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Figure S1. ICAM-1is required for the development of ILC2. (A) Gating strategy of lung ILC2 (CD45*Lin"CD90.2*CD25*GATA3"&"ST2+). Data are represen-
tative results from eight mice. (B) Gating strategy of CLP (CD45°Lin"CD127*Flt3*a4B7"), a-LP (CD45*Lin"CD127*Flt3-a4B7*), ChILP (CD45*Lin-CD127*Ft3"
a4B7+CD257), and ILC2P (CD45*Lin-CD127*F(t3-a4B7*CD25*) in the BM of adult mice, pregated on live cells. Data are representative results from six mice.
(C) Expression of LFA-1 on CLP, a-LP, ChILP, and ILC2P in BM as well as on ILC2 and CD4* T cells in lung from WT mice (n = 4-7). Light gray represents the
isotype control. (D) Representative flow cytometry plots of BM ilLC2s (pregated on CD45*Lin"CD127 cells) and the number of BM ilLC2s from WT and ICAM-
1/~ mice (n = 10 mice/group). (E) Representative flow cytometry plots of B220* B and CD3* T cells in spleen, and BM iILC2 and lung ILC2 from NCG mice . (F)
WT recipient mice were lethally irradiated with 9.5 Gy and were reconstituted by intravenous injection of 10 million CFSE* BM from WT and ICAM-1"~ mice,
respectively. 18 h later, the number of CFSE* CLP was evaluated by flow cytometry (n = 5 mice/group). (G) CLPs from WT and ICAM-I17/~ mice were co-cul-
tured with OP9-DL1 in the presence of IL-7 (10 ng/ml) for 9-10 d, and the frequencies of ILC2 (pregated on CD45*Lin" cells) as well as ILC2 numbers were
shown. (H) Frequencies of B cells (CD19*B220*) derived from WT and ICAM-1/- CLPs after co-culture with OP9 cells for 10 d. (1) The effect of anti-ICAM-1
and anti-CD11a on the ILC2 and B cell differentiation from CLPs was shown. ILC2 differentiation from CLP was performed as in G and B cell differentiation
was done as in H. (J) Enumeration of LFA-1 expression on OP9-DL1, BM stroma cells (CD45-Lin"TER-119-), and CLP. Light gray represents the isotype control.
(K) Frequencies of Annexin V* ilLC2s in BM from WT and ICAM-17/- mice after culture in the presence of IL-7 (10 ng/ml) and IL-33 (10 ng/ml) for 24 h. (L)
Proliferation of iILC2s determined by CFSE staining in BM cultured as in K for 3 d (left). The right showed the frequencies of ki-67* BM ilLC2s from WT and
ICAM-1-~ mice after 6 d in the presence of IL-2 (10 ng/ml), IL-7 (20 ng/ml), and IL-33 (100 ng/ml). Data are representative of two (A-C, E, F and J) to three (D,
G-I, K, and L) independent experiments. Error bars show mean + SEM; *, P < 0.05; **, P < 0.01, ***, P < 0.001 by unpaired Student's t test. Numbers within
flow plots indicate the percentages of cells gated.
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Figure S2. ICAM-1regulates the function of ILC2, but not ILC1 and ILC3. (A) Flow cytometric analysis of lung ILC2 (pregated on CD45*Lin" cells) from WT
and ICAM-1"~ mice (n = 5 mice/group). (B) Representative flow cytometric analysis of human ILC2 (CD45*Lin"CD127*CRTH2") from three independent ex-
periments. (C) Flow cytometric analysis of ICAM-1 and LFA-1 expression on human ILC2s. Mean + SEM from three independent experiments was shown on
the right. MFI, mean fluorescence intensity. (D) Equal number of ilLC2s (5,000 cells) from BM of WT and ICAM-17/~ mice were cultured for 6 d in the presence
of IL-2 (10 ng/ml), IL-7 (20 ng/ml), and IL-33 (100 ng/ml). Frequencies of IL-5*IL-13* iILC2s were evaluated by flow cytometry. Both representative results and
mean + SEM from three independent experiments were shown. (E) The amount of IL-5 and IL-13 in the culture supernatants of D was determined by ELISA.
