

Figure S1. Erastin induces MAP1LC3B puncta formation, Related to Figure 1. Analysis of MAP1LC3B puncta formation in HCT116 (20 μ M, 6 h), CX-1 (20 μ M, 6 h), and HT1080 (10 μ M, 6 h) cells by image analysis. Images were acquired digitally from a randomly selected pool of 10 fields under each condition. (A) Representative images (green, MAPLC3B; blue, nucleus). (B) Quantitative analysis of MAP1LC3B puncta per cell (*, *P*<0.05 versus control group, *t* test). (C) Western blot analysis of MAP1LC3B protein expression in PANC1 and Calu-1 cells under normal cell culture condition for 24 hours.

Figure S2. BECN1 is required for system X_c inhibitor-induced ferroptosis, Related to Figure 1. (A) Western blot analysis of BECN1 expression in BECN1-knockdown cells. (B) Knockdown of BECN1 inhibited erastin (20 μ M)-, sulfasalazine (SAS, 1 mM)-, and sorafenib (SOR, 10 μ M)-induced cell death, but not RSL3 (1 μ M)-, FIN56 (5 μ M)- and buthionine sulfoximine (BSO, 100 μ M)-induced cell death at 24, 48, and 72 h (n=3, *,

P<0.05 versus control group, *t* test). (**C**) Analysis of cell death by propidium iodide staining (red) in indicated HT1080 cells with or without erastin (5 μM) and sulfasalazine (1 mM) for 24 hours. (**C**) The indicated BECN1-overexpressing cells were treated with erastin (20 μM for HCT116 and CX-1 cells; 5 μM for HT1080 cells) in the absence or presence of Z-VAD-FMK (20 μM), ferrostatin-1 (500 nM), liproxstatin-1 (200 nM), and necrosulfonamide (1 μM) for 24 h. Cell viability was assayed (n=3, *p < 0.05, t-test). (**D**) HCT116 cells were treated with staurosporine (1 μM) in the absence or presence of Z-VAD-FMK (20 μM), ferrostatin-1 (500 nM), and liproxstatin-1 for 24 h. Cell viability was assayed (n=3, *p < 0.05, t-test). (**E**) HCT116 cells were treated with TZC (TNF [50 nM], Z-VAD-FMK [20 μM], cycloheximide [10 μg/ml]) in the absence or presence of necrosulfonamide (1 μM), ferrostatin-1 (500 nM), and liproxstatin-1 for 24 h. Cell viability was assayed (n=3, *p < 0.05, t-test). (E) HCT116 cells were treated with TZC (TNF [50 nM], Z-VAD-FMK [20 μM], cycloheximide [10 μg/ml]) in the absence or presence of necrosulfonamide (1 μM), ferrostatin-1 (500 nM), and liproxstatin-1 for 24 h. Cell viability was assayed (n=3, *p < 0.05, t-test).

Figure S3. Effects of BECN1 and ATG5 on ferroptosis and autophagy, Related to Figure 2. (A) Representative images (green, MAPLC3B; blue, nucleus) of erastin (20

 μ M, 6 h)-induced MAP1LC3B puncta formation in HCT116 and CX-1 cells by image analysis. (**B**) Quantitative analysis of MAP1LC3B puncta per cell in panel A. Images were acquired digitally from a randomly selected pool of 10 fields under each condition. (**C**) Western blot analysis of ATG5 expression in ATG5-knockdown cells. (**D**) Knockdown of ATG5 inhibited erastin (20 μ M for HCT116 cells; 5 μ M for HT1080 cells)-, sulfasalazine (SAS, 1 mM)-, and sorafenib (SOR, 10 μ M)-induced cell death at 24, 48, and 72 h (n=3, *, *P*<0.05 versus control shRNA group, *t* test). (**E**) Knockdown of ATG5 inhibited erastin (20 μ M for HCT116 cells; 5 μ M for HT1080 cells)-, sulfasalazine (1 mM)-, and sorafenib (10 μ M)-induced MAP1LC3B puncta formation (*, *P*<0.05 versus control shRNA group, *t* test). (**F**) The indicated CX-1 cells were treated with erastin (20 μ M) or sulfasalazine (SAS, 1 mM) for 24 h. The relative levels of C11-BODIPY, MDA, Fe²⁺, and GSH were assayed (n=3, *, *P*<0.05 versus control group, *t* test). (**G**) The indicated HT1080 cells were treated with erastin (5 μ M) or sulfasalazine (1 mM) for 24 h. The relative levels of C11-BODIPY, MDA, Fe²⁺, and GSH were assayed (n=3, *, *P*<0.05 versus control group, *t* test).

Figure S4. BECN1 protein complex in ferroptosis and autophagy, Related to Figure 3. (A) The indicated HCT116 and CX-1 cells were treated with erastin (20 μ M) for 24 h. The relative mRNA levels of *SLC7A11* were assayed (n=3). RU, relative units. (B) IP analysis of BECN1-SLC7A11 and BECN1-PIK3C3 formation in HCT116 cells following erastin (20 μ M, 24 h) or HBSS (6 h) treatment.

