
www.sciencemag.org/cgi/content/full/science.aar3247/DC1 

Supplementary Material for 
Detection and localization of surgically resectable cancers with a multi-

analyte blood test 

Joshua D. Cohen, Lu Li, Yuxuan Wang, Christopher Thoburn, Bahman Afsari, Ludmila 
Danilova, Christopher Douville, Ammar A. Javed, Fay Wong, Austin Mattox, Ralph. H. 

Hruban, Christopher L. Wolfgang, Michael G. Goggins, Marco Dal Molin, Tian-Li 
Wang, Richard Roden, Alison P. Klein, Janine Ptak, Lisa Dobbyn, Joy Schaefer, Natalie 

Silliman, Maria Popoli, Joshua T. Vogelstein, James D. Browne, Robert E. Schoen, 
Randall E. Brand, Jeanne Tie, Peter Gibbs, Hui-Li Wong, Aaron S. Mansfield, Jin Jen, 
Samir M. Hanash, Massimo Falconi, Peter J. Allen, Shibin Zhou, Chetan Bettegowda, 
Luis A. Diaz Jr., Cristian Tomasetti,* Kenneth W. Kinzler,* Bert Vogelstein,* Anne 

Marie Lennon,* Nickolas Papadopoulos* 

*Corresponding author. Email: ctomasetti@jhu.edu (C.T.); amlennon@jhmi.edu (A.M.L.);
kinzlke@jhmi.edu (K.W.K); bertvog@gmail.com (B.V.); npapado1@jhmi.edu 

(N.P.) Published 18 January 2018 as Science First Release 

DOI: 10.1126/science.aar3247 

This PDF file includes: 

Material and Methods 
Figs. S1 to S4 
References 

Other Supplementary Material for this manuscript includes the following: 
(available at www.sciencemag.org/content/science.aar3247/DC1)  

Tables S1 to S11 as a separate Excel file 



 

 

1 

 

Materials and Methods 

Plasma, white blood cell and tumor DNA samples 

The study was approved by the Institutional Review Boards for Human Research 

at each institution, and complied with Health Insurance Portability and Accountability 

Act. Informed consent was obtained from all patients.  Patients with cancers of the ovary, 

liver, esophagus, pancreas, stomach, colorectum, lung or breast who were thought to have 

Stage I to III disease prior to surgery were eligible for inclusion in the study.  Peripheral 

blood was collected after informed consent was obtained and prior to the patients 

undergoing surgical resection.  Patients who were later recognized to have received neo-

adjuvant therapy, patients who were found to have stage IV cancer at the time of surgical 

resection, and patients in whom blood was documented to be collected while anesthesia 

was administered (20), were excluded from the study.  General demographics, surgical 

pathology, and AJCC stage (7th edition) were documented.  The ‘healthy’ cohort 

consisted of peripheral blood samples obtained from 812 individuals of median age 55 

(IQR interquartile range 28 to 65) with no history of cancer.  The cancer and healthy 

control samples were processed in an identical manner.  Plasma samples from 46 of the 

1,005 cancer patients and 181 of the 812 normal samples had been previously evaluated 

with a different approach (20) (table S4).    

 

DNA was purified from an average of 7.5 mL plasma (table S4) using a 

QIASymphony circulating DNA kit (cat # 1091063), as specified by the manufacturer.  

DNA from peripheral WBCs was also purified with the QIAsymphony DP DNA Midi 

Kit (Cat # 937255) as specified by the manufacturer.  Tumor tissues were formalin-fixed 

and paraffin-embedded (FFPE) according to standard histopathologic procedures and also 

purified with a QIAsymphony DP DNA Midi Kit (Cat # 937255). 

 

Mutation detection and analysis 

 For amplification of DNA from plasma, 61 primer pairs were designed to amplify 

66 to 80 bp segments containing regions of interest from 16 genes (table S1).  The 61 

primer pairs were divided into two non-overlapping sets each containing either 28 or 33 

primer pairs.  Each of these two primer sets were used to amplify DNA in six 

independent 25 μl reactions as previously described (31) except that 15 cycles were used 

for the initial amplification.  We implemented this partitioning approach for two reasons.  

First, it reduces the complexity of the template facilitating the detection of rare alleles, 

and second provides duplicate signals for mutations that are detectable in multiple wells.    

The choice of 6 wells was dictated by technical limitations rather than by optimal design.  

