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Identifying Genes Whose Mutant Transcripts
Cause Dominant Disease Traits
by Potential Gain-of-Function Alleles

Zeynep Coban-Akdemir,1,13 Janson J. White,1,13 Xiaofei Song,1 Shalini N. Jhangiani,2 Jawid M. Fatih,1

Tomasz Gambin,3 Yavuz Bayram,1,4 Ivan K. Chinn,5,6 Ender Karaca,1 Jaya Punetha,1 Cecilia Poli,5,6,7

Baylor-Hopkins Center for Mendelian Genomics, Eric Boerwinkle,2,8 Chad A. Shaw,1,9

Jordan S. Orange,5,6 Richard A. Gibbs,1,2 Tuuli Lappalainen,10,11 James R. Lupski,1,2,5,12,*
and Claudia M.B. Carvalho1,*

Premature termination codon (PTC)-bearing transcripts are often degraded by nonsense-mediated decay (NMD) resulting in loss-of-

function (LoF) alleles. However, not all PTCs result in LoF mutations, i.e., some such transcripts escape NMD and are translated to

truncated peptide products that result in disease due to gain-of-function (GoF) effects. Since the location of the PTC is a major factor

determining transcript fate, we hypothesized that depletion of protein-truncating variants (PTVs) within the gene region predicted to

escape NMD in control databases could provide a rank for genic susceptibility for disease through GoF versus LoF. We developed an

NMD escape intolerance score to rank genes based on the depletion of PTVs that would render them able to escape NMD using the

Atherosclerosis Risk in Communities Study (ARIC) and the Exome Aggregation Consortium (ExAC) control databases, whichwas further

used to screen the Baylor-Center for Mendelian Genomics disease database. This analysis revealed 1,996 genes significantly depleted for

PTVs that are predicted to escape from NMD, i.e., PTVesc; further studies provided evidence that revealed a subset as candidate genes

underlying Mendelian phenotypes. Importantly, these genes have characteristically low pLI scores, which can cause them to be over-

looked as candidates for dominant diseases. Collectively, we demonstrate that this NMD escape intolerance score is an effective and effi-

cient tool for gene discovery in Mendelian diseases due to production of truncated or altered proteins. More importantly, we provide a

complementary analytical tool to aid identification of genes associated with dominant traits through a mechanism distinct from LoF.
Introduction

Translation-dependent nonsense-mediated decay (NMD)

is an evolutionarily conserved mRNA surveillance mecha-

nism that ensures dynamic regulation and high fidelity

of gene expression in eukaryotic cells. It is a well-estab-

lished ‘‘rule’’ that multi-exon transcripts that harbor termi-

nation codons out of their normal reading frame context,

generally termed premature termination codons (PTCs),

are likely to be subject to mRNA degradation by the

NMD mRNA surveillance machinery and thus result in a

predicted loss-of-function (LoF) variant or null allele.

PTCs can be introduced into transcripts by various

mechanisms including protein-truncating variants (PTVs;

stopgain and indels), mRNA isoforms, and alternative

translation.1–3

In mammalian cells, NMD requires an exon junction

complex (EJC) that is comprised of a dynamic group of

proteins that are positioned 20–24 nucleotides (nt) up-

stream of exon-exon boundaries by the splicing machin-

ery in the nucleus.4–6 After an mRNA is exported from
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the nucleus, EJCs are removed during the pioneer round

of translation by a translating ribosome. According to the

EJC-dependent model for governing NMD, if a PTC is

located more than 50–55 bp upstream of the last exon-

exon junction, the transient interaction between the

downstream EJC and the terminating ribosome is pre-

dicted to elicit NMD and degrade the mRNA harboring

a PTC, i.e., NMDþ transcripts.3,4,7–13 On the other

hand, a truncating variant that results in a PTC located

within the last 50–55 bp of the penultimate exon, or

the entire last exon, is predicted to escape from NMD

(NMD� transcripts). The EJC-dependent model is well

supported by a preponderance of experimental data

that examine NMD efficiency, and the 50-bp rule alone

accurately predicts NMD sensitivity in �85% of cancer-

related mutations14–17 although a number of exceptions

have been reported.

Approximately one-third of mRNAs containing patho-

genic variants in genetic disorders and cancer are subject

to frameshift or nonsense mutations that result in the

generation of PTCs.18,19 Transcripts with PTCs located
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in the penultimate and last exon of genes can be NMD�,
giving rise to stable mRNA translated into mutant pro-

teins that can have a potent dominant-negative activity,

thereby leading to human disease traits responsible for a

broad spectrum of clinical phenotypes.2 Importantly,

such PTVs that escape NMD (PTVesc) may be erroneously

interpreted as LoF alleles when in fact they behave as

gain-of-function (GoF) alleles; examples include DVL1

(MIM: 601365), causing Robinow syndrome autosomal-

dominant 2 (DRS2 [MIM: 616331]); DVL3 (MIM:

601368), causing Robinow syndrome autosomal-domi-

nant 3 (DRS3 [MIM: 616894]); and CRX (MIM:

602225), causing Leber congenital amaurosis 7 (LCA7

[MIM: 613829]). Moreover, some of those genes cause

disease only when carrying NMD� variants, so current

tools to predict variant pathogenicity that rely on LoF

intolerance or haploinsufficiency scores20–22 will fail to

inform probability of pathogenicity due to transcripts

escaping from NMD and being translated into mutant

proteins.

The systematic application of the 50-bp rule for NMD

prediction of transcripts with a truncating variant requires

the identification of the precise location of the predicted

PTC as well as the relative position of the last EJC. Notably,

there may be an unexpectedly large distance between the

location of a given frameshifting insertion-deletion variant

(indels) and the next predicted PTC in some transcripts,

sometimes surpassing the last EJC, that can result in

NMD� transcripts. As a result, those transcripts may trans-

late into proteins with GoF properties.

Here, to investigate the potential role of escape from

NMD for variant alleles implicated in human disease, we

designed an efficient tool, NMDEscPredictor, to predict

whether a given frameshifting indel will lead to NMDþ

or to NMD� transcripts based on the relative location of

the variant within the gene. Using this algorithm, we

computationally classified PTVs, including frameshift

insertion-deletions (indels) and stopgains, as NMDþ and

NMD� in two control databases, the Atherosclerosis Risk

in Communities Study (ARIC)23 and the Exome Aggrega-

tion Consortium (ExAC).20 We then developed an NMD

escape intolerance score to rank eachmulti-exon canonical

mRNA transcript in the genome based on the disequilib-

rium between expected and observed number of NMD�

variants relative to the NMDþ variants in a given control

database. Our analysis revealed a total of 1,996 genes

significantly depleted (i.e., ranked in the top 5%) for

NMD� variants in either control database, a relevant

(98%) portion of those are likely to be tolerant to LoF.

The resulting list includes genes for which C-terminal

truncation does not lead to haploinsufficiency, for

instance,DVL1 and REST (MIM: 600571), leading to hered-

itary gingival fibromatosis (HGF [MIM: 617626]), that

provide poignant examples.24,25

These findings support the hypotheses that mapping

the location of PTV mutations within a gene is relevant

for assessing the variant pathogenicity as well as providing
172 The American Journal of Human Genetics 103, 171–187, August
information concerning disease mechanism as haploinsuf-

ficiency or potentially GoF. Moreover, we show that

ranking genes based on the derived NMD escape intoler-

ance score is an effective and efficient tool for gene discov-

ery and may facilitate elucidating the underlying biology

of Mendelian disease traits due to production of truncated

or C-terminally altered proteins.
Material and Methods

Whole-Exome Sequencing and Annotation
Whole-exome sequencing was performed at the Human