(F-1) WT and ICAM-17/~ mice were given normal water (n = 4 mice/group) or 2.5% DSS in drinking water (n = 5 mice/group) for 7 d. Body weight loss (F) and
colon length (G) were shown. (H) Flow cytometric plots of the frequencies of IFN-y* in ILC1s from colon; both representative results and mean + SEM were
shown. (1) Flow cytometric analysis of IL-22, IL-17A%, and IFN-y* cells in total ILC3s (CD45*Lin-CD127*Roryt*) from colon. Data are representative of two (A
and F-I) to three (B-E) independent experiments. Error bars show the mean + SEM *, P < 0.05; **, P < 0.01; ***, P < 0.001 by unpaired Student's t test. ns,
not significant. Numbers within flow plots indicate the percentages of cells gated.
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Figure S3. Effect of ICAM-1 on ILC2-induced lung inflammation is independent of Th2 response. (A-D) WT and ICAM-1/~ mice were sensitized with
100 ug OVA + Alum on day 0 and day 7 (n = 6 per group). On day 14, mice were intranasally challenged with 100 ug OVA for three consecutive days. Mice
were sacrificed 24 h after the last challenge. (A) The number of eosinophils from BAL in WT and ICAM-1"/~ mice is shown. (B) Representative H&E staining
of lung sections (bars, 100 pum). (C) The number of IL-5* CD4 T and IL-13* CD4 T cells in lung is shown. (D) The number of ILC2 in lungs from WT and ICAM-
17/~ mice after OVA treatment. (E) The number of IL-5*IL-13* ILC2s in lungs from WT and ICAM-1"/~ mice. (F-J) Rag”/~ and Rag™~ICAM-1/- mice were intra-
nasally challenged with papain for five consecutive days. Mice were sacrificed 24 h after the last challenge (n = 5 per group). (F) The number of eosinophils
from lung BAL was shown. (G) The amount of IL-5 and IL-13 in BAL was determined by ELISA. (H) Lung ILC2 numbers. (1) Frequencies of IL-5*IL-13* in lung
ILC2s after cell stimulation cocktail treatment for 4 h. (J) Representative H&E staining of lung sections. Bars, 100 um. Data are representative of two inde-
pendent experiments. Error bars show the mean + SEM; *, P < 0.05; **, P < 0.01; ***, P < 0.001 by unpaired Student's t test.
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Figure S4. Anti-CD11a does not influence the level of BMilLC2s. (A) Ragl™/~ (n = 6 per group) and Rag~~ICAM-1"~ (n = 4 per group) mice were injected
intraperitoneally with anti-mouse CD11a (100 pg/mouse) or 1gG (100 pg/mouse) control on day 0, followed by intranasally challenged with IL-33 (500 ng/
mouse/d) for three consecutive days. Mice were sacrificed on day 4. Flow cytometric analysis of BM iILC2 (pregated on CD45*Lin-C-kit'**Scal"e" cells). Both
representative data and mean + SEM were included. (B) Ragl™~ mice (n = 4 per group) were injected intraperitoneally with anti-mouse CD11a (100 pg/
mouse) or IgG (100 ug/mouse) control, the levels of BM iILC2 were analyzed 3 d later. Data are representative of two independent experiments. Error bars
indicate the mean + SEM. Comparison between groups was calculated by unpaired Student's t test. ns, not significant. Numbers within flow plots indicate

the percentages of cells gated.
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Figure S5. ICAM-1 regulates the expression of GATA3 protein. (A) A histogram showing the expression of GATA3 and its MFI levels in BM ilLC2s
(CD457Lin"CD127*Flt3-a4B7+CD90.2%) from WT (solid line) and ICAM-17/~ (dashed line) mice (n = 10/group). (B) Enumeration of GATA3 expression and its
MFI levels in lung ILC2 defined as two strategies: (1) CD45*Lin-CD90.2*CD25%, and (2) CD45*Lin"CD90.2*ST2*. (n = 5 mice/group). (C) The expression of Rora,
Etsl, and Gfilin BMilLC2s from WT and /ICAM-17/~ mice was analyzed by qRT-PCR. (D) BM from WT BM cells were cultured with DMSO or U0126 (20 uM) in
the presence of IL-7 (10 ng/ml) and 1L-33 (10 ng/ml) for 24 h. Percentages of Annexin V* ilLC2s were shown. (E) Frequencies of p-p38 in BM ilLC2s treated
with PBS or IL-33 (50 ng/ml) for 30 min. Data are representative of two (B) to three (A and C-E) independent experiments. Error bars show mean + SEM; ***,
P < 0.001 by unpaired Student's t test. ns, not significant. Numbers within flow plots indicate the percentages of cells gated.

Table S1 shows the antibodies used in this study. Table S2 shows primer sequences used for qRT-PCR. They are included as
separate Excel files.
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