Experimentally, we found that the optimal elution volume after DNA purification from 

7.5 mL of plasma was 75 uL, and this volume allows the use of six wells per amplicon set 

(one set contains 28 amplicons, the other contains 33 amplicons).  Thus, a total of 12 

wells (each containing 5 uL of template DNA) can be evaluated with our approach, 

which represents one row of a standard 8 x 12 well PCR plate, easily handled robotically.  

The PCR products were purified with AMPure XP beads (Beckman Coulter, PA, USA) 

and 1% of the purified PCR products were then amplified in a second round of PCR as 

described in (31), but using 21 cycles.  PCR products from the second round of 

amplification were then purified with AMPure and sequenced on an Illumina MiSeq or 
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HiSeq 4000 instrument.  FASTQ files can be obtained from the European Genome-

phenome Archive (accession number EGAS00001002764). 

 

The template-specific portion of the reads was matched to reference sequences using 

custom scripts written in Python, SQL, and C# (Python version of analysis pipeline 

available for download at https://github.com/InSilicoSolutions/SafeSeqS, In Silico 

Solutions, Falls Church, VA).  Reads from a common template molecule were then 

grouped based on the unique identifier sequences (UIDs) that were incorporated as 

molecular barcodes (24).  Artefactual mutations introduced during the sample preparation 

or sequencing steps were reduced by requiring a mutation to be present in > 90% of reads 

in each UID family.  Redundant reads arising from optical duplication were eliminated by 

requiring reads with the same UID and sample index to be at least 5,000 pixels apart 

when located on the same tile.  Mutations that met one of the two following criteria were 

considered (i) present in the COSMIC database (23), or (ii) predicted to be inactivating in 

tumor suppressor genes (nonsense mutations, out-of-frame insertions or deletions, 

canonical splice site mutations).  Synonymous mutations, except those at exon ends (32), 

and intronic mutations, except for those at splice sites, were excluded.  The mutant allele 

frequency within a positive well was defined as the proportion of UIDs in the positive 

well that are mutant.  Thus, the MAFs reflect the mutant fraction within each well and 

represents an independent sampling of the mutant allele frequency in the sample of 

interest.  The MAF of a mutation in a sample (rather than the well) was defined as the 

total number of supermutants present in all six wells divided by the total number of UIDs 

in all six wells. 

 

Evaluation of plasma proteins 

 The Bioplex 200 platform (Biorad, Hercules CA) was used to determine the 

concentration of multiple target proteins in the plasma samples.  Luminex bead based 

immunoassays (Millipore, Bilerica NY) were performed following the manufacturers 

protocols and concentrations were determined using 5 parameter log curve fits (using 

Bioplex Manager 6.0) with vendor provided standards and quality controls.  The 

HCCBP1MAG-58K panel was used to detect FGF2, Osteopontin, sFas, IL-8/CXCL8, 

Prolactin, HE4, HGF, AFP, CA125, IL6, CA15-3, TGFa, CYFRA21-1, CEA, CA19-9 

and Leptin.  The HANG2MAG-12K panel was used to detect PAR, sPECAM-1, TSP-2, 

sEGFR, AXL and sHER2/sEGFR2/sErbB2.  The HCMBMAG-22K panel was used to 

detect DKK1, GDF15, Osteoprotegerin (OPG) and Neuron-specific enolase (NSE).  The 

HCCBP4MAG-58K panels was used to detect Kallikrein-6, CD44, Midkine and 

Mesothelin.  The HAGP1MAG-12K panel was used to detect Follistatin, G-CSF, 

Angiopoietin-2 and Endoglin.  The HCCBP3MAG-58K panel was used to detect SHBG, 

Galectin and Myeloperoxidase.  The HTMP1MAG-54K panel was used to detect TIMP-1 

and TIMP-2.  LRG-1 and Vitronectin were not included in this study since they could not 

be reproducibly evaluated with a single immunoassay platform. 