Genome Sequencing Center (HGSC) at Baylor College of Medi-

cine through the Baylor-Hopkins Center for Mendelian Geno-

mics (BHCMG) initiative. DNA was obtained from the subjects

and unaffected family members after written informed consent

and the study was approved by the institutional review board

at Baylor College of Medicine (protocol no. H-29697). Using

1 mg of DNA, an Illumina paired-end pre-capture library was

constructed according to the manufacturer’s protocol (Illumina

Multiplexing_SamplePrep_Guide_1005361_D) with modifica-

tions as described in the BCM-HGSC Illumina Barcoded Paired-

End Capture Library Preparation protocol. Pre-capture libraries

were pooled into 4-plex library pools and then hybridized in so-

lution to the HGSC-designed Core capture reagent (52 Mb,

NimbleGen) or 6-plex library pools using the custom VCRome

2.1 capture reagent (42 Mb, NimbleGen) according to the man-

ufacturer’s protocol (NimbleGen SeqCap EZ Exome Library SR

User’s Guide) with minor revisions. The sequencing run was per-

formed in paired-end mode using the Illumina HiSeq 2000 plat-

form, with sequencing-by-synthesis reactions extended for 101

cycles from each end and an additional 7 cycles for the index

read. With a sequencing yield of 11 Gb, the sample achieved

92% of the targeted exome bases covered to a depth of 203 or

greater. Illumina sequence analysis was performed using the

HGSC Mercury analysis pipeline,26,27 which moves data through

various analysis tools from the initial sequence generation on

the instrument to annotated variant calls (SNPs and intra-read

insertions/deletions, i.e., indels). Variants were called using the

ATLAS2 variant calling method and the Sequence Alignment/

Map (SAMtools) suites and annotated with an in-house-devel-

oped Cassandra annotation pipeline that uses Annotation of Ge-

netic Variants (ANNOVAR)28 and additional tools and databases.
Variant Prioritization
Two types of variants were selected for analysis: indels and stop-

gains. First, indels and stopgains were retrieved from unfiltered

vcf files of the Baylor-CMG (N ¼ 6,109 individuals) and Athero-

sclerosis Risk in Communities Study (ARIC) (N ¼ 10,940 indi-

viduals) databases for further analysis; individual personal

genome raw data, not ‘‘massaged’’ by joint calling or forced call-

ing methods, was utilized. For frameshifting variants, further ex-

amination of the insertion to deletion ratio revealed that this

metric is similar among the databases: Baylor-CMG (0.42),

ExAC (0.43), and ARIC (0.39). The retrieved indels and stopgain

variants were reannotated using ANNOVAR28 against the Gen-

code v.19 transcript reference set including 95,379 transcripts.

Second, off-target indels and stopgain variants were removed.

Then, we performed variant prioritization as follows. If an on-

target indel or stopgain variant has a variant read number (vR)
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Figure 1. NMDEscPredictor Algorithm
Workflow
Horizontal lines denote transcripts with
alternating different exons shaded green
or blue. The exon junction complex is
demarcated by a light red hexagon and
the position of stop codon is shown
(lollipop structure with filled black dia-
mond on top). For each multi-exon tran-
script in the Ensembl reference set
(version 19), we first determined all po-
tential PTCs (shown as lollipop structures
with filled red diamonds marking the
map position in transcript) in the �1
and þ1 frames. Second, we identified
PTCs that may result in the transcript
escaping from NMD based on the 50-bp
rule (lollipop structures with filled purple
diamond).16–18 At the third step of the al-
gorithm, we flagged the PTC upstream of
the first PTC that can escape from NMD
and labeled it as the boundary PTC
(lollipop structure with filled starred red
diamond). Transcripts with frameshift
(fs) variants located upstream of the
boundary PTC are predicted to undergo
degradation by NMD (NMDþ transcripts
and NMDþ variants) (filled black circle),
whereas variants located downstream of
the boundary PTC are predicted to escape
NMD (NMD� transcripts and NMD� var-
iants) (open white circle).
greater or equal to 5, it was retained (Figure S1). Third, the inter-

nal database frequency was computed for each indel or stopgain

variant in the Baylor-CMG and ARIC databases. Rare indels

and stopgain variants were extracted for further analysis (Bay-

lor-CMG database frequency % 0.01 and ARIC database fre-

quency % 0.01) (Figures S2–S4). At this step, in-frame indels

were removed from the analysis. Version 0.3.1 of the Exome Ag-

gregration Consortium (ExAC) dataset was used for our analysis

as another control dataset. Variants in the ExAC database were

included in further analysis according to the following rules:

(1) it has to meet the high-quality variant criteria set by ExAC,

(2) its minor allele frequency (MAF) should be less than or equal

to 0.01, and (3) it has to be present in the Ensembl v.19 canon-

ical transcript of the gene.

Prediction of NMD Incompetent Frameshifting Indels

and Stopgain Variants: NMDEscPredictor
First, to predict frameshifting indels that potentially lead the

transcript to be subject to degradation (NMDþ) or to escape

degradation (NMD�), we designed an algorithm for computa-

tional prediction of frameshifting indels as NMDþ versus

NMD�, NMDEscPredictor. For each Ensembl transcript in the

v.19 transcript reference set consisting of 95,379 transcripts in to-

tal, coding sequences were retrieved using ExtractTranscriptSeqs

function in Genomic Features Bioconductor Package. We first
The American Journal of Human G
removed 7,471 single-exon transcripts

from further analysis. For the remaining

87,908 transcripts, we predicted each

possible PTC in the �1 frames and þ1

frames. For instance, �1 frame indels

lead the reading frame to shift one base
ahead, due to the removal of one base pair or the addition of

two base pairs. Likewise, þ1 frame indels lead the reading frame

to shift one base behind, due to the addition of one base pair or

the removal of two base pairs.29 Using the 50-bp rule,14–16 we

classified PTCs into two categories, those that may lead the tran-

script to escape from NMD (NMD�) or not (NMDþ) (Figure 1).

Then we flagged the PTC right before the first PTC that may

lead the mutant transcript to escape from NMD: that is the

boundary PTC that separates the transcript into two regions

regarding the likely NMD fate of a variant allele. For this predic-

tion we include only frameshifting indels and stopgain variants

annotated according to any of the canonical transcripts retrieved

from the table placed in the ExAC database repository

(fordist_cleaned_exac_r03_march16_z_pli_rec_null_data.txt). In

addition, we removed from further analysis frameshifting indels

in which their annotated transcripts did not present with any

PTC or boundary PTC in either the �1 or þ1 frame.

Using this algorithm, we constructed a publicly available

webtool, NMDEscPredictor to predict whether a frameshifting

indel will lead the transcript to escape or be degraded by NMD

(Figure S5).

Development of a NMD Escape Intolerance Score
After classification of frameshifting indels and stopgain variants

as potential NMDþ and NMD� transcripts, we designed an
enetics 103, 171–187, August 2, 2018 173



NMD escape intolerance score to rank each gene based on

the probability of depletion of NMD� versus NMDþ variants in

the control databases, ARIC and ExAC. NMD� versus NMDþ

variant numbers were normalized by rare synonymous variant

count in each region. Normalization based on the synonymous

variant count was preferred to the coding sequence length

because it has a higher performance compared to the coding

sequence length normalization. For instance, the overlap be-

tween the top 5% depleted genes for NMD� variants in either

control database and our control OMIM list of genes (Table S1)

that cause disease via potential gain-of-function (n ¼ 39)

drops significantly using coding-sequence length normalization

(28.2%) compared to synonymous variant count normalization

(33.33%) (Figure S4). The probability of depletion (ratio of the

observed/expected # of NMD� variants) per canonical transcript

was computed separately for each mutational type (�1 frame-

shifting indels, þ1 frameshifting indels and stopgain variants)

given a Poisson distribution. The expected number of NMD� var-

iants were defined as the total number of variants in NMD� and

NMDþ regions multiplied by the ratio of the number of rare syn-

onymous variants (MAF % 0.01) in the NMD� region to the total

number of rare synonymous variants. The expected number of

NMD� variants per canonical transcript for each mutational

type was calculated as follows (Figure S6):
Expected number of NMD�variants per canonical transcript ¼� f# of NMDþvariantsþ# of NMD�variantsg
ðthe total # of rare synonymous variants=# of rare synonymous variants in NMD�regionÞ

�

The NMD escape intolerance score as the probability of enrich-

ment per canonical transcript was precomputed for each muta-

tional type, separately given the expected number of NMD�

variants calculated for each category. To generate a combined

NMD escape intolerance score for each canonical transcript, we

used Fisher’s combined p value test. This test integrates all p values

for a particular canonical transcript into a statistic, cc, according to

Fisher’s method,30 where

cc ¼ log
Xk

i¼1

�2 logðpiÞ

pi is the p value obtained via Poisson distribution for the ith sub-

group mutational type, and k the number of subgroup mutational

types for a canonical transcript. The final p value for the entire ca-

nonical transcript is calculated as the probability of observing a

value no less than cc, based on a chi-square distribution with 2k

degrees of freedom.

