%JCB

Supplemental material

FLCNKO А С WT FLCN KO NT Lysosome localization (%) ns -**FLCN** 60> FNIP1 140> RagA 30> 50> RagC Tubulin 50> Starved Basal Starved Basal В FLCN LAMP1 Merge WT-Starved FLCN KO-Starved

Meng and Ferguson, https://doi.org/10.1083/jcb.201712177

Figure S1. Analysis of FLCN KO cells demonstrates anti-FLCN antibody specificity. (A) Representative immunoblots of WT and FLCN KO HeLa cells. Molecular masses are given in kilodaltons. (B) Anti-FLCN immunofluorescent staining of WT versus FLCN KO cells that were starved for 2 h before fixation reveals selective loss of diffuse cytoplasmic and punctate (lysosome) signal in the *FLCN* KO cells. In contrast, a nonspecific nuclear signal was present in cells of both genotypes. (C) Quantification of percentage of cells with five or more FLCN spots that are positive for LAMP1 signal (mean \pm SEM; *n* = 3 experiments; 57–63 cells per condition). ****, P < 0.0001; ANOVA with Bonferroni's post hoc test. Bars, 10 µm. Insets are 7.8 µm wide.

%JCB

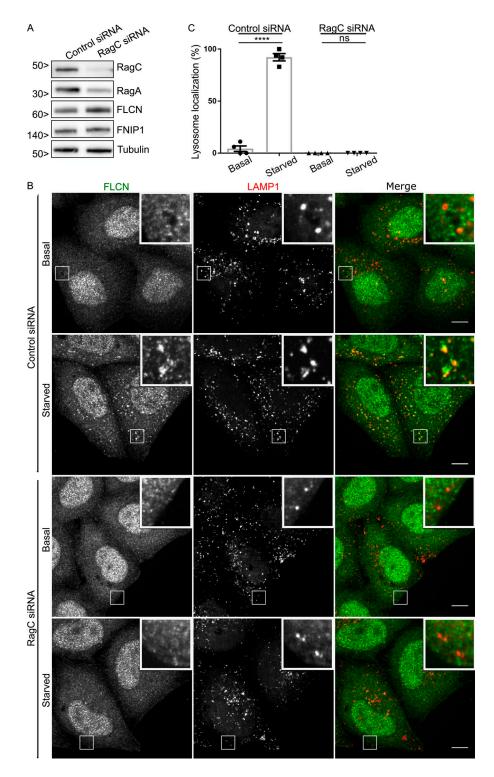


Figure S2. **Regulation of the lysosomal recruitment of FLCN by amino acid availability and Rag GTPases. (A)** Immunoblot analysis of the endogenous FLCN, FNIP1, RagA, RagC, and tubulin proteins in control conditions or after RagC knockdown. Molecular masses are given in kilodaltons. **(B)** Representative immunofluorescence experiment showing the effect of starvation in control conditions or after RagC knockdown. **(C)** Quantification of percentage of cells with five or more FLCN spots that are LAMP1-positive (mean ± SEM; *n* = 4 experiments; 61–77 cells per condition; ****, P < 0.0001; ANOVA with Bonferroni's post hoc test). Bars, 10 μm. Insets are 7.8 μm wide.

%JCB

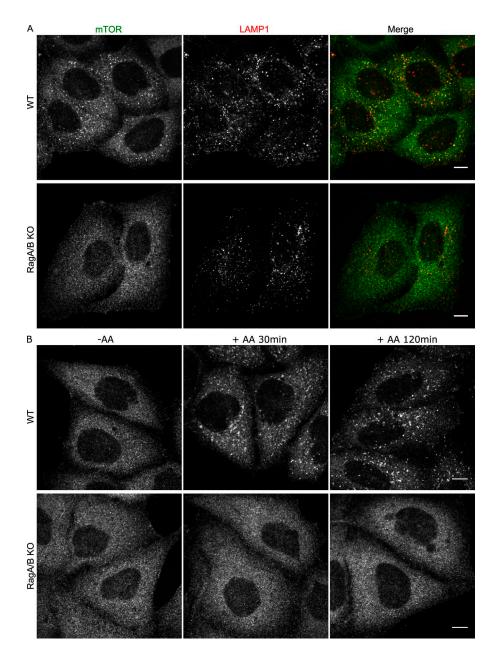
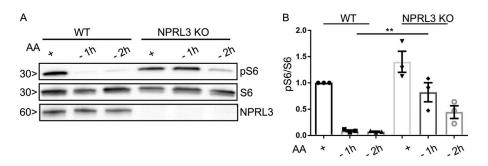
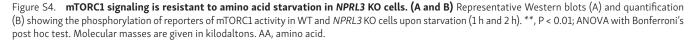




Figure S3. **mTOR lysosome localization in response to amino acids is defective in the absence of RagA and RagB. (A)** Immunofluorescence analysis showing mTOR and LAMP1 in WT and *RagA/B* KO HeLa cells under basal growth conditions. **(B)** Immunofluorescence analysis depicting mTOR and LAMP1 in WT and *RagA/B* KO cells that were starved of amino acids (AA) and then stimulated with amino acids after the indicated time. Bars, 10 μm.