 

CancerSEEK algorithm for sample classification and tissue localization 

 The classification of a sample's ctDNA status was obtained from a statistical test 

comparing the normalized mutation frequencies of the sample of interest to the 

https://github.com/InSilicoSolutions/SafeSeqS
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distributions of the normalized mutation frequencies of, respectively, normal and cancer 

samples in the training set.  A step-by-step description of the algorithm is as follows:    

 

1) MAF normalization.  All mutations that did not have >1 supermutant in at least 

one well were excluded from the analysis.  The mutant allele frequency (MAF), defined 

as the ratio between the total number of supermutants in each well from that sample and 

the total number of UIDs in the same well from that sample, was first normalized based 

on the observed MAFs for each mutation in a set of normal controls comprising the 

normal plasmas in the training set plus a set of 256 WBCs from unrelated healthy 

individuals.  All MAFs with <100 UIDs were set to zero.  This normalization was 

performed by first calculating the average MAF (ave_i) for each mutation i=1, … n, 

found among the normal controls.  Using the 25th percentile of the distribution generated 

by these averages as the reference value (ave_ref), each MAF was normalized 

multiplying it by the ratio ave_ref / ave_i.  For example, if the observed average MAF of 

a mutation in a set of controls was 10 times higher than ave_ref, then each MAF for that 

mutation was multiplied by 1/10.  If a mutation in a test sample was not observed in any 

normal control, it was not normalized.  Standard normalization, i.e. subtracting the mean 

and dividing by the standard deviation, did not perform as well in cross-validation. 

 

2) Reference distributions and p-values.  Following this mutation-specific 

normalization, the UID range was split in 10 intervals (<1,000, 1,000 - 2,000, ... , 8,000 - 

9,000, > 9,000).  Depending on the number of UIDs, the MAF of each mutation in each 

well was compared to two reference distributions of MAFs built from samples in the 

corresponding UID range: 1) a distribution built from all the normal control plasmas in 

the training set plus a set of 256 WBCs from unrelated, healthy individuals; and 2) a 

distribution built from the plasma samples from cancer patients in the training set.  The 

cancer training set included only those in which the same mutation was present in the 

plasma and in the corresponding primary tumor, with an MAF > 5% in the tumor.  

Corresponding p-values, pN and pC, were thus obtained.  The reference distributions for 

both the normal and cancer samples were built independently, from the training sets, in 

each round and each iteration of 10-fold cross-validation, i.e., 90% of the samples in each 

iteration were used for training and 10% of the samples were used for testing. 

  

3) Log ratios and omega scores.  For each mutation, the log ratio of these two p-

values, pC / pN was then calculated, and the minimum and maximum of these log ratios 

across the six wells were eliminated so that the results would be less sensitive to outliers.  

We considered the log ratio of the p-values rather than the standard log-likelihood ratio 

because the relatively low number of data points available did not allow a robust 

estimation of the densities of the MAF distributions (particularly for pC).  An “omega” 

score was then determined according to the following formula: 

 

Ω =  ∑ 𝑤𝑖 ∗  𝑙𝑛
𝑝𝑖

𝐶

𝑝𝑖
𝑁

4

𝑖=1

  , 

 

where wi is the number of UIDs in well i divided by the total number of UIDs for 

that mutation in the four wells that were included in the analysis (the two outlying wells 
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were excluded, as noted above).  We weighted the log ratio of p-values so that those 

wells containing more template molecules would have a greater impact on the final 

statistic (the omega score).  The rationale for this weighting was that the larger the 

number of template molecules in a well, the more confidence in the result.   

 

To further illustrate how the omega score is obtained, a specific example of its 

calculation is provided here.  Consider the KRAS p.G12S, c.34G>A mutation found in 

sample INDI 256 PLS 1.  The number of supermutants and UIDs in each of the six wells 

were (161, 3755), (78, 2198), (99, 2966), (84, 2013), (177, 3694), (117,3427), 

respectively.  These pairs yield the six MAFs (0.043, 0.035, 0.033, 0.042, 0.048, 0.034, 

or (0.0057, 0.0047, 0.0044, 0.0056, 0.0064, 0.0045) after normalization.  These 

normalized MAFs correspond to the six p-values (1.06E-06, 5.70E-06, 1.02E-05, 1.03E-

06, 3.09E-07, 8.83E-06) when compared to the reference MAF distribution among 

controls in the training set, and to the six p-values (0.100, 0.124, 0.128, 0.114, 0.094, 

0.112) when compared to the reference MAF distribution among cancers in the training 

set.  The ratio of those two vectors yields the vector pC / pN = (94243, 21716, 12510, 

110752, 305090, 12680).  By eliminating the minimum and maximum values of those 

ratios, and applying the above formula for omega, we obtain the omega score for that 

mutation: 

 

Ω =
3755

11393
𝑙𝑛(94243) +

2198

11393
𝑙𝑛(21716) +

2013

11393
𝑙𝑛(110752) +

3427

11393
𝑙𝑛(12680)

= 10.60. 
 

