

Fig. S4. Assessment of the solubility of PIP₂ and PIP₂-F in the experimental buffers. (A) Determination of the actual concentrations of PIP₂-F after incubation with different cations by light absorbance at 494 nm. T, 2 mM Tris-HCl, pH 7.4; K, 100 mM KCl; C, 1 mM CaCl₂; M, 1 mM MgCl₂. (B) Determination of critical micelle concentrations of PIP₂ and PIP₂-F (inset) by dynamic light scattering.

It is well known that divalent cations, calcium in particular, cause PIP₂ to aggregate (Flanagan et al., 1997; Levental et al., 2009). Therefore, we evaluated the effects of cations on the critical micelle concentrations (CMCs) of PIP₂ and PIP₂-F by dynamic light scattering (Huang et al., 2011). The results indicate clearly that the CMCs are affected by the cations. Calcium, but not magnesium or potassium ions, precipitated PIP₂-F, causing a substantial amount of PIP₂-F being removed from solution by centrifugation (Fig S4 a). After taking the changes in concentrations into account, the CMC of PIP₂-F was estimated to be ~10 µM in the absence of calcium, and this value was lowered to $\sim 0.5 \,\mu\text{M}$ in the presence of 1 mM CaCl₂, either in the presence of 100 mM KCl or 100 mM KCl and 1mM MgCl₂ (Fig S4 b). These values are in agreement with those reported in the literature (Huang et al., 2011). Unlike PIP₂-F, the actual concentrations of PIP₂ could not be determined photometrically. Therefore, the CMCs of PIP₂ reported here were estimated based on the nominal rather than the actual PIP₂ concentrations. The obtained values were 20 μ M in the absence of cations, 2 μ M and < 1 μ M in the presence of 100 mM KCl or100 mM KCl and 1 mM MgCl₂, respectively, which again are in concordance with the literature data (Flanagan et al., 1997). Introduction of calcium into the buffer raised the CMC of PIP₂ to ~ 10 μ M, which is considered as an overestimation due to likely precipitation of PIP₂ by calcium in a similar way to that observed for PIP₂-F (Fig S4 a). Taken together, under the buffer conditions

tested, PIP₂-F was free from micelle formation at concentrations of 0.5 μ M or below, whereas PIP₂ was more sensitive to cations and had a greater tendency to form micelles than PIP₂-F.

Methods: The critical micelle concentrations of PIP₂ and 1-(1-octadecanoyl-fluorescein-2R-octadecanoylphosphatidyl)inositol-4,5-bisphosphate (Cayman Chemical, abbreviated as PIP₂-F) were determined by dynamic light scattering (Huang et al., 2011). Fifty microliter samples were prepared by serial dilution of PIP₂ or PIP₂-F into a low salt buffer (2 mM Tris-HCl, pH 7.4), or the same buffer supplemented with 100 mM KCl, 1 mM MgCl₂, and/or 1 mM CaCl₂. After incubation for 30 min, the samples were centrifuged at 15,000 x g for 10 min, transferred into a 384-well clear bottom plate, and light scattering was measured using a Wyatt Dynapro plate reader at room temperature. The concentrations of PIP₂-F were subsequently determined by light absorbance at 494 nm with a Nanodrop spectrophotometer.

References

- Flanagan, L. A., Cunningham, C. C., Chen, J., Prestwich, G. D., Kosik, K. S. and Janmey,
 P. A. (1997). The structure of divalent cation-induced aggregates of PIP2 and their alteration by gelsolin and tau. *Biophys J* 73, 1440-1447.
- Huang, W., Jiang, D., Wang, X., Wang, K., Sims, C. E., Allbritton, N. L. and Zhang, Q. (2011). Kinetic Analysis of PI3K Reactions with Fluorescent PIP2 Derivatives. *Anal Bioanal Chem* 401, 1881-1888.
- Levental, I., Christian, D. A., Wang, Y.-H., Madara, J. J., Discher, D. E. and Janmey, P. A. (2009). Calcium-dependent lateral organization in phosphatidylinositol 4,5-bisphosphate (PIP2)- and cholesterol-containing monolayers. *Biochemistry* **48**, 8241-8248.