Figure S5. AMPK is required for System X_c inhibitor-induced ferroptosis, Related to Figure 5. (A) Analysis of the levels of cell viability, MDA, GSH, and Fe²⁺ in the indicated CX-1 cells following erastin (20 µM) or sulfasalazine (SAS, 1 mM) treatment for 24 h (n=3, *, *P*<0.05 versus control group, *t* test). (B) Analysis of the levels of cell viability, MDA, GSH, and Fe²⁺ in CX-1 cells following erastin (20 µM) or sulfasalazine (1 mM) treatment with or without compound C (Comp C, 1 µM) for 24 h (n=3, *, *P*<0.05 versus erastin or SAS group, *t* test).

Figure S6. BECN1 contributes to the anticancer activity of erastin *in vivo*, Related to Figure 6. (A) Athymic nude mice were injected subcutaneously with the indicated CX-1 cells and treated with erastin (40 mg/kg/intraperitoneal injection, once every day) at day 7 for two weeks. Tumor volume was calculated weekly (n=5 mice/group, * p < 0.05, ANOVA *LSD* test). (B) In parallel, MDA, GSH, and Fe²⁺ levels in the isolated tumors at day 14 after treatment were assayed (n=5 mice/group).

REAGENT or RESOURCE	SOURCE	IDENTIFIER			
Human SLC7A11 Q-PCR primers:					
5'-TCCTGCTTTGGCTCCATGAACG-3' and 5'-	This paper				
AGAGGAGTGTGCTTGCGGACAT-3'					
Human RNA18S Q-PCR primers:					
5'-CTACCACATCCAAGGAAGCA-3' and	Sigma-Aldrich	This paper			
5'-TTTTTCGTCACTACCTCCCCG-3'					
Human FTH1 Q-PCR primers: 5'-					
TGAAGCTGCAGAACCAACGAGG-3' and 5'-	Sigma-Aldrich	This paper			
GCACACTCCATTGCATTCAGCC-3'					
Human FTL Q-PCR primers:					
5'-TACGAGCGTCTCCTGAAGATGC-3' and 5'-	Sigma-Aldrich	This paper			
GGTTCAGCTTTTTCTCCAGGGC-3'					
Human TFRC Q-PCR primers: 5'-					
ATCGGTTGGTGCCACTGAATGG-3' and 5'-	Sigma-Aldrich	This paper			
ACAACAGTGGGCTGGCAGAAAC-3'					
Human SLC11A2 Q-PCR primers: 5'-					
AGCTCCACCATGACAGGAACCT-3' and 5'-	Sigma-Aldrich	This paper			
TGGCAATAGAGCGAGTCAGAACC-3'					
Human SLC40A1 Q-PCR primers: 5'-					
GAGACAAGTCCTGAATCTGTGCC-3' and 5'-	Sigma-Aldrich	This paper			
TTCTTGCAGCAACTGTGTCACAG-3'					
pcDNA4-Becn1 S15A mutant primers:					
S15A-F.					
GCACCATGCAGGTGGCCTTCGTGTGCCAGC:	Sigma-Aldrich	This paper			
S15A-R,					
GCTGGCACACGAAGGCCACCTGCATGGTGC					

pcDNA4-Becn1 S30A mutant primers:		
S30A-F,		
CCCTGAAACTGGACACGGCTTTCAAGATCC	Sigma-Aldrich	This paper
TGGACC; S30A-R,		
GGTCCAGGATCTTGAAAGCCGTGTCCAGTT		
TCAGGG		
pcDNA4-Becn1 S90-93-96A mutant primers:		
S90-93-96A-F,		
CCAGCCAGGATGATGGCCACAGAAGCTGCC		
AACGCCTTCACTCTGATTGG;	Sigma-Aldrich	This paper
S90-93-96A-R,		
CCAATCAGAGTGAAGGCGTTGGCAGCTTCT		
GTGGCCATCATCCTGGCTGG		
pcDNA4-Becn1 T108A mutant primers:		
T108A-F,		
CATCTGATGGCGGCGCCATGGAGAACCTC;	Sigma-Aldrich	This paper
T108A-R,		
GAGGTTCTCCATGGCGCCGCCATCAGATG		
pcDNA4-Becn1 T119A mutant primers:		
T119A-F,		
CCGAAGACTGAAGGTCGCTGGGGGACCTTTT		
TGA;	Sigma-Aldrich	This paper
T119A-R,		
TCAAAAAGGTCCCCAGCGACCTTCAGTCTT		
CGG		

pcDNA4-Becn1 S113A mutant primers:				
113Aa-		reverse,		
CATGGAGAACCTCAGCCAGACAGATGTGGA				
TC;	129Aa-	forward,		
GATCCACATCTGTCTGGCTGAGGTTCTCCAT		Sigma-Aldrich	This paper	
G;	1Aa-forward	(BamH1),	6	
AGCTCGGATCCATGGAAGGGTCTAAGACGT				
CC;	450Aa-reverse	(Not 1)		
GTAGTCGCGGCCGCTTTGTTATAAAATTGTG				
AGGAC				

Table S1. Primers used for mutant and qPCR, related to STAR Methods