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Curation of Product Ingredient Lists. All available HTML or PDF files for products were 

identified and downloaded from the source sites, and saved as text using tools provided in the R 

statistical language (R, 2016) packages ‘httr’, ‘rcurl’, and ‘XML’. Files were converted to text 

for analysis. Custom scripts were generated for each data source depending on the structure of 

the source’s product webpage(s). Product names and ingredients were collated into a 

standardized computable form using custom scripts employing standard R text and character 

parsing tools. The full reported name of each ingredient was retained along with its numeric rank 

in the reported list.  All of the files collected from Unilever contained the string “The list below 

displays ingredients in descending order, with those present in highest quantities coming first” 

and thus all Unilever lists were assumed to follow Case 1 rules. A number of products from 

Procter and Gamble had colorants specifically listed at the end of the list. These products were 

noted and handled as described in the main text.  

Products that had two individual ingredient lists associated with two or more components (e.g. a 

dishwasher gel-pack product with a film and liquid component) were removed. In total, 

ingredient lists that could be handled with the current model were collected for 1123 consumer 

products, resulting in 24,228 individual ingredient observations. The median number of reported 

ingredients per product was 21 (maximum 53). The ingredient names used by the manufacturers 

followed no standard nomenclature (the ACI communication initiative guidelines suggest a mix 

of naming conventions, including common names). The ingredient list dataset contained 1293 

unique names. These names included chemical names (e.g.,“1,2-hexanediol”, “2-bromo-2-

nitropropane-1,3-diol”), botanical ingredients (e.g., “castor oil”, “coconut / jojoba butter”), 

common names (e.g., “water”, “corn starch”), and generic designations (e.g., “fluorescent 

brightener”, “fragrance”). Obvious synonyms (e.g., “water”, “aqua”) were mapped to 

harmonized names. Chemical Abstract Service Registration Numbers (CASRN) for ingredient 

names were obtained where possible from the MSDS database (i.e. in the case where both a 

name and a CASRN had been co-reported). CASRN could be obtained for 218 ingredient names. 

While these ingredients represent less than 1 percent of the ingredients in the 1123 products, the 

chemicals accounted for 60 percent of the 24,228 ingredient observations. The median number of 

ingredients per product which matched to a CASRN was 13. This was higher than the median 

number of ingredient per product in the MSDS data (median=6) (Goldsmith et al. 2014). 

Categorization of Consumer Products. Each product was categorized as belonging to one of 

more than 200 product use codes (PUCs.) The PUCs are based on those used in the SHEDS-HT 

model (Isaacs et al. 2014), but these PUCs were updated to account for new products types added 

to the MSDS database, refined category definitions, and formulation differences (e.g., sprays vs. 

gels). The PUCs all belong to one of nine high-level categories (e.g., “Personal Care”, “Inside 

the Home”) used by the National Library of Medicine’s Household Products Database (NLM 

2016). An initial automated categorization was performed by searching for keywords (e.g., 

“shampoo”, “fabric softener”) within the product names using custom R and SAS (SAS Institute, 



Cary NC) scripts, followed by hand-curation of each individual product category assignment to 

check for inaccuracies, and one-by-one coding of products with names that could not be 

categorized using the automated methods. The products represented 81 unique categories (Table 

S1). A large number of products (N=762, 68%) were associated with personal care categories. 

The remaining products were associated with general household or cleaning products. 

Assignment of Ingredients to Chemical Functions. Where possible, the ingredients were also 

mapped to chemical functions. Chemical function is a qualitative description of the role or 

“purpose” that a chemical serves in the formulation. EPA has developed a dataset of chemical 

function (e.g. “emulsifier”, “colorant”) information collected from publicly available industry, 

government, and retailer data sources (Isaacs et al. 2016; Phillips et al. 2016). This dataset 

(called the Functional Use Database or FUse) contains information for over 14,000 chemicals 

with Chemical Abstract Service Numbers (CASRNs). In FUse, the compounds are categorized 

by original reported functional uses and by a set of harmonized function definitions developed 

for use in exposure modeling and alternatives assessments (Isaacs et al. 2016; Phillips et al. 

2016). Harmonized functions for ingredients with CASRN were obtained from FUse where 

possible. Of the 218 ingredient names matched to a CASRN, 191 could be mapped to chemical 

function using the FUse database, comprising 19 unique harmonized chemical functions. 

Functions having the largest number of ingredients were “Viscosity-Controlling/Emulsion 

Stabilizers/Binding Agents” (25 ingredients) and “Surfactants/Cleansers/Emulsifiers” (19 

ingredients). The functions associated with the largest number of ingredient observations were 

“Perfumes” (2768 occurrences in products) and “Solvents” (1919). 