When a mutation identified in a plasma sample had Ω > 1, and was not identified in the 

primary tumor of the patient, we evaluated DNA from white blood cells (WBCs) of the 

same patient whenever WBCs were available (23% of the cancer patients).  WBC DNA 

was tested with the same 61-amplicon panel to ensure that the plasma mutation was not a 

result of Clonal Hematopoiesis of Indeterminate Potential (33).  WBCs from the normal 

individuals were evaluated identically whenever a mutation with Ω > 1 was found in the 

plasma.  Any mutation that was identified in the WBCs as well as in the plasma was 

excluded from the analysis.  The requirement for exclusion was that the ratio between the 

max MAF in the plasma and the max MAF in the WBC was less than 100.  The mutation 

with the greatest Ω score in each patient or normal control was then deemed the "top 

mutation" and is listed in table S5.  

 

4) Protein’s normalization and transformation.  To account for the variations in the 

lower and upper limits of detection across different experiments, we set all values smaller 

than m, defined as the maximum among all lower limits of detection for a given protein 

among all experiments, equal to m.  By symmetry, we set all values larger than M, 

defined as the minimum among all upper limits of detection for that protein across all 

experiments, equal to M.  To be conservative, a further transformation was applied to the 

proteins levels.  Specifically, if a protein’s concentration in the sample of interest was 

lower than the 95th percentile of the concentration found for that same protein among the 

normal samples in the training set, then the protein’s concentration was set equal to zero; 

otherwise its original concentration value was used.  For the Ω score, the same threshold 
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transformation was used but with a constant threshold equal to 0, because Ω > 0 indicates 

an MAF that is more likely to originate from a cancer than from normal tissue. 

 

5) Logistic Regression.  The omega score was used as a feature in logistic regression 

(LR). The other 8 features used in LR were the concentrations of the following 8 

proteins, selected from the original 39 proteins via a straightforward optimization: CA-

125, CA19-9, CEA, HGF, MPO, OPN, PRL, TIMP-1.  The optimization first eliminated 

any protein that, according to a Mann-Whitney-Wilcoxon test, had higher median values 

in normal than in cancer samples, eliminating 13 proteins and leaving 26 proteins to be 

evaluated.  This was followed by a forward selection based on the importance of each 

feature, as evaluated by the decrease in accuracy of the same logistic regression when 

that protein alone was dropped from the remaining 26 protein features.  The R glmnet 

package (version 2.10-13) was then used to perform the Logistic Regression, with the 

lambda parameter set to zero (34).  Ten rounds of 10-fold cross-validations were 

performed.  The classification calls obtained in an average round of 10-fold cross-

validation (CV) are listed for each of the 812 normal individuals and the 1,005 cancer 

patients in table S4.    

 

5) Tissue localization.  For the prediction of the cancer type, we used the same 9 

features (mutation omega score and levels of eight proteins) plus patient gender and the 

other 31 proteins evaluated in this study (table S3).  Cancer type prediction was 

performed only on the cancer samples that were correctly classified as cancer by LR.  

Random Forest, as implemented in the randomForest package (version 4.6-12) (35) was 

used for this prediction.  Ten rounds of 10-fold CV were performed and, for consistency, 

in each round and in each fold the same partition used by LR was used by Random 

Forest.  The classification calls obtained in an average round of 10-fold CV (the same 

round for which cancer status is reported in table S5), are listed in table S8.   

 

For determining the concordance between mutations identified in the plasma with 

those identified in primary tumors (table S7), we only considered the 153 cases in which 

a mutation could be identified with high confidence in the plasma (Ω score > 3, table S5) 

and in which the primary tumor contained any mutation that was present at a mutant 

allele fraction of > 5% (table S2).  This approach allowed us to avoid scoring tumors that 

had low neoplastic contents (36). 