Protein-Protein Interaction Analysis
To measure how connected a gene is to its neighbors in a physical

protein-protein interaction network, we calculated a degree cen-

trality measure, i.e., the number of edges that a node has in a

network, for each gene using the physical interactions network

data provided by GeneMania in a R/Bioconductor package named

SpidermiR.31 Then, genes were annotated with their PFAM protein

domains extracted and their structurally resolved interaction

interfaces.
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Statistical Analysis
In summary, we performed permutation tests (the number of per-

mutations¼ 10,000) for allele-specific expression analyses.We per-

formed Fisher’s exact test for the pLI comparisons and the Mann-

Whitney U test for tissue-specific expression analysis and degree

centralitymeasure analysis inprotein-protein interactionnetworks

using the physical interactions network data provided by

GeneMania in a R/Bioconductor package named SpidermiR. We

also performed binomial test to compare the ratios in proportions

of genes that have their NMD� regions overlapping with Pfampro-

tein domains and structurally resolved interaction interfaces.
Results

NMDEscPredictor Algorithm

For any given frameshifting indel, there could be a large dis-

tance, in base pairs, between the variant location and the

genic map position of the next ‘‘out-of-frame’’ PTC. There-

fore, an accurate annotation of the resulting PTC based on

the 50-bp rule14–16 is crucial for frameshifting indels. To

accomplish this, we designed an algorithm to classify frame-

shifting indels into two categories based on annotationof re-
gions in the transcript: NMD competent (NMDþ) and NMD

incompetent (NMD�) regions (Figure 1). The algorithm

workflow is described in Figure 1 andMaterial andMethods.

In this algorithm, we retrieved all of the putative PTCs in the

�1 andþ1 frameof eachEnsembl transcript and determined

which PTCs can escape from NMD based on the 50-bp

rule.14–16Foreachtranscriptweflagged the lastNMD-compe-

tent PTC. This ‘‘boundary PTC’’ establishes a transcript posi-

tion,orboundary,betweenpotentialNMDþ andNMD�gene

regions given the assumption that any frameshifting indel

placed after the boundary PTC is predicted to utilize the

next PTC, which is predicted to escape from NMD. In aggre-

gate, assessing if any frameshifting indel will fall into the

definedNMDþ or NMD� region in a transcript allows a rapid

prediction of whether an aberrant transcript will likely be

subject to nonsense mediated mRNA decay (NMDþ) or

escape from NMD (NMD�) and produce an aberrant prema-

turely terminated protein (Figure 1). We developed a web-

based tool, NMDEscPredictor, to enable rapid query of

NMD competency for any given frameshift allele (Figure S5).
Evaluation of NMDEscPredictor using Experimental

Data

To evaluate the prediction accuracy of the algorithm

using experimental data, we applied NMDEscPredictor
2, 2018



for frameshifting indels to multi-tissue RNA-seq data and

WES data from 1,634 samples in 173 individuals generated

by GTEx.14,32,33 We used the allele-specific expression

(ASE) values assessed across multiple tissues from the

GTEx RNA-seq dataset that detected expression levels of

two haplotypes of an individual. For variants that elicit

NMD, NMDþ, we anticipate that the average ratio of

variant read (vR) count to total read (tR) count across all

samples harboring those variants should be close to 0.

Conversely, for variants that escape from NMD, NMD�,
we expect the average ratio of vR count to tR count across

all samples carrying those variants should be close to 0.5.

Using NMDEscPredictor, we predicted NMDþ and NMD�

mutant transcripts of 344 distinct frameshifting indels

across 43 tissues available in the GTEx data. Our analysis

revealed that NMDþ frameshifting indels present with a

significantly lower ratio of vR count to tR count than

NMD� frameshifting indels across 20 tissues out of 43 tis-

sues examined in total (permutation test, Bonferroni-

adjusted p value % 0.05, Figure 2, Table S2), supporting

our hypothesis. Our analysis also shows that the p values

change significantly according to the number of data

points available for a given tissue (Table S2 and

Figure S7), so tissues with very few variants could not be

used to evaluate our tool. The observed p values are also

impacted by the fact that the variance in ASE values of

NMDþ variants is higher than the variance in ASE values

of NMD� variants.

Of note, further examination of the NMD� tran-

scripts uncovered the frameshifting indel variant

chr6:26,465,566_CAA>C that is located in exon 4 of

BTN2A1 transcript ENST0000042938 (7 coding exons

in total). Although this variant maps nearly in the

middle of the gene, the transcript was predicted by

NMDEscPredictor to escape from NMD, on the basis of

the location of the boundary PTC. Indeed, the average ra-

tio of vR count to tR count for this variant was quantified

as 0.478 across different tissues from GTEx RNA-seq data,

which supports the computational prediction (Figure S8).

Up to 34% of Frameshifting Indels and Stopgain

Variants Lead to NMD� Transcripts

Prevailing thought assumes that NMD� gene regions form

only a small portion of any transcript based on the 50-bp

rule;14–16 therefore, most PTVs are considered likely to

fall into larger-sized NMDþ regions (Figure 1) and thereby

result in LoF alleles. However, the analysis of Ensembl

GENCODE v.19 transcripts using NMDEscPredictor indi-

cates that 36,880 out of 72,132 (51.1%) and 37,655 out

of 76,506 transcripts (49.2%) with at least 2 exons and

with a boundary PTC present have NMD� regions located

downstream of 85% of normalized transcript length in

the �1 and þ1 frame, respectively. Remarkably, there are

still 17,094 (23.6%) and 17,281 (22.5%) transcripts that

have NMD� regions that encompass at least one third of

the coding length in the �1 and þ1 frame, respectively

(Figure 3A). Similarly, further investigation of exonic loca-
The Americ
tions of boundary PTCs revealed that 25,532 (35.3%) and

24,540 (32.07%) of transcripts have their boundary PTCs

located at least one exon upstream of their penultimate

exons, in either �1 or þ1 frame, respectively (Figure 3B).

In summary, despite the observation that NMD� regions

span 15% of the coding sequence length on average, there

are still 22%–23% of transcripts that have NMD� regions

encompassing more than a third of their coding sequence

length.

The algorithm for predicting whether any frameshifting

indel would trigger NMD (NMDþ) or escape from NMD

(NMD�) was implemented on WES data from 6,109 sam-

ples in the Baylor-CMG database, 10,940 samples in the

ARIC database, and 60,706 samples in ExAC database

(Figure S9). As a control, the algorithm was applied to

32,273 and 84,507 frameshifting indels retrieved from

the ARIC and ExAC control databases, respectively. We

then removed variants that could not be annotated to

any canonical transcript in Ensembl v.19 as well as variants

mapped to transcripts without a predicted PTC, without a

boundary PTC, or mapped to single-exon canonical tran-

scripts. The algorithm output led to the computational pre-

diction of frameshifting indels obtained from the ARIC

database that were classified as: 69.41% and 68.30% as po-

tential NMDþ, 30.59 and 31.70% as NMD� in �1 and þ1

frames, respectively (Figure 4A). Concordantly, the frame-

shifting indels retrieved from ExAC database were as

follows: 70.26% and 68.51% as potential NMDþ and

29.74% and 31.49% as potential NMD�, in �1 and þ1

frames, respectively (Figure 4B). As a database including

personal genomes from subjects presenting with diverse

Mendelian phenotypes (the ‘‘disease cohort’’), the algo-

rithm was applied to 25,351 frameshifting indels available

in Baylor-CMG data. We identified 68.28% and 65.59% as

potential NMDþ and 31.72% and 34.41% as potential

NMD� (Figure 4C) in �1 and þ1 frames, respectively. In

summary, these results suggest that the fraction of frame-

shifting indels that are predicted to be NMD� versus

NMDþ in the CMG database, highly enriched for genome

variant data of individuals with diverse ‘‘disease pheno-

types’’ (i.e., a disease population), is significantly higher

than that observed in the ARIC and ExAC control data-

bases in �1 frame (p values 0.043 and 0.0001) and þ1

frame (p values 4.47e�5 and 3.48e�5). Of note, the frac-

tions of frameshifting indels that are predicted to be

NMD� versus NMDþ in the ARIC and ExAC databases

are not significantly different from each other (p values

0.07 and 0.69) in �1 and þ 1 frames, respectively (Fisher’s

exact test).

