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Supplementary Materials and Methods 

Fitting and projecting boosted regression trees 

The use of boosted regression trees incorporates the strengths of tree-based models (which can utilize 

multiple types of response variables and missing data) and boosting (an adaptive method of sequentially 

modeling the residuals of each model iteration) (39). Many of the relationships between the distribution 

of marine species and their environment have proven to be non-linear (26). BRTs have the ability to 

capture non-linear responses in environmental predictors and to identify the variables with the highest 

explanatory power. The machine learning dimension of BRTs allows the model to progressively learn the 

response through boosting which, unlike single regression treqes, averages the outputs of a multitude of 

simple tree models iteratively placing more emphasis on unfitted observations from the first tree by 

fitting the residuals to a second tree and so on (39). Another reason why we chose BRTs as our modeling 

approach is because they incorporate an important element of stochasticity that improves model 

performance by fitting each new tree to a random subset of the data that is predetermined by the 

researcher and known as the ‘bag fraction’(40); this improves model performance by reducing the 

variance of the final model. The contribution of each individual tree (hundreds to thousands) is then 

downscaled by assigning it a ‘learning rate’ weight. Our final models were the output of the summation 

of all trees multiplied by the predetermined learning rate (39). The complexity or depth of the tree must 

also be determined, this controls the number of splits or nodes in each tree. At each splitting point, the 

variable which has the most explanatory power is partitioned in a way that reduces the prediction error, 

this is done sequentially for however many splits the tree had or until a predetermined minimum 

number of observations was reached in a branch of a tree. The learning rate and tree complexity 

parameters are then used in conjunction to determine the total number of trees that should be built. 

When fitting BRTs, we paid special attention to finding a balance between model accuracy and model 

overfitting. We used the R package ‘caret’ to optimize the four important parameters affecting BRTs: (1) 

tree complexity; (2) learning rate (or shrinkage); (3) number of trees; and (4) minimum number of 

observations in terminal nodes. An exploratory grid was set up where different values for these 

parameters would be assessed through k-fold cross-validation. These included, four different tree 

depths, two shrinkage rates, two minimum number of observations at terminal nodes and 10 different 

number of trees from 500 to 5000 in increments of 500 trees. A 10-fold cross validation of each of the 

160 different model combinations was repeated five times to select the parameters that resulted in the 

highest accuracy rate. There are different opinions about the use and number of background 



 
 

pseudoabsence points in environmental niche models, we selected a number which is consistent with 

what is recommended in the literature (37) (Table S11 & S12). The optimal combination of parameters 

was found for each of the 24 individual monthly models and BRTs were fitted to the monthly classified 

fishing effort data using the generalized boosted model (gbm) function in the R package ‘gbm’. The 

distribution of the models was set to bernoulli given binomial nature of the response. After fitting each 

of the models, 1⁰ by 1⁰ degree raster layers of each of the environmental variables in ABNJ used in the 

monthly models were superposed and stacked using ArcGIS 10.4.1 and the ‘raster’ package on R to 

project the model results onto two-dimensional geographic space. Through our study, we also address 

the use of different thresholds by selecting and comparing two cutoff thresholds, which are supported in 

the environmental niche modeling literature (38). The code used to fit the BRT models is available upon 

request to the authors. 

Environmental niche model assessment and interpretation 

The binary (suitable vs. non-suitable fishing habitat) monthly habitat maps were then used to calculate 

the annual persistence of longline fishing habitat in ABNJ; these were created to identify different levels 

of intra-annual suitability throughout the high seas (Fig. 3 & 4). Persistence is a measure of the number 

of months that a location was classified as suitable habitat throughout the year. To identify the areas of 

the high seas with the highest variation in fishing habitat suitability, we calculated the spatial coefficient 

of variation (Fig. 5) using all of the monthly prediction maps. In addition to monthly persistence, 

estimates of suitable fishing habitat occupancy by the pelagic longline fleet in ABNJ were calculated my 

measuring what proportion of the monthly environmental niches (determined by the binary maps) were 

fished each month (Fig. 3 & 4). This was calculated separately for the maps derived from each of the 

cutoff thresholds. These outputs were then used to assess how much of the ‘fishable’ environment in 

ABNJ is used by the high seas longline fleet each month (Table S6). 

