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Supplementary Figure 1:  Hierarchical convolutional neural network accuracy. (A) Hierarchical 
convolutional neural network architecture. DNA sequences are converted to 16,048 x 4 matrices, where 
the identity of each nucleotide is converted to a one-hot vector. This input feeds into three convolutional 
layers, each with 128 filters, a filter length of 12, and a downstream max-pooling layer over 8 positions. 
The activations feed into two fully connected layers, which generates neural activity predictions for each 
lab, A(Name), before behind converted to probabilities using the softmax function, P(Name). The lab 
prediction is taken as the highest softmax probability output. Batch normalization layers are not shown. 
(B) Training accuracy (gray) and validation accuracy (black) per epoch for the chosen architecture. 

 

 

 

 

 

 

 

 

 



 
Supplementary Figure 2:  Recurrent neural network accuracy. (A) Recurrent neural network 
architecture. DNA sequences are converted to 16,048 x 4 matrices, where the identity of each nucleotide 
is converted to a one-hot vector. This input is scanned by 128 convolutional filters (f1 to f128) each with a 
width, w, of 12 nucleotide positions. The maximum activation for each filter in each window of 96 
nucleotides, max(f1,n:f1,n+96), across the entire input sequence is taken. Each sequence of max-pool 
activations are fed into one of 128 LSTM units, which then feed into two fully connected layers, which 
generates neural activity predictions for each lab, A(Name), before behind converted to probabilities using 
the softmax function, P(Name). The lab prediction is taken as the highest probability output. Batch 
normalization layers are not shown. (B) Training accuracy (gray) and validation accuracy (black) per epoch 
for the chosen architecture. 
 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 3:  Convolutional neural network hyperparameter optimization. Validation 
accuracy versus time elapsed after 5 epochs shown for 23 hyperparameter sets (black points). The 
architecture with the highest validation accuracy per time was chosen, and the trajectory from epoch 0 to 
5 is shown (gray line). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Note 1: Alternative architectures and hyperparameter optimization 
 
1.A. Hierarchical convolutional neural network architecture  

Neural networks with many convolutional layers have been widely used for computer vision 
applications1,2. Each layer in the progression learns increasingly abstract and large-scale features in the 
input data. We reasoned that hierarchical architectures could effectively learn short, local DNA motifs at 
the first layer, and higher-order spatial relationships in downstream layers.  

We tested a network where the one-hot encoding, fully-connected layers, softmax probability, and 
training parameters were the same as Figure 2. However, a series of three convolutional layers is used in 
place of the single convolutional layer (Supplementary Figure 1). Each of these convolutional layers has 
128 filters, a filter length of 12, and is followed by a max-pooling layer. Each max-pooling layer outputs 
the maximum upstream convolutional filter activation over a sliding window of 8 positions, rather than 
the entire input sequence. A batch normalization layer is used after each max-pooling layer and after the 
first fully-connected layer. 

With this architecture, training accuracy achieves 90% over 60 epochs and the validation accuracy reaches 
43%. While hierarchical architectures had slightly lower validation accuracy than the single convolutional 
layer architecture in Figure 2, they took twice as long to train so were not selected for further study. 

1.B Recurrent neural network architecture  

Recurrent neural networks have been successfully applied to non-coding DNA sequence classification by 
Quang and Xie1 . We explored a similar neural network design by inserting Long Short-Term Memory 
(LSTM) units2  between the convolutional and fully connected layers (Supplementary Figure 2). LSTM units 
take sequential data as input; at each step in a sequence, an LSTM unit accepts input data and also the 
LSTM unit’s previous state. Over the course of training through backpropagation, LSTM units can learn 
what features to remember in order to minimize training loss. 

In our network, the one-hot encoding, convolutional layer, fully-connected layers, softmax probability, 
and training parameters are identical to Figure 2. However, the max-pooling layer is modified so that it 
outputs the maximum convolutional filter activation over a sliding window of 96 nucleotides, rather than 
the entire input sequence. A batch normalization layer is used after the convolutional layer and the first 
fully-connected layer. Convolutional filters each generate a sequence of 668 max-pool signals across the 
entire input sequence. Each of these sequences feeds into one of 128 LSTM units, which then feed into 
the fully-connected layer of 128 nodes. Training accuracy achieves 89% over 40 epochs, however the 
validation accuracy plateaus at 36%, which is indicative of overfitting. Convolutional neural networks have 
recently been shown to outperform recurrent neural networks across an array of tasks3 , and our results 
are consistent with this observation. 

 
 
 



1.C Bayesian optimization 

Once the architecture for the convolutional neural network was chosen, we used Bayesian optimization 
to explore hyperparameters for filter length, number of filters, and number of fully-connected nodes 
(Methods). This technique models hyperparameter generalization performance as a Gaussian process6. 
We optimized for validation accuracy per wall-clock time at the end of 5 epochs. The maximum validation 
accuracy per training time was achieved with 128 filters, a filter length of 12 nt, and 64 fully-connected 
nodes (Supplementary Figure 3). 
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