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Figure S1. Pipeline for detecting amplicon CNVs from sequencing data. 
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Figure S2. Amplicon copy number in 1000 Genomes Project males. Rows: individual males. 

Columns: amplicons. (A) Males sorted by variant type. The spans of the three most common 

CNVs are shown as black bars. (B) Males sorted by phylogenetic relationship. The tree of major 

haplogroups is drawn to the left. The span of each haplogroup is shown as alternating black and 

gray bars. Fixed ancestral deletions can be seen in haplogroups D and N.
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Figure S3 (Page 2). Predicted AZFc CNV states arising through NAHR. (A) AZFc reference 

architecture. (B) AZFc architectures formed by one NAHR event between amplicon copies. (C) 

AZFc architectures formed by two NAHR events between amplicon copies. The 799 AZFc 

architectures formed by three NAHR events are not shown. (D) AZFc architectures correspond-

ing to copy number states found in 1000 Genomes Project males. Some copy number states are 

concordant with multiple amplicon architectures.
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Figure S4. Sequencing depth is not correlated with CNV calls. (A) Fraction of males with 

CNV calls in different ranges of sequencing depth. Error bars represent binomial 95% confi-

dence intervals.  (B-D) Fraction of males with CNV calls in different ranges of sequencing depth 

in well-represented sub-haplogroups (B) E1b (n=294), (C) R1a (n=81), and (D) R1b (n=206). 

This controls for the possibility of the whole-dataset results being affected by, for example, a 

haplogroup with a high fraction of males with CNVs that was sequenced more deeply than other 

haplogroups. Error bars represent binomial 95% confidence intervals.
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Figure S5. Results of two-color FISH analysis. (A) Hybridization locations of FISH probes. 

(B-J) Selected FISH images and copy number plots of the remaining 9 males on whom FISH was 

performed. AZFc architectures are shown for males whose computational CNV calls matched a 

predicted architecture. (B-D) Males with deletions. FISH of the male in (C) detected an error in 

the computational CNV call. (E,F) Males with the reference copy number. (G-J) Males with 

duplications. At high copy numbers, FISH underestimates the number of amplicon copies.
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Figure S6. Mechanism of formation of a complex AZFc CNV. (A) Copy number calls of 

affected male. The copy number calls do not match any predicted AZFc architecture. (B) 

Evidence of a partial amplicon mutation event in this male. Blue dots: depth of 100-bp windows. 

Red lines: predicted change points. (C) Predicted multi-step mechanism of formation for this 

CNV. 1. Reference AZFc architecture. The green arc shows the targets of NAHR on a single 

copy of the AZFc region. 2. Crossing over occurs between two sister chromatids of the



Y chromosome, causing a deletion. An alternative mechanism, in which a single chromatid 

forms a loop and undergoes NAHR with itself, is not shown. 3. Intermediate deletion stage after 

NAHR. The gray arc shows breakpoints of the subsequent non-NAHR duplication event. This 

duplication event occurred twice. 4. Final AZFc architecture. Note that the final architecture 

matches the called copy numbers in (A). The copy number call for the green amplicon results 

from part of that amplicon being present in two copies and part of it being present in six copies. 
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Figure S7. Detailed phylogenetic tree of 1000 Genomes Project Y chromosomes. Haplogroup 

names are shown around the tree. Branch lengths are measured in SNPs.
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Figure S8. Simulation of A00 mutation and drift. Each cell is the average of 1,000 

simulations. The lower bound of the true mutation rate, as calculated from the 1000 Genomes 

Project data, is 3.83 × 10−4 mutations per father-to-son Y transmission. CNVs are present in the 

large majority of the population in all simulations at or above the predicted mutation rate.
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Figure S9. Methodology for calculating CNV distribution over the phylogenetic tree. 

(A) Sample phylogenetic tree. Red leaves: individuals with a CNV. (B) Step 1: Find the 



edges of the tree in which mutation events occurred by maximum parsimony, shown in red. (C) 

Step 2: Annotate edges by age. Edge 1 is the oldest branch. Edge 8 is the youngest branch. (D) 

Step 3: Arrange the edges in a single line and sort edges by age. After sorting, edges closer to the 

root of the tree will be further to the left, and edges closer to the leaves of the tree will be further 

to the right. The length of this line is the sum of the edge lengths, which is equal to the total 

evolutionary time traversed by the tree. Evolutionary time is measured in SNPs, as phylogenetic 

trees are built using single-nucleotide changes as a molecular clock. (E) Step 4: Plot the 

cumulative fraction of mutation events observed from the beginning of the line to the end of the 

line. In this case, there are two edges with mutation events, so 50% of events are observed at 

branch 2, and 100% of events are observed at branch 7. (F) Step 5: Using the Kolmogorov-