 

Sample identification 

To confirm that plasma, WBC, and primary tumor DNA samples originated from 

the same patient, we utilized primers that could be used to amplify ~38,000 unique long 

interspersed nucleotide elements (LINEs) from throughout the genome (37).  These 

~38,000 LINEs contain 26,220 common polymorphisms which can establish or refute 

sample identity among plasma, white blood cell and tumor samples.  We identified the 

genotype at each polymorphic location and calculated the percent concordance between 

the samples of interest.  Concordance was defined as the number of matched polymorphic 

sites that were identical in both samples divided by the total number of genotypes that 

had adequate coverage in both samples.  Two samples were considered a match if 

concordance was > 0.99 and at least 5,000 amplicons had adequate coverage. 
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Statistical analysis 

 Continuous variables were reported as means and standard deviations or medians 

and range, while categorical variables were reported as whole numbers and 

percentages.  Confidence intervals (CI) for sensitivities were calculated using a binomial 

distribution.  Principle component analysis was performed using the R stats package 

(version 3.4.0).  One-sided p-values for the obtained accuracy were calculated assuming a 

binomial with success probability equal to the no-information rate (NIR), taken to be the 

largest class percentage in the data, using the R stats package (version 3.4.0).  The one-

sided probability was chosen because the goal was not to test whether the obtained 

accuracy was significantly higher or lower than the NIR.  Rather, we wanted to report the 

probability that an accuracy as high as the one obtained, or even higher, could be 

obtained when assuming a binomial with a success probability equal to the NIR. 

 

Tables S1 to S11: 

Table S1 (Microsoft Excel Format): Primer sequences for multiplex PCR assays. 

Table S2 (Microsoft Excel Format): Mutations identified in primary tumors. 

Table S3 (Microsoft Excel Format): Protein biomarkers analyzed and included in 

CancerSEEK test. 

Table S4 (Microsoft Excel Format): Histopathological and clinical characteristics of the 

cancer patients and healthy controls. 

Table S5 (Microsoft Excel Format): Mutations identified in plasma samples from cancer 

patients and healthy controls. 

Table S6 (Microsoft Excel Format): Concentrations of assayed protein biomarker in 

plasma samples from cancer patients and healthy controls. 

Table S7 (Microsoft Excel Format): Concordance between mutations identified in the 

plasma with those identified in primary tumors. 

Table S8 (Microsoft Excel Format): Cancer type localization results for the 617 cancer 

patients identified by CancerSEEK. 

Table S9 (Microsoft Excel format):  Logistic regression model coefficients and 

importance scores. 
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Table S10 (Microsoft Excel format): Confusion matrix of top predictions from cancer 

type localization results. 

Table S11 (Microsoft Excel format): Cancer patients evaluated in this study by tumor 

type and stage. 
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Fig. S1.  Distribution of the number of detectable mutations within the 805 primary 

tumors evaluated. 
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Fig. S2.  Waterfall plots of the ctDNA and eight protein features used in CancerSEEK 

illustrate the separation between healthy controls and cancer patients.  Values are sorted 

from high (left) to low (right).  Each column represents an individual patient sample (red, 

cancer patient; blue, healthy control). 
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Fig. S3.  Principal component analysis of the ctDNA and eight protein features used in 

CancerSEEK.  Each dot represents an individual patient sample (red, cancer patient; blue, 

healthy control). 

  



0%
20%
40%
60%
80%

100%

S
en

si
tiv

ity
 (

%
)

CancerSEEKA

0%
20%
40%
60%
80%

100%

S
en

si
tiv

ity
 (

%
)

Without Ω scoreB

0%
20%
40%
60%
80%

100%

S
en

si
tiv

ity
 (

%
)

Without CA−125C

0%
20%
40%
60%
80%

100%

S
en

si
tiv

ity
 (

%
)

Without CA19−9D

0%
20%
40%
60%
80%

100%

S
en

si
tiv

ity
 (

%
)

Without CEAE

0%
20%
40%
60%
80%

100%

S
en

si
tiv

ity
 (

%
)

Without HGFF

0%
20%
40%
60%
80%

100%

S
en

si
tiv

ity
 (

%
)

Without MPOG

0%
20%
40%
60%
80%

100%

S
en

si
tiv

ity
 (

%
)

Without OPNH

0%
20%
40%
60%
80%

100%

S
en

si
tiv

ity
 (

%
)

Without PRLI

0%
20%
40%
60%
80%

100%

S
en

si
tiv

ity
 (

%
)

Without TIMP−1J

Ovary Liver Stomach Pancreas Esophagus Colorectum Lung Breast



 

 

11 

 

Fig. S4.  Effect of individual CancerSEEK features on sensitivity.  (A) Sensitivity of 

CancerSEEK by tumor type as in Fig. 2C.  (B-J) Each panel displays the sensitivity 

achieved when a particular CancerSEEK feature is excluded from the logistic regression.  

The difference in sensitivity relative to that achieved by CancerSEEK reflects the relative 

contribution of each biomarker to the performance of the CancerSEEK test. 
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