Likewise, when we grouped stopgain variants into

potential NMDþ and NMD� categories on the basis of

the 50-bp rule14–16 in each of these three different

datasets, the algorithm outputs were highly comparable

to each other; i.e., 76.26% and 75.26% of stopgain

variants were classified as potential NMDþ, whereas

23.74% and 24.74% were predicted to escape from

NMD (NMD�) in the ARIC and Baylor-CMG databases,
an Journal of Human Genetics 103, 171–187, August 2, 2018 175
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Figure 2. Evaluation of the NMDEscPredictor Algorithm Performance using GTEx Data
To test the algorithm performance in an independent dataset, we used GTEx multi-tissue RNA-seq and WES dataset to predict
NMD incompetency of 344 distinct frameshift variants available in GTEx. The frameshift variants predicted to be NMDþ by
NMDEscPredictor have a significantly lower ratio of variant read count (VAR_COUNT) to the total read count (TOTAL_COUNT)
compared to those frameshift variants predicted to be NMD�. This is consistent with the hypothesis that NMDþ variants will lead
to mRNA degradation. VAR_COUNT to TOTAL_COUNT values were extracted from allele-specific expression available in the GTEx
dataset. Tissue abbreviations are denoted as follows: ADPSBQ, adipose, subcutaneous; ARTAORT, artery, aorta; ARTTBL, artery, tibial;
BRNACC, brain, anterior cingulate cortex; BRNCTXA, brain, cortex; BRNCTXB, brain, frontal cortex; BRNHPT, brain, hypothalamus;
BRNPTM, brain, putamen (basal ganglia); BRNSNG, brain, substantia nigra; ESPMCS, esophagus, mucosa; FIBRBLS, cells, transformed
fibroblasts; HRTAA, heart, atrial appendage; HRTLV, heart, left ventricle; LUNG, lung; MSCLSK, muscle, skeletal; PNCREAS, pancreas;
SKINS, skin, sun exposed (lower leg); WHLBLD, whole blood.
respectively. Importantly, both datasets ARIC (population

control) and Baylor-CMG were generated using the same

WES experimental platform (Nimblegen capture/Illumina

sequencing)34 and computational algorithm (Mercury
176 The American Journal of Human Genetics 103, 171–187, August
pipeline) that generated binary alignment/map (BAM)

and variant call files (VCF).26,27 Similarly, in the ExAC data-

base, we predicted 77.01% of stopgain variants as potential

NMD triggering (NMDþ) and 22.99% of stopgain variants
2, 2018
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Figure 3. Distribution of the Boundary PTCs in All Ensemble Multi-exon Transcripts
Above demarcates an individual transcript (horizontal rectangular structure) with exon junction and boundary PTC (lollipop with red
filled diamond) shown as in Figure 1. Horizontal lines with double arrowheads demarcate NMDþ (pink) and NMD� (purple) regions.
Each transcript is partitioned into two separate regions, i.e., NMDþ and NMD�, based on the location of the boundary PTCs.
(A) The bar plots show the relative distribution of boundary PTCs per transcript (percentile). About 51.1% and 49.2% of all
Ensemble multi-exon transcripts have their boundary PTCs located within 85% of the normalized transcript length in the
�1 and þ1 frame, respectively. However, there are still a quarter of transcripts that have their NMD� regions encompassing
more than a third of their coding sequence length.
(B) The bar plots demonstrate the distribution of boundary PTC locations with regards to the distance to the final exon of a given tran-
script. About 35.3% and 33.4% of all Ensemble multi-exon transcripts have their boundary PTCs located upstream of their penultimate
exon in the �1 and þ1 frame, respectively.
as escaping from NMD (NMD�) (Figure 4). The fraction of

stopgain variants that are predicted to be NMD� versus

NMDþ in the Baylor-CMG database is significantly higher

than the ARIC and ExAC databases (p values 0.015 and

3.88e�6; Fisher’s exact test), respectively. On the other

hand, the fraction of stopgain variants that are predicted

to be NMD� versus NMDþ in the ARIC database is signifi-

cantly higher than the ExAC database with p value 0.01

(Fisher’s exact test).

Genes Depleted for NMD� Protein Truncating Variant

(PTVesc) in Control Databases

For a given gene under negative selection, the observed

number of PTVs is expected to be less than the expected

number of PTVs under a neutral model. A number of

studies have developed LoF intolerance scores for testing

a gene’s tolerance to haploinsufficiency under a dominant

disease model.20,22,35,36 pLI score based on the compari-

son of observed and expected number of LoF variants,

i.e., nonsense and canonical splice site SNVs, per gene is

defined as the probability of a gene’s falling into the hap-

loinsufficiency gene category. Therefore, genes with high
The Americ
pLI scores, i.e., (pLI R 0.9), are classified as LoF

intolerant.20 It is important to note that the LoF-intol-

erant gene classification can be biased toward identifying

genes that can cause human disease due to haploinsuffi-

ciency, mainly amorphic (i.e., null alleles) or hypomor-

phic mutations.37 These statistical inference methods are

perhaps not applicable to the discovery of genes such as

DVL1 that may cause disease by the presence of antimor-

phic or neomorphic mutations; i.e., GoF versus LoF al-

leles.37 To find variants potentially leading to antimorphic

or neomorphic alleles, we compared the expected number

of PTVesc to the observed number of predicted PTVesc in

both ARIC and ExAC databases (Figure 5A). These data

were used to develop a NMD escape intolerance score; a

publicly available online tool. This analysis showed that

863 and 1,385 genes are significantly depleted for PTVesc

in the ARIC or ExAC databases, respectively (i.e., ranked

in the top 5%) (Figures S10, S11, 5B, and 5C). Of

those, 252 genes display depletion for truncating variants

in NMD� region in both ARIC and ExAC databases

(Figure 5D, Tables S3 and S4). In order to quantify how

often those levels of overlap might occur by chance, we
an Journal of Human Genetics 103, 171–187, August 2, 2018 177
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Figure 4. Classification of Protein-Truncating Variants in ARIC, Baylor-CMG, and ExAC Databases
Bar charts display the percentage of �1 frameshift, þ1 frameshift, and stopgain variants as predicted to be NMD� and NMDþ according
to NMDEscPredictor in the (A) ARIC database, (B) Baylor-CMG database, and (C) ExAC database.
performed a permutation test which shows that the

observed number of overlapping genes (252) stands at

14.6 standard deviations away from the average number

of overlapping genes in 10,000 permutations (115)

(Figure S12). This shows that the overlap between ARIC

and ExAC datasets is higher than expected by chance.

This percentage of overlap (252/863 ¼ 29.2%) is also

aligned with the 29% overlap between ARIC and ExAC

frameshift variants and the 46% overlap between ARIC

and ExAC stopgain variants (Figures S13 and S14). Among

these genes, the top five genes that show the most deple-

tion in ARIC or ExAC databases are shown in Table 1.
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We found that this set of genes depleted inbothdatabases

(n ¼ 252) does not differ in number of exons relative to

genes not depleted in either control database (n ¼ 14,425)

indicating that depletion of variants in NMD� regions, are

not due to a size bias (Mann-Whitney U test p value ¼
0.35) (Figure 5E). Further examination of the 252 genes re-

vealed that they have a significantly higher proportion of

genes with their pLI < 0.9 (proportion ¼ 0.996) compared

to genes that are not depleted for truncating variants in

NMD� region in either ARIC and ExAC databases (n ¼
14,425 genes, proportion ¼ 0.781, Fisher’s exact test

p value¼1.49e�25). Likewise, the top5%of genes depleted
2, 2018
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Figure 5. Features of the Top 5% Depleted Genes for NMD� Variants in Control Databases
(A) General structure of a transcript displaying NMDþ (pink) and NMD� (purple) regions; lightning symbols represent variant location.
Vertical black lines represent potential PTCs.
(B and C) To identify genes that were depleted for truncating variants in NMD� region compared to NMDþ region in control databases, we
compared theexpected to theobservednumberofNMD�variantspergene (please seeMaterial andMethods section)variants in the (B)ARIC
database and (C) ExAC database. Genes depleted for NMD� variants in both (ARIC and ExAC) were shown as orange filled dots; genes
depleted forNMD� variants only inARICdatabasewere shownas black filled dots; genes depleted forNMD� variants only in ExACdatabase
were shownaspurplefilleddots andgenesnotdepleted forNMD�variants ineithercontroldatabasewere shownasdarkgreenempty circles.
(D) The Venn diagram shows 1,385 and 863 genes as the top 5% depleted genes for variants in NMD� region in the ExAC and ARIC
databases, respectively; 252 genes were common to both.
(E) The violin plots show that genes depleted for NMD� variants in both databases (ARIC and ExAC; filled yellow violin) do not signif-
icantly differ in number of exons from genes not depleted for NMD� variants in either control database (neither ARIC or ExAC; open
green violin).