Smirnov test, compare the distribution of mutation events to the null distribution (dotted gray 

line), which represents a constant rate of mutation over time. (G) Distribution of real mutation 

events over phylogenetic tree. Blue curve: branches of the phylogenetic tree sorted by branch 

age. Red diagonal line: expected distribution if CNVs were selectively neutral. p = 1.01 × 10−7, 

KS test.  (H) Distribution of shuffled real mutation events over phylogenetic tree. Gray lines: 

branches of the phylogenetic tree shuffled at random. 1,000 shuffles were performed. Red 

diagonal line: expected distribution. Minimum p-value of shuffles = 2.00 × 10−3, KS test.  (I) 

Distribution of simulated mutation events over phylogenetic tree. Gray lines: branches of the 

phylogenetic tree with simulated mutations sorted by branch age. 1,000 simulations were 

performed. Red diagonal line: expected distribution. Minimum p-value of simulations = 4.99 × 

10−4, KS test.  	
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Figure S10. Simulations of neutral evolution with reversion. Mutation events vs. number of 

males with mutants. Each point represents one simulation over the phylogenetic tree of males in 

our dataset.
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Figure S11. Evolutionary analysis of high-confidence CNV calls. (A) Distribution of CNV 



mutation events over the evolutionary tree. Blue curve: branches of the phylogenetic tree of 

males in our dataset sorted by branch age. Red diagonal line: expected distribution if CNVs were 

selectively neutral. Gray lines: branches of the phylogenetic tree shuffled at random. 1,000 

shuffles were performed. p = 6.57 × 10−7, KS test. (B) Mutation events vs. number of males with 

CNVs. Each point represents one simulation over the phylogenetic tree of males in our dataset. 
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Figure S12. Mechanism of amplicon rescue. (AB) 1. Architecture of the AZFc region with a 

gr/gr deletion (A) and a b2/b3 deletion (B). The blue arc shows the targets of NAHR on a single 

copy of the AZFc region. 2. Crossing over occurs between two sister chromatids of the Y chro-

mosome, causing a duplication. 3. The resulting architecture after NAHR.



CNVa Type Name Phenotype Mechanism Partial 
CNVsb 

NAHR 
structurec 

# of 
males 

# of 
events 

+1 IR5, +1 B, +1 G, +2 R, +1 Gr, +1 Y Duplication gr/gr duplication  NAHR (1-step) +Y (1) v2 28 25 
+1 IR1, +1 IR5, +1 B, +2 G, +2 R, +1 Y Duplication b2/b3 duplication  NAHR (2-step)  v4 8 7 
+1 IR1, +2 B, +2 T, +1 G, +2 R, +1 Gr Duplication b1/b3 duplication  NAHR (1-step)  v8 3 3 

+1 IR1, +2 IR5, +2 B, +3 G, +4 R, +1 Gr, +2 Y Duplication b2/b4 duplication  NAHR (1-step)  v7 3 2 
+2 IR1, +2 IR5, +2 B, +4 G, +4 R, +2 Y Duplication   NAHR (2-step)  v11 1 1 
+3 IR1, +3 IR5, +3 B, +6 G, +6 R, +3 Y Duplication   NAHR (3-step)  v13 1 1 
+4 IR5, +4 B, +4 G, +8 R, +4 Gr, +4 Y Duplication   NAHR (3-step)  v12 1 1 
+2 IR5, +2 B, +2 G, +4 R, +2 Gr, +2 Y Duplication   NAHR (3-step)  v10 1 1 

-1 IR5, -1 B, -1 G, -2 R, -1 Gr, -1 Y Deletion gr/gr deletion 
spermatogenic 
failure, testis 

cancer 
NAHR (1-step) +Y (8) v1 49 25 

-1 IR1, -1 IR5, -1 B, -2 G, -2 R, -1 Y Deletion b2/b3 deletion spermatogenic 
failured NAHR (2-step)  v3 26 3 

-1 IR1, -2 B, -2 T, -1 G, -2 R, -1 Gr Deletion b1/b3 deletion spermatogenic 
failure NAHR (1-step)  v9 1 1 

