Supplemental material

Funabashi et al., https://doi.org/10.1083/jcb.201801039

Figure S1. **Genomic PCR and sequence analyses of the** *KIF3B***-KO cell lines. (A)** Genomic DNA was extracted from control hTERT-RPE1 cells and from the *KIF3B*-KO cell lines 3B-2-1 and 3B-2-4, which were established using a donor knock-in vector containing the target sequence, and subjected to PCR using the indicated primer sets (Table S2) to detect alleles with a small indel or no insertion (a), or with forward (b) or reverse (c) integration of the donor knock-in vector. Lane 1 (M), 100-bp ladder marker (the most intense band, 500 bp). (**B and C**) Alignments of allele sequences of the 3B-2-1 (B) and 3B-2-4 (C) cell lines determined by direct sequencing of the genomic PCR products. Red and black lines indicate the target sequence and protospacer-adjacent motif (PAM) sequence, respectively, and blue arrows indicate the direction of donor vector integration. CDS, coding sequence.

Table S1. Plasmid vectors used in this study

Vector	Insert	Reference
pCAG2-EGFP-C	Human KIF3A	This study
pCAG2-mCherry-C	Human KIF3A	This study
pCAG2-EGFP-C	Human KIF3B	This study
pCAG2-mCherry-C	Human KIF3B	This study
pCAG2-EGFP-C	Human KAP3	This study
pCAG2-mCherry-C	Human KAP3	This study
pCAG2-EGFP-C	Human KIF17	Funabashi et al. (2017)
pCAG2-EGFP-C	Human KIF3B (1–704)	This study
pCAG2-EGFP-C	Human KIF3B (1–662)	This study
pCAG2-EGFP-C	Human KIF3B (1–625)	This study
pCAG2-EGFP-C	Human KIF3B (1–579)	This study
pCAG2-EGFP-C	Human KIF3B (ΔCC: Δ346–579)	This study
pRRLsinPPT-EGFP-N	Human KIF3B	This study
pRRLsinPPT-EGFP-N	Human KIF3B (1–704)	This study
pRRLsinPPT-EGFP-N	Human KIF3B (1–662)	This study
pRRLsinPPT-EGFP-N	Human KIF3B (1–625)	This study
pRRLsinPPT-EGFP-N	Human KIF3B (1–579)	This study
pTagRFP-T-N	Human IFT20	Katoh et al. (2016)
pTagRFP-T-C	Human IFT22	Katoh et al. (2016)
pTagRFP-T-C	Human IFT25	Katoh et al. (2016)
pTagRFP-T-C	Human IFT27	Katoh et al. (2016)
pTagRFP-T-C	Human IFT38	Katoh et al. (2016)
pCAG-mCherry-C	Human IFT46	Katoh et al. (2016)
pCAG-mCherry-C	Human IFT52	Katoh et al. (2016)
pTagRFP-T-C	Human IFT54	Katoh et al. (2016)
pCAG-mCherry-C	Human IFT56	Funabashi et al. (2017)
pCAG-TagRFP-T-C	Human IFT56	Katoh et al. (2016)
pTagRFP-T-C	Human IFT57	Katoh et al. (2016)
pCAG2-mCherry-C	Human IFT70B	Katoh et al. (2016)
pCAG-mCherry-C	Human IFT74	Katoh et al. (2016)
pCAG-mCherry-N	Human IFT80	Katoh et al. (2016)
pCAG-mCherry-C	Human IFT81	Katoh et al. (2016)
pCAG-mCherry-C	Human IFT88	Katoh et al. (2016)
pCAG2-mCherry-C	Human IFT172	Katoh et al. (2016)
pmCherry-C1	IFT43	Hirano et al. (2017)
pCAG2-mCherry-C	IFT121	Hirano et al. (2017)
pCAG2-mCherry-C	IFT122	Hirano et al. (2017)
pCAG2-mCherry-C	IFT139	Hirano et al. (2017)
pCAG2-mCherry-C	IFT140	Hirano et al. (2017)
pCAG2-mCherry-C	IFT144	Hirano et al. (2017)
pmCherry-C1	TULP3	Hirano et al. (2017)

Table S2. Oligodeoxyribonucleotides used in this study

Name	Sequence (5'-3')	
pTagBFP-N-RV2	CGTAGAGGAAGCTAGTAGCCAGG	
KIF3B-genome-FW	GCTGCAATGACAACGGTACTG	
KIF3B-genome-RV	GATGTGGGTGAAGATATGGTC	
KIF3B-gRNA 2-S	CACCGAAGGTCTTGGGCATTTCAT	
KIF3B-gRNA 2-AS	AAACATGAAATGCCCAAGACCTTC	
KIF3B-Donor 2-AS	TCCAATGAAATGCCCAAGACCTTC	

References

Funabashi, T., Y. Katoh, S. Michisaka, M. Terada, M. Sugawa, and K. Nakayama. 2017. Ciliary entry of KIF17 is dependent on its binding to the IFT-B complex via IFT46-IFT56 as well as on its nuclear localization signal. Mol. Biol. Cell. 28:624–633. https://doi.org/10.1091/mbc.el6-09-0648

Hirano, T., Y. Katoh, and K. Nakayama. 2017. Intraflagellar transport-A complex mediates ciliary entry and retrograde trafficking of ciliary G protein-coupled receptors. *Mol. Biol. Cell*. 28:429–439. https://doi.org/10.1091/mbc.e16-11-0813

Katoh, Y., M. Terada, Y. Nishijima, R. Takei, S. Nozaki, H. Hamada, and K. Nakayama. 2016. Overall architecture of the intraflagellar transport (IFT)-B complex containing Cluap1/IFT38 as an essential component of the IFT-B peripheral subcomplex. J. Biol. Chem. 291:10962–10975. https://doi.org/10.1074/jbc.M116 .713883