(legend continued on next page)
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Table 1. Top Five NMD� Intolerant Genes, �1, þ1 Frameshifting Indels and Stopgain Categories, in ExAC/ARIC Databases (DB)

DB Cat.
Rank/Total
Transcripts Gene pLI Chr # of Exonsa

# of NMDþ

PTVs
# of NMD�

PTVs
MIM # (Gene/
Phenotype)

ExAC �1 1/9,319 TRIM22 3.15e�12 11 7 6 0 NA

ExAC �1 2/9,319 TGIF1 0.09 18 3 5 0 602630/142946

ExAC �1 3/9,319 MRPL15 1.33e�5 8 5 6 0 NA

ExAC �1 4/9,319 NPHS2 9e�3 1 8 5 0 604766/600995

ExAC �1 5/9,319 NXPE4 2.74e�8 11 5 8 0 NA

ExAC þ1 1/8,814 CLCC1 0.026 1 10 10 0 NA

ExAC þ1 2/8,814 CLN6 0.381 15 7 4 0 606725/601780

ExAC þ1 3/8,814 CPA4 3.54e�7 7 11 6 0 NA

ExAC þ1 4/8,814 SLFN12 5.03e�10 17 3 10 1 NA

ExAC þ1 5/8,814 SLX4IP 2.33e�5 20 7 9 4 NA

ExAC sg 1/12,086 CNPPD1 1.63e�5 2 8 8 0 NA

ExAC sg 2/12,086 POP1 2.42e�8 8 15 16 0 602486/617396

ExAC sg 3/12,086 SLC3A1 7.54e�16 2 10 16 0 104614/220100

ExAC sg 4/12,086 LY6G6F 2.55e�6 6 6 5 0 NA

ExAC sg 5/12,086 PUS3 1.08e�5 11 3 9 0 616283/617051

ARIC �1 1/5,769 IFNAR2 0.005 21 8 4 0 602376/616669

ARIC �1 2/5,769 NBPF20 0.0004 1 110 8 0 NA

ARIC �1 3/5,769 PPIP5K1 0.102 15 29 3 1 NA

ARIC �1 4/5,769 TM7SF3 0.089 12 12 5 0 NA

ARIC �1 5/5,769 ZNF669 0.06 1 4 3 0 NA

ARIC þ1 1/5,264 TET2 7.05e�26 4 9 13 0 612839/614286

ARIC þ1 2/5,264 PPIP5K1 0.102 15 29 3 0 NA

ARIC þ1 3/5,264 CSF3R 1.41e�26 1 15 5 0 138971/617014

ARIC þ1 4/5,264 UBXN11 1.2e�10 1 14 5 0 NA

ARIC þ1 5/5,264 ATP5J 0.1 21 4 2 0 NA

ARIC sg 1/7,931 PRAMEF1 0.098 1 3 6 0 NA

ARIC sg 2/7,931 SSC5D 0.35 19 14 7 0 NA

ARIC sg 3/7,931 CCDC173 1.084e�15 2 9 6 0 NA

ARIC sg 4/7,931 NUPL2 3.67e�5 7 7 3 0 NA

ARIC sg 5/7,931 USP6NL 0.102 10 14 3 0 NA

Abbreviations: DB, database; Cat., category; PTV, premature truncating variant (�1, þ1 frameshifting indels, sg:stopgain)
aNumber of exons based on Ensembl v.19
for truncating variants in NMD� region only in the ARIC

database (n ¼ 611 genes) or only the ExAC database (n ¼
1,133 genes) have significantly higher portions of genes

with their pLI < 0.9 (proportions ¼ 0.98 and 0.976)

compared to genes that are not depleted for truncating var-

iants in NMD� region (n ¼ 14,425, proportion ¼ 0.781) in

both ARIC and ExAC databases with p values 1.09e�46
(F) Stacked bar plots indicate that genes depleted for NMD� variants in
icantly higher proportion of genes with pLI < 0.9 compared to gene
14,425) with p values ¼ 1.49e�25, 1.09e�46, and 2e�78, respective
black bar shows the percentage of genes with pLI < 0.9.
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and 2e�78 (Fisher’s exact test), respectively (Figure 5F).

Therefore, this set of 1,996 (252 þ 611 þ 1,133) genes

depleted for PTVesc in either control database, are candi-

dates for causing disease through escaping from NMD and

termed ‘‘NMD� candidate genes’’ (Figure 6).

We examined further characteristics of this discrepant

pLI gene set. The total set of 1,996 NMD� candidate genes
both (n¼ 252) or either database (n¼ 611; n¼ 1,133) have signif-
s not depleted for NMD� variants in either control database (n ¼
ly. Orange bar shows the percentage of genes with pLI R 0.9 and

2, 2018
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Figure 6. Classification of Transcripts Based on Truncating Variant Density in NMD� versus NMDþ Region in Control Databases Al-
lows Development of NMD Escape Intolerance Score
Transcripts were classified into four groups based on truncating variant density in the NMD� versus NMDþ region in ARIC/ExAC control
databases. Vertical black lines represent potential PTCs. Lightning symbols represent variant location.
(A) Transcripts tolerant to frameshift(fs)/stopgain(sg) have truncating variant densities in NMD� versus NMDþ regions that do not differ
significantly from each other. Those transcripts mostly presented with low pLI scores.
(B) NMD� candidate transcripts: transcripts in this category present with a lower NMD� region variant density compared to NMDþ

region and often display low pLI scores < 0.9. The genes corresponding to those transcripts are candidates for causing disease through
dominant-negative or GoF effects.
(C) NMDþ candidate transcripts in this category present with a lower NMDþ region truncating variant density compared to NMD�

region and may present with high pLI scores. The genes corresponding to those transcripts are candidates for causing disease through
haploinsufficiency.
(D) Non-informative transcripts: this category of transcripts includes transcripts currently with no truncating variants in the control
databases, therefore was considered non-informative.
that are predicted by NMDEscPredictor are more likely to

show tissue-specific expression (Mann-Whitney U test

p value ¼ 5.89e�8) and their gene products have fewer

protein-protein interactions than the average number of

protein-protein interactions per gene in the genome

(Mann-Whitney U test p value ¼ 1.67e�12). Furthermore,

disruptions in NMD� regions of those genes aremore likely

to be affecting their annotated protein domains (binomial

test p value ¼ 0.0003) of their encoded proteins than the

genome average (Figure 7).