+1 IR1, +1 G, -1 Gr Complex gr/gr rescue  NAHR (2-step)  v5 5 5 
-1 IR1, -1 G, +1 Gr Complex b2/b3 rescue  NAHR (3-step)  v6 4 3 

+2 IR1, +1 IR5, +1 B, +3 G, +2 R, -1 Gr, +1 Y Complex   NAHR (3-step)  v14 1 1 
+1 IR1, +2 IR5, +2 B, +4 G, +5 R, +1 Gr, +2 Y Duplication   Both +G, +R  1 1 

+2 IR1, +2 IR5, +2 B, +4 G, +3 R, +2 Y Duplication   Both   1 1 
+1 IR1, +1 IR5, +1 B, +3 G, +2 R, +1 Y Duplication   Both   1 1 

-1 IR5, -1 G, -2 R, -1 Gr, -1 Y Deletion   Both +B  1 1 
-1 IR5, -1 B, -1 G, -1 R, -1 Y Deletion   Both +R  1 1 

-1 IR1, -1 IR5, -1 B, -2 G, -1 R, +1 Gr, -1 Y Complex   Both +B (2)  3 1 
-1 IR1, +1 IR5, +1 B, +1 R, +2 Gr, +1 Y Complex   Both   1 1 

-1 IR5, -1 B, +1 G, +2 R, -1 Gr, -1 Y Complex   Both +G  1 1 
+1 G Duplication   Non-NAHR +G (2)  6 4 

+1 R, +1 Gr Duplication   Non-NAHR +B (1)  3 2 
+1 IR5 Duplication   Non-NAHR +Y (1)  2 2 

+1 G, +1 R Duplication   Non-NAHR +G (2)  2 1 
+1 Y Duplication   Non-NAHR +Y (2)  2 2 
+1 B Duplication   Non-NAHR +B (1)  2 1 

+2 G, +2 R Duplication   Non-NAHR +Y (2)  2 2 



+1 B, +1 T Duplication   Non-NAHR +T  1 1 
+1 B, +1 Gr Duplication   Non-NAHR +Y  1 1 

+1 IR1 Duplication   Non-NAHR +G  1 1 
+1 IR5, +1 B, +2 G, +3 R, +1 Gr, +1 Y Duplication   Non-NAHR +G, +R  1 1 

+1 IR5, +1 B, +1 Y Duplication   Non-NAHR +Y  1 1 
+1 IR5, +1 B, +2 G, +2 R, +1 Gr, +1 Y Duplication   Non-NAHR   1 1 

+1 R Duplication   Non-NAHR +G, +R  1 1 
-1 IR1, -1 B, -1 T, -1 G, -2 R, -1 Gr Deletion   Non-NAHR -T  1 1 

-1 B, -1 T Deletion   Non-NAHR -T  1 1 
-1 IR1, -1 IR5, -1 B, -2 G, -3 R, -1 Gr, -1 Y Deletion   Non-NAHR   1 1 

 

 

aB = blue, T = teal, G = green, R = red, Gr = gray, Y = yellow 
bNumber of males with evidence of each partial CNV shown in parentheses 
cStructures shown in Figure S3D 
dPhenotypic impact of the b2/b3 deletion is unclear; see Lu et al. (2009) and Rozen et al. (2012) 
 
 

Table S5. CNVs located inside the AZFc region. Sorted by mechanism, type, and # of males. CNV classes (listed in column 

“CNV”) count only amplicon copy number changes detected by the whole-amplicon CNV pipeline. Amplicons listed in column 

“Partial CNVs” show evidence of a CNV breakpoint in the middle of that amplicon, and therefore may or may not be listed in the 

“CNV” column. (Because we expect the partial-amplicon CNV pipeline to have a high false negative rate, splitting CNV classes based 

on a subset of members having evidence of partial CNVs would artificially inflate the number of CNV classes and mutation events.) 

The exceptions are six males with evidence of a partial CNV that had no CNV in any amplicon detected by the whole-amplicon CNV 

pipeline; the “CNV” column for these males corresponds to the detected partial CNVs.  