Table S1. Characterization of FLCN KO, RagA/B KO, NPRL3 KO, and 2×HA-FNIP1 knock-in cell lines

Gene	Mutation
FLCN	11 bp deletion
	2 bp deletion
	1 bp insertion
RagA	2 bp deletion
	102 bp insertion
RagB	11 bp deletion
	13 bp deletion
	1 bp deletion
NPRL3	2 bp deletion
	1 bp deletion
	4 bp deletion
FNIP1	2 bp deletion
	2×HA insertion

Table S2. Oligonucleotide sequences for gene-editing experiments

Gene	Use	Sense (5'–3')	Antisense (5'-3')
FLCN	Guide RNA for KO	CACCGTCTCAGCAAGTACGAGTTTG	AAACCAAACTCGTACTTGCTGAGAC
FNIP1	crRNA for 2×HA tag insertion	GAGCUUCUGGAACAGCGUAGGUUUUAGA	
FNIP1	2×HA tag template	GCGCCCATGGGGGTGGCGGGGGGGGGGGGG GAGCAGGGGCCTAGCAAGCGCCCAGCGG CGACCCCTGCCTGGCCGTGGCTAGCATG CTACCCATACGATGTTCCAGATTACGCT CCCATACGATGTTCCAGATTACGCTCCT GCTGTTCCAGAAGCTCTTCAGCAAGAGG CGGGC	AG GC TA AC
NPRL3	Guide RNA for KO	CACCGGAACTACGCCCGACGTGCAC	AAACGTGCACGTCGGGCGTAGTTCC
RagA	Guide RNA for KO	CACCGATTACATTGCTCGCGACACC	AAACGGTGTCGCGAGCAATGTAATC
RagB	Guide RNA for KO	CACCGAATCCCACAGGTTCAATACC	AAACGGTATTGAACCTGTGGGATTC

Table S3. Oligonucleotide primers for PCR amplification of genomic DNA

Target	Sense (5'–3')	Antisense (5'-3')	
2×HA-FNIP1	CCGTGGCCGTTTGAAGTGACTAATT	AGCGCCCTACCTGAACCCGCAATCT	
FLCN	GTCTTTTCACCAGCAGCCTTCCCCA	CCACCACATCCACAGACAGGTTCTG	
NPRL3	GTGATCTTAAGAGATGCTCTCCTGC	AAGGGCCCAGGAGAAACCTGGGATT	
RagA	CGGGTGATGCCAAATACAGCCATGA	CAGTCCCACAGGTTCAGCACCAGGT	
RagB	CTTATTTTGAATTTCACTTCACCTG	ATCTATTACAAATGATAGTTACTCT	

Table S4. Oligonucleotide primers for PCR amplification of HA-RagA cDNA

Туре	Sequence (5'-3')		
Sense	TAGTACCGGTAGGCCTGTCGACGATGCCACCATGGGATATCCGTACGATGTCCCAGACTATGCAGGTGGATCAGGAGGTTC AGGTGGAT		
Antisense	AGGATCCAGCGGCCGGGCCCGATTCAACGCATAAGGAGACTGTGCTTG		

Table S5. Summary of antibodies used

Target protein	Source	Catalog no.
FLCN	Cell Signaling Technology	3697
FNIP1	Epitomics	EPNCIR107
НА	Cell Signaling Technology	2367
HA-HRP	Roche	12013819001
LAMP1	DSHB	H4A3
mTOR	Cell Signaling Technology	2983
NPRL3	Sigma-Aldrich	HPA011741
Phospho-S6	Cell Signaling Technology	4858
Phospho-S6K	Cell Signaling Technology	9234
RagA	Cell Signaling Technology	4357
RagC	Cell Signaling Technology	9480
S6	Cell Signaling Technology	2217
S6K	Cell Signaling Technology	9202
Tubulin	Sigma-Aldrich	T5168