We further examined this set of 1,996 genes that include

potential candidates for causing disease through escape

from NMD in terms of literature evidence for association

with disease. As anticipated, and acting as a positive con-

trol dataset, this group significantly shares 13 known genes

out of 39 OMIM genes (33.3%, Fisher’s exact test p value

0.024) associated with a human disease phenotype

whereby it has been specifically shown that NMD-escaping

PTC variants, NMD� variants, act via a dominant-negative

or GoF mechanism including ALX4 (MIM: 605420)

causing parietal foramina 2 (MIM: 609597), DVL1, F10

(MIM: 613872) causing factor X deficiency (MIM:

227600), FAM83H (MIM: 611927) causing amelogenesis

imperfecta, type IIIA (MIM: 130900), FGA (MIM: 134820)

causing afibrinogenemia, congenital (MIM: 202400),

GHR (MIM: 600946) causing growth hormone insensi-

tivity, partial (MIM: 604271), HBB (MIM: 141900) causing

thalassemias, beta (MIM: 613985), IFNGR1 (MIM: 107470)

causing immunodeficiency 27B, mycobacteriosis (MIM:

615978), KAT6B (MIM: 605880) causing SBBYSS syn-

drome (MIM: 603736), KIDINS220 (MIM: 615759) causing
The Americ
spastic paraplegia, intellectual disability, nystagmus, and

obesity (MIM: 617296), NOTCH2 (MIM: 600275) causing

Hajdu-Cheney syndrome (MIM: 102500), and RHO

(MIM: 180380) causing retinitis pigmentosa 4 (MIM:

613731) (Tables 2 and S1).

Candidate Genes Parsed by Enrichment of PTVesc

With the aim of accelerating gene discovery by the identi-

fication of candidate genes conveying Mendelian disease

traits via a potential GoF mechanism, we scanned a WES

database from a disease cohort, Baylor-CMG, for PTVesc

in 1,996 NMD� candidate genes. A subset of 387 genes

have more than one truncating variant predicted to escape

from NMD in unrelated individuals with Mendelian dis-

ease. We further investigated for evidence of two distinct

potential PTVesc in the same gene in probands with a

similar clinical phenotype captured in PhenoDB.39,40 To

accomplish this, we assessed the phenotypic similarity be-

tween any two affected individuals with PTVesc in the

same candidate gene by generating a pairwise phenotypic

similarity score among HPO term sets recorded for those

probands in the PhenoDB database.39–41

This analysis revealed the top-ranking gene as RE1-

silencing transcription factor, REST, with a perfect pheno-

typic similarity score of 1. REST was found to have two

distinct heterozygous final-exon-truncating variants in

the Baylor-CMG database in two families with HGF

(HPO term HP:0000169), the most common genetic

form of gingival fibromatosis. This observation was

arrived at by two independent approaches: family-based

personal genome analysis and the predicted NMD
an Journal of Human Genetics 103, 171–187, August 2, 2018 181
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Figure 7. Tissue Specificity and Protein Characterization of 1,996 Genes (Top 5%) Depleted for Truncating Variants in NMD� Region
in the Control Databases
For all the genes analyzed in the genome (n¼ 16,411), genes depleted for truncating variants in NMD� region in both databases (n¼ 252),
in only ARIC database (n ¼ 611), in only ExAC database (n ¼ 1,133), LoF-intolerant genes (pLIR 0.9) (n ¼ 2,959) and LoF-tolerant genes
(n ¼ 98), we calculated the following.
(A) Tissue specificity values using tau measure.38 The tau measure takes values between 0 and 1; when a gene’s tau measure is closer to 1,
it is annotated asmore tissue specific. The average taumeasure of depleted genes for truncating variants in NMD� region in either control
database (N ¼ 1,996) is significantly higher (0.744) compared to the genome average (0.719, Mann-Whitney U test p value ¼ 5.89e�8)
and compared to LoF-intolerant genes (0.651, Mann-Whitney U test p value ¼ 7.45e�62).
(B) To measure how connected a gene product is to its neighbors in a physical protein-protein interaction network, we calculated a de-
gree centralitymeasure, i.e., the number of edges that a node has in a network, for each gene using the physical interactions network data
provided by GeneMania in a R/Bioconductor package named SpidermiR.31 This analysis revealed that the genes predicted to be intol-
erant to truncating variants in NMD� region in either control database by NMDEscPredictor (N¼ 1,996) are significantly less connected
to their neighbors in the physical protein-protein interaction data compared to the genome average (Mann-Whitney U test p value ¼
1.67e�12).
(C and D) Those genes were annotated with their PFAM protein domains and their structurally resolved interaction interfaces. Tran-
scripts depleted for NMD� variants show a higher fraction of their annotated PFAM protein domains (0.525) overlapping with their cor-
responding NMD� regions compared to the average of all transcripts (0.483) with binomial test p value¼ 0.0003. In a similar way, these
transcripts present a higher fraction of their structurally resolved interaction interfaces overlapping to the NMD� regions (0.46)
compared to the average of all transcripts (0.407) with binomial test p value ¼ 0.045.
incompetency-parsing algorithm described herein. Ulti-

mately, identification of this candidate gene significantly

depleted for PTVesc, REST, and GeneMatcher42 identifica-

tion of additional cases, delineated phenotype-genotype
182 The American Journal of Human Genetics 103, 171–187, August
correlations in 11 individuals from 3 unrelated families

who presented with autosomal-dominant HGF.24

In addition to REST, our analysis uncovered two distinct

heterozygous potential NMD� frameshift variants in the
2, 2018



Table 2. Top 5% NMD� Intolerant Genes in Control Databases Reported to Cause Disease via Dominant-Negative or GoF

DB Cat. Rank/TotalTranscripts Gene pLI Chr
# of
Exonsa

# of NMDþ

PTVs
# of NMD�

PTVs
MIM # (Gene/
Phenotype)

ARIC þ1, combined 197/5,264, 185/6,064 ALX4 0.23 11 4 1,3 0,0 605420/609597

ARIC þ1 185/5,264 DVL1 0.157 1 15 3 0 601365/616331

ExAC þ1, combined 322/8,814, 256/10,542 F10 0.16 13 8 2,4 0,0 613872/227600

ARIC combined 252/6,064 FAM83H 0.884 8 4 2 0 611927/130900

ARIC �1, sg,
combined

53/5,769, 396/7,931,
175/6,064

FGA 6.34e�10 4 6 3,2,6 0,0,0 134820/202400

ExAC sg 253/12,086 GHR 2e�4 5 9 4 1 600946/604271

ARIC sg 303/7,931 GHR 2e�4 5 9 3 1 600946/604271

ExAC �1, þ1,
combined

32/9,319, 244/8,814,
112/10,542

HBB 1.02e�8 11 3 4,3,10 0,0,1 141900/613985

ExAC �1 394/9,319 IFNGR1 0.32 6 7 2 0 107470/615978

ExAC combined 524/10,542 KAT6B 0.99 10 16 3 0 605880/603736

ExAC þ1 372/8,814 KIDINS220 0.029 2 29 3 0 615759/617296

ARIC þ1 228/5,264 NOTCH2 1 1 34 3 0 600275/102500

ExAC þ1 192/8,814 RHO 0.0005 3 5 2 0 180380/613731

Abbreviations: DB, database; Cat., category; PTV, premature truncating variant (�1, þ1 frameshifting indels, sg:stopgain); combined, combined rank for �1, þ1
frameshifting indels and sg: stopgain categories; subj., subject
aNumber of exons based on Ensembl v.19
Ferm and Pdz Domains-Containing 1 (FRMPD1) (MIM:

616919) in two individuals (BAB7358 and BAB7598)

who presented with immunodeficiency. FRMPD1 encodes

a protein that is involved in the regulation of subcellular

localization of the activator of G-protein signaling 3

(AGS3) that displays an immune function. This was

demonstrated by studies that showed that AGS3-null

B and T lymphocytes and bone marrow-derived dendritic

cells presented with defects in chemokine signaling.43,44

Besides variants in FRMPD1, we identified a homozygous

potential NMD� final-exon frameshift variant in a

female individual (BAB8983-PED3272) who presented

with hypogammaglobulinemia and natural killer (NK)

cell deficiency in the ZBTB24 gene (MIM: 614064)

that was previously associated with immunodeficiency-

centromeric instability-facial anomalies syndrome-2

(MIM: 614069).