CNVa Type Name Location Mechanism Partial CNVsb # of 
males 

# of 
events 

+2 IR2, +1 B, +1 T Duplication  Both Non-NAHR  1 1 
+1 IR2, +1 G Duplication  Both Non-NAHR  1 1 

+1 IR5, +1 P4, +1 Y Duplication  Both Non-NAHR +P4 +Y 1 1 
-1 IR3, -1 IR1, -1 R Deletion  Both Non-NAHR -IR3 -G -R 1 1 

+1 P8 Duplication  Non-AZFc   8 5 
+2 P4 Duplication  Non-AZFc  +P4 (3), +P4 +P5 (1) 4 2 
+1 P4 Duplication  Non-AZFc  +P4 (1),  +P4 +P5 (1) 3 3 
+1 IR2 Duplication  Non-AZFc  +B (1) 3 3 
+1 IR3 Duplication  Non-AZFc  +IR3 (2) 2 1 

+1 P5, +1 IR5 Duplication  Non-AZFc   1 1 
+1 P5, +1 P4 Duplication  Non-AZFc  +P4 1 1 

+2 P8 Duplication  Non-AZFc   1 1 
+1 P5 Duplication  Non-AZFc  +P5 1 1 

+2 P5, +2 IR5, +2 P4 Duplication  Non-AZFc   1 1 

-1 IR3, -1 IR1 Deletion AMELY deletion Non-AZFc NAHR (between 
TSPY copies) -IR3 (3) 3 2 

-1 P8 Deletion  Non-AZFc  -P8 (1) 2 2 
-1 P4 Deletion  Non-AZFc  -P4 1 1 

 

 

aB = blue, T = teal, G = green, R = red, Gr = gray, Y = yellow 
bNumber of males with evidence of each partial CNV shown in parentheses 

 
 

Table S6. CNVs located both within and outside the AZFc region (“both”) or completely outside the AZFc region (“Non-

AZFc”). Sorted by location, type, and # of males. CNV classes (listed in column “CNV”) count only amplicon copy number changes 

detected by the whole-amplicon CNV pipeline. See Table S5 legend for explanation of “Partial CNVs” column. 



Supplemental Material and Methods 

 

GC bias correction 

The GC content of DNA affects read depth in high-throughput sequencing.36 This bias 

can drastically differ between sequencing libraries and is primarily driven by the GC 

content of the entire DNA fragment, rather than just the sequenced read.73 To correct for 

this effect, we built a GC bias curve for each sequencing library and corrected sequencing 

depth based on those curves. To build a GC bias curve, we began by selecting 10,000,000 

positions on the autosomes, excluding repetitive regions as annotated by RepeatMasker 

(http://www.repeatmasker.org). In order to reduce the possibility of any systematic bias 

due to unanticipated factors in specific regions of the genome, these locations were 

different for each curve we built, but were always chosen so that regions with very high 

and very low GC content—which are relatively rare—were well-represented. Then, using 

the mapping locations of paired reads in the library, we built an empirical distribution of 

DNA fragment sizes present in the library. For each of the 10,000,000 chosen locations in 

the genomes, we randomly selected from the empirical fragment size distribution and 

calculated the GC content of a window of the selected size starting at that location. We 

sorted each calculated GC percentage into bins of 0.5%. Then, we calculated the GC 

content of each fragment from the library that began at one of the chosen locations, and 

again sorted each calculated percentage in bins of 0.5%. For each bin, we divided the 

number of real fragments by the number of locations and normalized by total sequencing 

depth of the library. Finally, we smoothed the resulting GC curve with the LOWESS 

method, using the Statistics module of Biopython.74 The value of each bin in the final 



curve equals the over- or underrepresentation of observed fragments (fragments with that 

bin’s GC content in the sequencing library) relative to expected fragments (the 

prevalence of regions with that GC content in the genome). 

 

After calculating GC curves, we calculated corrected sequencing depth. Sequencing 

depth for a location in the genome is normally calculated by adding 1 for each read that 

overlaps that location. For corrected depth, instead of adding 1 for each read, we add 1 

divided by the value of the GC bias curve for the fragment’s GC content. If this equals a 

number > 3, we add 3 instead. This occurs most often for fragments with extremely high 

or low GC content, which tend to have very low GC curve values. Capping the depth 

value of a read at 3 prevents rare instances in which, by chance, a region of such 

fragments has a high number of reads, leading to its depth being exaggerated to 

extremely high levels in the absence of such a cap. 

 

Branch-sorting analysis 

The branch-sorting test generates an analytical p-value of observing a distribution of 

amplicon CNVs over the detailed phylogenetic tree under selectively neutral conditions. 