  

Code for Generating Weight Fraction Predictions 

The R code given below provides the full R code for simulating WF based on ingredient list.  

The code contains a function that takes as arguments the number of ingredients, minimum WF 

for a reported ingredient, unreported fraction, number of Monte Carlo samples, the shape of the 

assumed distribution of WF between bounds, and the reporting case. In addition, this code 

includes an example of calling the function for a MC run of 10000 samples for a product with 10 

ingredients.     

##################################################################################### 
# Function for calculating weight fraction in terms of number of ingredients, minimum 
WF for a reported ingredient (Fm),  
# total unreported fraction (Fu), and number of repetitions 
# shape = 1(uniform), 2 (symmetric triangle), 3 (high-weighted triangle) 
# type  = 1(all ingredients reported in order), 2(ingredients under WF=0.01 reported 
in random order, i.e. FDA rules) 
 
wfractions <- function(N_ingredients, Fm, Fu, N_reps, shape, type) { 
  weightf <- matrix(, nrow = N_reps, ncol = N_ingredients) 
   
  #update variable names to fit code 
  C_L<-Fu 
  L_report<-Fm 



   
   
  for (rep in 1:N_reps) { 
    for (rank in 1:N_ingredients) { 
       
       
      if (rank == 1) {     
        L_upper <- 1  - C_L - L_report*(N_ingredients-1) 
        L_lower <- (1 - C_L) / (N_ingredients) 
        if (shape==1) { weightf[rep,rank] <- L_lower + (L_upper-L_lower)*runif(1)} 
        if (shape==2) { weightf[rep,rank] <- L_lower + (L_upper-L_lower)*rtriang(1, m
in=0, mode=0.5, max=1)} 
        if (shape==3) { weightf[rep,rank] <- L_lower + (L_upper-L_lower)*rtriang(1, m
in=0, mode=1, max=1)} 
      } 
      else { 
        sum <- 0 
        n <- rank-1 
         
        for (i in 1:n) {       
          sum <- sum + weightf[rep,i] 
        } 
        #cat("rank: ",rep) 
        L_upper <- min(1. - sum - C_L - L_report*(N_ingredients-rank), weightf[rep,ra
nk-1])     
        L_lower <- max((1. - sum - C_L) / (N_ingredients - rank+1), L_report) 
        if (shape==1) { weightf[rep,rank] <- L_lower + (L_upper-L_lower)*runif(1)} 
        if (shape==2) { weightf[rep,rank] <- L_lower + (L_upper-L_lower)*rtriang(1, m
in=0, mode=0.5, max=1)} 
        if (shape==3) { weightf[rep,rank] <- L_lower + (L_upper-L_lower)*rtriang(1, m
in=0, mode=1, max=1)} 
      }   
    } 
     
    #Shuffle the <1% (WF=0.01) for this rep if type 2 (thresholds) 
    if (type==2) { 
      k<<-weightf[rep,] 
      indexit<<-which(k<=.01) 
      lessthans<<-weightf[rep,indexit] 
      indexit<<-which(k>.01) 
      greaterthans<<-weightf[rep,indexit] 
      shuffledlessthans<-sample(lessthans) #sample function just randomizes the vecto
r 
      #replace the shuffled values back into the weight fraction vector 
      weightf[rep,]<-c(greaterthans,shuffledlessthans) 
    } 
  } 
  return(weightf) 
} 
############################################################################# 
#Example of running model for 10000 MC samples for a product with "ningred" ingredien
ts, with Fu=0.01, Fm=1e-9, shape=uniform, type=2 (FDA reporting rules) 
#The data table "thisrun" contains the results for each sample 
#The data table "thisrun_results" contains the resulting percentiles of the run 



ningred<-10 
means<- vector("numeric",ningred) 
P95s <- vector("numeric",ningred) 
P05s <- vector("numeric",ningred) 
P50s <- vector("numeric",ningred) 
thisrun<-wfractions(ningred, 1e-9, .01, 10000,1,2) 
#demonstrate the predictions sum to 1-Fu 
sums<-as.vector(rowSums(thisrun)) 
 
for (j in 1:ningred) { 
  means[j]<-mean(thisrun[,j]) 
  P05s[j]<-quantile(thisrun[,j], c(.05)) 
  P50s[j]<-quantile(thisrun[,j], c(.50)) 
  P95s[j]<-quantile(thisrun[,j], c(.95)) 
}   
thisrun_results<-cbind(means,P05s,P50s,P95s) 

 


