concordance between mutations identified in the plasma with
those identified in primary tumors (table S7), we only considered the 153 cases in which
a mutation could be identified with high confidence in the plasma (Q score > 3, table S5)
and in which the primary tumor contained any mutation that was present at a mutant
allele fraction of > 5% (table S2). This approach allowed us to avoid scoring tumors that
had low neoplastic contents (36).

Sample identification

To confirm that plasma, WBC, and primary tumor DNA samples originated from
the same patient, we utilized primers that could be used to amplify ~38,000 unique long
interspersed nucleotide elements (LINES) from throughout the genome (37). These
~38,000 LINEs contain 26,220 common polymorphisms which can establish or refute
sample identity among plasma, white blood cell and tumor samples. We identified the
genotype at each polymorphic location and calculated the percent concordance between
the samples of interest. Concordance was defined as the number of matched polymorphic
sites that were identical in both samples divided by the total number of genotypes that
had adequate coverage in both samples. Two samples were considered a match if
concordance was > 0.99 and at least 5,000 amplicons had adequate coverage.




Statistical analysis

Continuous variables were reported as means and standard deviations or medians
and range, while categorical variables were reported as whole numbers and
percentages. Confidence intervals (CI) for sensitivities were calculated using a binomial
distribution. Principle component analysis was performed using the R stats package
(version 3.4.0). One-sided p-values for the obtained accuracy were calculated assuming a
binomial with success probability equal to the no-information rate (NIR), taken to be the
largest class percentage in the data, using the R stats package (version 3.4.0). The one-
sided probability was chosen because the goal was not to test whether the obtained
accuracy was significantly higher or lower than the NIR. Rather, we wanted to report the
probability that an accuracy as high as the one obtained, or even higher, could be
obtained when assuming a binomial with a success probability equal to the NIR.

Tables S1 to S11:
Table S1 (Microsoft Excel Format): Primer sequences for multiplex PCR assays.
Table S2 (Microsoft Excel Format): Mutations identified in primary tumors.

Table S3 (Microsoft Excel Format): Protein biomarkers analyzed and included in
CancerSEEK test.

Table S4 (Microsoft Excel Format): Histopathological and clinical characteristics of the
cancer patients and healthy controls.

Table S5 (Microsoft Excel Format): Mutations identified in plasma samples from cancer
patients and healthy controls.

Table S6 (Microsoft Excel Format): Concentrations of assayed protein biomarker in
plasma samples from cancer patients and healthy controls.

Table S7 (Microsoft Excel Format): Concordance between mutations identified in the
plasma with those identified in primary tumors.

Table S8 (Microsoft Excel Format): Cancer type localization results for the 617 cancer
patients identified by CancerSEEK.

Table S9 (Microsoft Excel format): Logistic regression model coefficients and
importance scores.



Table S10 (Microsoft Excel format): Confusion matrix of top predictions from cancer
type localization results.

Table S11 (Microsoft Excel format): Cancer patients evaluated in this study by tumor
type and stage.
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Fig. S1. Distribution of the number of detectable mutations within the 805 primary
tumors evaluated.
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Fig. S2. Waterfall plots of the ctDNA and eight protein features used in CancerSEEK
illustrate the separation between healthy controls and cancer patients. Values are sorted
from high (left) to low (right). Each column represents an individual patient sample (red,

cancer patient; blue, healthy control).
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Fig. S3. Principal component analysis of the ctDNA and eight protein features used in
CancerSEEK. Each dot represents an individual patient sample (red, cancer patient; blue,
healthy control).
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Fig. S4. Effect of individual CancerSEEK features on sensitivity. (A) Sensitivity of
CancerSEEK by tumor type as in Fig. 2C. (B-J) Each panel displays the sensitivity
achieved when a particular CancerSEEK feature is excluded from the logistic regression.
The difference in sensitivity relative to that achieved by CancerSEEK reflects the relative
contribution of each biomarker to the performance of the CancerSEEK test.
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