(See Figure S8 and Material and Methods for a description of this test.) We make the 

assumption that, under selectively neutral conditions, mutation events will be distributed 

uniformly over the total evolutionary time covered by the tree. This assumption holds 

true even if Y chromosomes underwent bursts of population expansion throughout 

history. The phylogenetic tree of Y chromosomes contains within itself the information 

about such population dynamics; because this analysis calculates the distribution of CNV 



events over the total evolutionary time traversed by the tree, the greater number of males 

in which mutation can occur after a population expansion is reflected in the greater 

evolutionary time covered by such males within the tree. 

 

For this analysis, we annotate each mutation event, including events that happen on a Y 

chromosome that has already undergone a previous amplicon CNV mutation event. In 

contrast, our other, simulation-based analysis did not count such events. We made this 

distinction to make the simulation-based method more tractable, at some cost of 

verisimilitude. Most branches in which a mutation event occurred can be annotated by 

Fitch’s algorithm.44 For 25 branches in which Fitch’s algorithm gave an inconclusive 

result, we manually annotated mutation events based on the most likely mechanism of 

mutation. For example, when two different variants are child nodes of the same parent 

node, Fitch’s algorithm is inconclusive. If one of the variants could result from a 

mutation event occurring on a chromosome with the other variant, we annotated the 

branch of the parent node and the branch of the former variant as having mutation events. 

If those two variants could not occur from an event occurring to the other variant, we 

annotated both child node branches as having mutation events. 

 

For a p-value to be valid, its values when testing data that conforms to the null hypothesis 

must be uniformly distributed between 0 and 1. Therefore, to test the validity of this 

analysis, we shuffled the order of the branches within the tree, maintaining the presence 

or absence of a mutation event in each branch, and calculated a p-value in the same way 

we calculated the p-value of the sorted branches. We performed this process 1,000 times 



and calculated the distribution of resulting p-values. We found that the p-values 

generated by shuffling the branches were indeed uniformly distributed, demonstrating 

that the test does perform well in this case. 

 

However, two further tests demonstrate the limitations of our method. First, we took the 

empirical tree structure of the 1000 Genomes Project males and randomly assigned 

mutation events to branches with various mutation frequencies, ranging from 5 × 10−1 to 

5 × 10−7 mutations per father-to-son Y transmission. This generated a number of trees, 

one per mutation rate, and each with a different total number of mutation events. We then 

performed 1,000 shuffles of each of these trees. In the trees with a high number of 

mutation events, the p-value distribution of the resulting shuffled trees was skewed 

towards low p-values. Second, we simulated amplicon mutation over the tree structure 

1,000 times using a mutation rate of 3.83 × 10−4 mutations per father-to-son Y 

transmission, which is the lower bound calculated from the real data. Unlike our other 

simulations, branches in which a mutation had occurred in an ancestral branch were 

allowed to mutate a second time; this allowance of re-mutation is necessary to match our 

assumption that mutation events should be uniformly distributed over the evolutionary 

time within the tree. For each simulation, we calculated p-values as described. In this 

case too, the distribution was skewed towards low p-values (Figure S8I). Additionally, 

the simulated trees tended to curve below the line representing neutral evolution (i.e. they 

had more mutation evens in the recent past and fewer in the ancient past). 

 



These results occur for two reasons: first, the KS test is designed to test continuous 

distributions. Here, the distribution of mutation events is discrete, as we place the 

mutation event at then center of the branch in which it occurred. Second, our model only 

allows a single mutation event per branch.  

 

When mutations are rare (as is the case with the real data), these factors make little 

difference. However, when mutations are more common, the fact that all mutation events 

are in the center of each branch, combined with the fact that branches not all the same 

length, creates enough deviation from the continuous null uniform distribution to skew 

the p-values toward lower values. Further, the fact that longer branches tend to be in the 

more ancient parts of the tree means that it is more likely that two mutation events (either 

true or simulated) would occur in a single branch in the more ancient parts of the tree. 

Those events are only counted as a single event by our method, reducing the number of 

events counted in the ancient branches of the tree. 

 

Allowing multiple mutations to occur in each branch and distributing them randomly 

within the branch, rather than in the center, ameliorated these issues. For analysis of our 

real data, we chose not to do this, to keep the method as simple as possible. We note that 

the true data had a more extreme KS statistic than all 1,000 simulations; further, the 

minimum p-value of the 1,000 simulations was 4.99 × 10−4, compared to p = 1.01 × 10−7 

for the real data. Therefore, although our test exaggerates the significance of the p-value, 

the deviation of the real data from neutral expectation is nevertheless extremely 

significant. However, our method must be modified for trees that are more densely 



populated with mutation events and for trees in which the signature of selection is less 

extreme. 
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