Since the NMD escape intolerance score was designed

based on the probability of depletion of NMD� versus

NMDþ variants in control databases, it is not applicable

for genes that are devoid of truncating variants in control

databases. In order to overcome this limitation, we

scanned the Baylor-CMG database for genes with potential

PTVesc. This analysis revealed 3,035 genes that have more

than one potential PTVesc in unrelated individuals with

Mendelian disease; from those, there are 129 and 183

genes from ExAC and ARIC databases, respectively, that

do not have any PTVs. One of those genes is the protea-

some maturation protein (POMP [MIM: 613386]), for

which there are two distinct frameshift variants in its

penultimate exon in unrelated individuals, both of

whom present with immunodeficiency. Segregation anal-
The Americ
ysis and further characterization of the POMP function

uncovered this gene as potentially causative of immunode-

ficiency when truncated.45

Another candidate gene, dual-specificity phosphatase 4

(DUSP4 [MIM: 602747]), was observed to have a homozy-

gous potential NMD� frameshift variant in an individual

(BH8977-1) with microcephaly, agenesis of the corpus

callosum, lissencephaly, and epilepsy in the Baylor-CMG

disease cohort; no truncating variants were observed in

this gene in either control database. The DUSP4 protein

has been shown to play a crucial role in neuronal differen-

tiation in mouse embryonic stem cells.46

In addition to POMP andDUSP4, the PTVesc screening in

the Baylor-CMG revealed Complexin 1 (CPLX1 [MIM:

605032]) with a homozygous potential NMD� stopgain

variant in two affected siblings, who presented with epi-

lepsy in the Baylor-CMG disease cohort. In a recent study,

this gene was shown to cause myoclonic epilepsy and ID

in two families in an autosomal-recessive inheritance

pattern47 (Table 3).
Discussion

Classic Mendelian medical genetics implies that a specific

gene is associated with a disease trait that displays a

consistent pattern of inheritance, and indeed this holds

true for most recognizable gene-disease associations re-

ported to date. However, it is becoming increasingly

recognized that different variants in the same gene

may cause an identical or similar disease as either a

monoallelic autosomal-dominant (AD) trait or biallelic
an Journal of Human Genetics 103, 171–187, August 2, 2018 183



Table 3. NMD� Intolerant Genes Identified in the Baylor-CMG Database

DB Cat.
Rank/Total
Transcripts

# of
Subj. Gene pLI Chr

# of
Exonsa

# of NMDþ

Variants
# of NMD�

Variants
MIM #
(Phenotype)

ExAC/
ARIC

NA NA 2 CPLX1 0.795 4 3 NA NA NA

ExAC/
ARIC

NA NA 3 DUSP4 0.54 8 4 NA NA NA

ExAC �1, sg,
combined

184/9,319, 326/12,086,
320/10,542

2 FRMPD1 3.53e-10 9 15 8,13,22 5,8,17 NA

ARIC �1, sg,
combined

50/5,769, 290/7,931,
126/6,064

2 FRMPD1 3.53e-10 9 15 4,3,8 1,1,2 NA

ExAC/
ARIC

NA NA 2 POMP 0.861 13 6 NA NA 601952

ARIC þ1 18/5,264 2 REST 0.972 4 3 2 0 617626

ExAC þ1 316/8,814 3 ZBTB24 0.0002 6 6 3 0 614069

PTVs on those genes are predicted to be pathogenic due to GoF. Abbreviations: DB, database; Cat., category; PTV, premature truncating variant (�1, þ1 frame-
shifting indels, s: sg:stopgain); combined, combined rank for �1, þ1 frameshifting indels and sg:stopgain categories; subj., subject
aNumber of exons based on Ensembl v.19
autosomal-recessive (AR) trait.48,49 Some variants may

lead to LoF (null or hypomorphic) alleles while others in

the same gene may result in GoF (antimorphic or neomor-

phic) alleles. PTCs that trigger NMD often give rise to dis-

ease by reducing the expression of the transcript below

necessary levels, whereas PTCs that escape from NMD

can produce defective protein products that have detri-

mental effects in various ways; e.g., antimorphic or neo-

morphic mutant alleles.

Importantly, NMD is intimately connected to human

health by giving rise to the presentation of distinct traits,

making it an important consideration for variant interpre-

tation (Figure 6). For example, in a study that investigated

the position-dependent effects of PTVs in SOX10 (MIM:

602229) and MPZ (MIM: 159440), the NMD� variants led

to a more severe neurological phenotype than NMDþ var-

iants through the dominant-negative activity of truncated

proteins.50–52 Moreover, NMDþ and NMD� variants can

lead to distinct modes of inheritance for disease traits, for

instance, ROR2 (MIM: 602337) bi-allelic NMDþ variants

cause autosomal-recessive Robinow syndrome (RRS

[MIM: 268310]) while heterozygous NMD� variants give

rise to autosomal-dominant brachydactyly, type B1

(BDB1 [MIM: 113000]).53 Considering potential effects of

NMD is critical for variant interpretation, delineation of

genotype-phenotype correlations, and potential explana-

tions for phenotypic differences caused by PTVs in the

same gene.51,53 In summary, not all PTCs result in LoF al-

leles and thus this imposes important limitations to the

statistical haploinsufficiency inference scores and high-

lights the need of complementary scores, such as the

NMD escape intolerance score presented herein, which

also consider potential dominant-negative and GoF

alleles.20,54 Furthermore, the catalogs of common and

rare human genetic variation enable an estimated number

of PTVs per an individual genome. The 1000GP phase 3

analysis outlines that 149–182 sites are presented with
184 The American Journal of Human Genetics 103, 171–187, August
PTVs per a typical genome.55 On the other hand, an indi-

vidual genome is reported to carry an average of 85 hetero-

zygous and 35 homozygous PTVs in the ExAC database, of

which 18 and 0.19 are rare (<1% allele frequency), respec-

tively.20 In general, a strong negative selection is antici-

pated to act against PTVs, thereby reducing the number

of the sites harboring PTVs relative to other sites carrying

neutral mutations in an individual genome (Figure 6).

Ranking the genes according to the NMD escape intoler-

ance score led to the identification of 252 genes that are

significantly depleted for truncating variants in the

NMD� region in both control databases; a gene set that in-

cludes genes in which experimental data have shown that

disease-associated mutant alleles are NMD� variants that

act through mechanisms other than LoF. Importantly, ex-

amination of their pLI scores indicate that these genes

are highly tolerant to PTVs, but the score we propose

here indicates that such PTV tolerance is localized to the

NMDþ gene region. Further analysis revealed that a higher

fraction of the protein domains and interaction interfaces

in those gene products are translated by those NMD� re-

gions compared to all other gene products in the genome.

Taken together, these observations support that this set of

NMD� intolerant genes may convey disease phenotypes

by mutational mechanisms other than haploinsufficiency

and any disruption in their encoded C terminus translated

by the NMD� regions are more likely to result in an inter-

ruption in their interactions with other proteins.

Excitingly, identification of human gene defects is

increasingly capable of providing biological insight

beyond disease relevance. Yet PTVs, the most abundant

pathogenic variants, are impulsively classified as LoFmuta-

tions from the outset of their discovery without character-

ization of the biological effects, including NMD. Despite

the fact that there are a number of recent reports high-

lighting the scale and implication of inter-individual

and tissue-specific variation,14,32,33 NMD is still highly
2, 2018



under-recognized in genomic analyses and certainly has a

large impact on the presence and presentation of a wide va-

riety of human disease. In this context, ranking of genes in

terms of their depletion of NMD� relative to NMDþ vari-

ants in control databases provided a list of genes that could

underlie Mendelian phenotypes due to escape from NMD.