For BRTs, the VI scores are calculated by computing the number of times an environmental predictor is 

selected for splitting at each node of a tree and is then weighted by the squared improvement of the 

BRT model that results from each split; this is then averaged for each of the trees that was fitted for the 

BRT(39). VI scores for each BRT are scaled to add up to 100, these values were obtained for each of the 

monthly environmental niche models; these scores allow for the identification of important variables 

within and between years (Fig. 6; Table S7 & S8). Variables with VI scores >10 were considered 

meaningful for explaining the distribution of fishing effort. 



 
 

We generated partial dependence plots for each of the response variables. Partial dependence plots are 

graphical representations of the relationship between the probability of fishing and an environmental 

variable. The partial dependence plot of a given variable was calculated by averaging all other predictors 

in the model except the chosen predictor of interest. 
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Fig. S1. The proportion of 2015 and 2016 fishing effort (hours) in ABNJ by gear. The fishing effort estimates by 

gear were calculated by global fishing watch using satellite-based automatic identification system data and neural 

network classification algorithms. Pelagic longlines are the dominant form of fishing in the high seas as calculated 

by the number of hours fishing. 

 

 



 
 

 

Fig. S2. The proportion of pelagic longline fishing effort attributed to the main fishing States or territories. We 

break down longline fishing effort by the top-5 longline fishing States or territories in areas beyond national 

jurisdiction as well as the group comprised by all other longline fishing States in areas beyond national jurisdiction: 

‘Others’. 

 

Fig. S3. Accuracy values obtained for the 2015 and 2016 monthly boosted regression tree models after applying 
an ROC threshold. Shows the accuracy values obtained for the 2015 (left) and 2016 (right) monthly boosted 
regression tree models (black trend line) after applying an Receiver Operator Characteristic threshold. The monthly 
accuracy values are bordered by their respective confidence intervals (grey buffer) and the annual average 
accuracy is overlaid (solid red line).  



 
 

 

Fig. S4. Accuracy values obtained for the 2015 and 2016 monthly boosted regression tree models after applying 

an MPD threshold. Shows the accuracy values obtained for the 2015 (left) and 2016 (right) monthly boosted 

regression tree models (black trend line) after applying a mean probability distribution threshold. The monthly 

accuracy values are bordered by their respective confidence intervals (grey buffer) and the annual average 

accuracy is overlaid (solid red line).  

 

 

 

Fig. S5. The predictive accuracy of the monthly BRTs after projecting them onto future environments. The 

models were projected at three different time-steps: 1 month (n=23), 6 months (n=18) and 12 months (n=12). The 

accuracy of the models was highest when predicting the distribution of fishing effort for the following month and 

for the same month of the following year. 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S6. Distribution of predicted and observed fishing effort in January and July of 2015 using different 

thresholds: ROC and MPD. (A & C) ROC. (B & D) MPD. The true positives (fished suitable habitat) are labeled in 

green; false positives (unfished suitable habitat) are labeled in blue; false negatives (fished unsuitable habitat) are 

labeled in red; while the unfished unsuitable habitat is white.  



 
 

 

 

Fig. S7. The SST partial dependence plots from the monthly 2015 models. 

 

 

 

Fig. S8. The temperature at 400-m partial dependence plots from the monthly 2015 models. 



 
 

 

Fig. S9. The DCS partial dependence plots from the monthly 2015 models. 

 

 

Fig. S10. The oxygen at 400-m partial dependence plots from the monthly 2016 models. 



 
 

 

Fig. S11. The SST partial dependence plots from the monthly 2015 models. 

 

 

Fig. S12. The distribution of fishing effort intensity as a function of the Euclidean distance (kilometers) to the 

continental shelf. There is no correlation between distance to continental shelf break and fishing effort intensity in 

areas beyond national jurisdiction. 

 



 
 

 

 

Fig. S13. Monthly variable importance scores for boosted regression trees using background pseudoabsence 

points from the entire high seas areas for 2015 and 2016. (A) 2015 and (B) 2016. 

 

 

 

 

 

 

 



 
 

Supplementary Tables 

Table S1. Various model performance indices of the monthly BRTs for 2015 and 2016. Model performance 

metrics include the Kappa statistic and the Sensitivity and Specificity values when a Receiver Operator 

Characteristic cutoff threshold is applied to each of the 24 monthly habitat suitability layers. 