Our analysis is thus very useful for prioritization of candi-

date genes for NMD-specific disease. Indeed, integration of

our analysis method with systematic assessment of pheno-

typic similarity between probands presenting with PTVesc

in the same candidate gene in the Baylor-CMG database

proved to be a powerful tool for identification of candidate

genes that could give rise to Mendelian phenotypes due to

escape from NMD.24

Manifesting a phenotype only when a variant escapes

from NMD has ramifications beyond genotype-pheno-

type correlations. It is still widely believed that meaning-

ful biological insight comes from the study of mouse

models. This is particularly evident with the International

Knockout Mouse Consortium’s ambitious goal to generate

homozygous null alleles in virtually every protein-coding

gene of the mouse genome,56 which does not recapitulate

the phenotypes of escape-only, i.e., NMD�, genes like

DVL1, PPM1D (MIM: 605100) causing intellectual devel-

opmental disorder with gastrointestinal difficulties and

high pain threshold (MIM: 617450),57 and ZIC1 (MIM:

600470) conveying the phenotype of craniosynostosis 6

(MIM: 616602).58 As genomic sequencing as a diagnostic

tool continues to expand with the enabling of precision

medicine, the human population is truly analogous to a

‘‘Petri dish’’ becoming the most powerful genetic screen

for gene discovery and for establishment of an allelic se-

ries with genotype/phenotype correlations and contain-

ing variant alleles with GoF as well as LoF mutations in

the series. To fully utilize this screen, amid the scientific

euphoria of gene-discovery researchers and clinicians

must not antiquatedly deem all pathogenic mutation as

‘‘LoF,’’ rather a specific perturbed function, which in-

cludes altered expression. This screen has the power

to identify a nearly unlimited number of discoveries,

not only gene discovery but detailed biology of gene

function.
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Figure S1: Dissection of quality control features for frameshifting indels and 
stopgain variants in the Baylor-CMG database 
 
Box plots display variant read (vR) to total read (tR) ratio (vR/tR) and quality score 
values across variants called in the Baylor-CMG database with vR=2,3,4,5 and 6. 
vR/tR plateaus when vR reaches 5. Therefore, in the extraction of high-quality 
frameshifting indels and stopgain variants, the criteria that vR should be at least 5 
reads was used. 
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Figure S2: Variant filtering criteria for indels in Baylor-CMG and ARIC database 
 
 
Variant prioritization workflow for frameshifting indels in the Baylor-CMG and the 
ARIC database was applied as follows. If an on-target indel has a variant read 
number (vR) >=5, it was included for further analysis. Then the indels were filtered 
based on the minor allele frequencies in our internal database (MAF <= 0.01). At 
this step, in-frame indels were also removed from the analysis.  
 
 
 
 
 
 
 
 
 
 



	
	
	

 
Figure S3:  Sensitivity analysis in terms of the overlap of top 5% depleted genes for 
NMD- variants in ARIC vs. ExAC databases using: synonymous variant count 
normalization and coding sequence length normalization at different MAF cutoffs. 
 
 
The sensitivity analysis was performed at different MAF cutoffs (0.1, 0.05, 0.01, 
0.005 and 0.001) using synonymous variant count normalization (Left panel) and 
coding sequence length normalization (Right panel). The overlap between top 5% 
depleted genes for NMD- variants in ARIC vs. ExAC databases is similar using 
synonymous variant count normalization (29.2%) and coding sequence length 
normalization (30.3%) at MAF <= 0.01. 
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Figure S4:  Sensitivity analysis in terms of the overlap of top 5% depleted genes for 
NMD- variants in either control database (N=1,996) with known gain-of-function 
genes extracted from OMIM database using synonymous variant count 
normalization and coding sequence length normalization at different MAF cutoffs. 
 
The sensitivity analysis was performed at different MAF cutoffs (0.1, 0.05, 0.01, 
0.005 and 0.001) using synonymous variant count normalization (Left panel) and 
coding sequence length normalization (Right panel). The overlap between top 5% 
depleted genes for NMD- variants in either control database and our control OMIM 
list of genes that cause disease via potential gain-of-function (N=39) drops 
significantly using coding-sequence length normalization (28.2%) compared to 
synonymous variant count normalization (33.33%) at MAF <= 0.01. 
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Figure S5: An example of NMD prediction of a frameshifting indel in 

NMDescPredictor web-based tool (https://nmdpredictions.shinyapps.io/shiny/) 

 
 
 
 
 
 
 
 
 
 
 
 
 



	
	
	

 
 
Figure S6: The normalization by the number of synonymous variants to calculate 
the expected number of NMD- variants 
 
 
 
Number of expected NMD- variants per each canonical transcript was calculated as 
follows: The total # of variants was multiplied by the ratio of  # of rare synonymous 
variants in NMD- region to the total # of rare synonymous variants. 
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Figure S7: Correlation between the number of variants in each GTEx tissue and 
corresponding p-values.   
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Figure S8: An example of a frameshifting indel in the fourth exon (nearly in the 
middle of the BTN2A1 gene) was predicted to lead to NMD- by our tool.  Allele-
specific expression data in GTEx is concordant with this prediction.  
 
The variant chr6:26,465,566_CAA>C that is located in exon 4 of transcript 
ENST0000042938 (7 coding exons in total) belonging to the BTN2A1 gene was 
predicted to be NMD- by NMDEscPredictor based on the location of the boundary 
PTC. The average ratio of variant read count to total read count for this variant was 
extracted from GTEx RNA-Seq data and quantified as 0.478. This experimental 
finding supported the computational prediction of this variant as NMD- by 
NMDEscPredictor. 
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Figure S9: Pipeline workflow for our algorithm 
 
At the first step of the algorithm, as a quality control (QC) step, high-quality and 
rare (MAF <=0.01) frameshifting indels and stopgain variants were extracted from 
the Baylor-CMG (disease database, 6,109 exomes) and the ExAC and the ARIC 
control databases (60,706 and 10,940 exomes, respectively). Then, using the 
NMDEscPredictor algorithm, frameshifting indels and stopgain variants in each 
database were categorized into three categories as NMD escaping (NMD-), NMD 
triggering (NMD+). We then removed the variants that could not be annotated to 
any canonical transcript in Ensembl version 19 as well as variants mapped to 
transcripts without a predicted PTC, without a boundary PTC or mapped to single-



	
	
	

exon canonical transcripts. Next, each gene in the genome is ranked based on the 
depletion of NMD- relative to NMD+ variants in control databases (NMD escape 
intolerance score metric). This analysis revealed a total of 1, 996 genes as the most 
depleted in either database (i.e. ranked in the top 5%). Those genes were further 
investigated for NMD- variants in the Baylor-CMG database (disease database). A 
subset of significantly depleted genes has NMD- variants in multiple unrelated 
individuals with similar clinical phenotypes (based on the phenotypic similarity 
scoring) in the Baylor-CMG database. Some of those genes were found to be 
causative for human disease through escape from NMD and include novel and 
known disease genes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
	
	

 
 
Figure S10:  The overlapping number of genes depleted for NMD- variants (i.e. 
ranked in the top 5%) in each category of truncating variants within ARIC and 
ExAC database  
 
 
Venn Diagrams display the number of genes depleted for NMD- variants (i.e. ranked 
in the top 5%) in -1 frame, +1 frame and stopgain categories in the ARIC and ExAC 
control databases. 
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Figure S11: Expected and observed number of NMD- variants in each category of 
truncating variants in the ARIC and ExAC control databases 
 
The plots show the expected # of escape (NMD-) variants (x axis) compared to the 
observed # of escape (NMD-) variants (y axis) per gene in the -1 frame, +1 frame and 
stopgain categories in the ARIC and ExAC control databases. The genes for which 
the observed # of variants/gene relative to expected # of variants/gene were depleted 
in both databases were colored in orange, and those depleted only in ARIC database 
were colored in black and those depleted only in the ExAC database were colored in 
purple and those not depleted in either control database were colored in dark green. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
	
	

 

 
 
Figure S12:  Permutation test results to quantify how often overlap between top 5% 
depleted genes for NMD- variants in ARIC vs. ExAC control database might occur 
by chance 
 
10,000 permutations were done by generating random subsets of all of the genes 
considered in the analysis (N=16,411) at the size of ExAC gene set (N=1,385). In each 
permutation, the number of genes overlapping between ARIC and random set of 
genes were calculated. The red dashed line shows the observed value (N=252) of the 
number of genes overlapping between top 5% depleted genes for NMD- variants in 
ARIC (N=863) vs. ExAC database (N=1,385). 
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Figure S13: The percentage of overlapping frameshift variants between the ExAC 
and ARIC databases at different MAF cutoffs 
 
The number of overlapping frameshift variants (light blue boxes) between the ExAC 
and ARIC databases were shown at different MAF intervals including 0-0.0019, 
0.0019-0.001, 0.001-0.01 and 0.01-0.1. 
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Figure S14: The percentage of overlapping stopgain variants between the ExAC and 
ARIC databases at different MAF cutoffs 
 
The number of overlapping stopgain variants (light blue boxes) between ExAC and 
ARIC databases were shown at different MAF intervals including 0-0.0019, 0.0019-
0.001, 0.001-0.01 and 0.01-0.1. 
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