  2015       2016       

  Kappa Sensitivity Specificity AUC Kappa Sensitivity Specificity AUC 

January 0.70 0.88 0.85 0.86 0.81 0.93 0.90 0.91 

February 0.66 0.86 0.83 0.84 0.81 0.94 0.90 0.91 

March 0.68 0.83 0.86 0.84 0.79 0.90 0.90 0.90 

April 0.68 0.87 0.84 0.85 0.78 0.91 0.90 0.90 

May 0.70 0.81 0.89 0.85 0.79 0.89 0.91 0.90 

June 0.70 0.92 0.83 0.87 0.79 0.94 0.88 0.91 

July 0.72 0.90 0.86 0.87 0.80 0.93 0.90 0.92 

August 0.73 0.91 0.86 0.88 0.83 0.95 0.91 0.91 

September 0.70 0.87 0.86 0.86 0.81 0.92 0.91 0.91 

October 0.68 0.84 0.86 0.85 0.80 0.93 0.90 0.91 

November 0.72 0.85 0.89 0.86 0.82 0.92 0.91 0.91 

December 0.72 0.89 0.86 0.87 0.80 0.93 0.89 0.91 

 

 

 

 

 

 

 

 

 

 



 
 

Table S2. Various model performance indices of the monthly BRTs for 2015 and 2016. Model performance 

metrics include the Kappa statistic and the Sensitivity and Specificity values when a mean probability distribution 

cutoff threshold is applied to each of the 24 monthly habitat suitability layers. 

 
 

 

 

 

 

 

 

 

 

 

 

 

  2015       2016       

  Kappa Sensitivity Specificity AUC Kappa Sensitivity Specificity AUC 

January 0.52 0.97 0.64 0.8 0.66 0.99 0.75 0.87 

February 0.47 0.97 0.60 0.78 0.71 0.99 0.80 0.89 

March 0.47 0.96 0.59 0.77 0.60 0.98 0.71 0.84 

April 0.53 0.97 0.65 0.81 0.53 0.99 0.64 0.81 

May 0.54 0.97 0.66 0.81 0.67 0.98 0.77 0.87 

June 0.61 0.96 0.73 0.84 0.70 0.98 0.79 0.88 

July 0.63 0.96 0.74 0.85 0.72 0.98 0.81 0.89 

August 0.60 0.97 0.71 0.84 0.69 0.98 0.78 0.88 

September 0.56 0.97 0.67 0.82 0.65 0.99 0.74 0.86 

October 0.48 0.98 0.60 0.78 0.68 0.98 0.77 0.87 

November 0.51 0.98 0.62 0.80 0.66 0.99 0.75 0.87 

December 0.60 0.96 0.72 0.84 0.63 0.98 0.73 0.85 



 
 

Table S3. Various model performance indices of the temporally averaged BRT model. Model performance 

metrics include the Kappa statistic, the Sensitivity and Specificity values and model accuracy score when a Receiver 

Operator Characteristic cutoff threshold is applied to each of the 24 monthly habitat suitability layers. 

 
 

 

 

 

 

 

 

 

 

 

 

  2015       2016       

  Kappa 

Sensitivit

y 

Specificit

y 

Accurac

y Kappa 

Sensitivit

y 

Specificit

y 

Accurac

y 

January 0.38 0.89 0.79 0.80 0.57 0.87 0.88 0.88 

February 0.39 0.88 0.79 0.80 0.51 0.93 0.83 0.84 

March 0.39 0.86 0.79 0.79 0.42 0.90 0.79 0.80 

April 0.35 0.84 0.76 0.77 0.45 0.89 0.80 0.81 

May 0.41 0.86 0.79 0.80 0.50 0.91 0.80 0.82 

June 0.43 0.87 0.80 0.81 0.54 0.87 0.85 0.86 

July 0.43 0.86 0.81 0.81 0.55 0.88 0.85 0.85 

August 0.40 0.87 0.78 0.79 0.54 0.90 0.85 0.86 

September 0.38 0.86 0.78 0.79 0.45 0.93 0.79 0.81 

October 0.37 0.86 0.77 0.78 0.51 0.86 0.85 0.85 

November 0.36 0.86 0.78 0.79 0.49 0.88 0.84 0.85 

December 0.41 0.85 0.80 0.81 0.54 0.91 0.85 0.86 



 
 

Table S4. Various model performance indices of the temporally averaged BRT model. Model performance 

metrics include the Kappa statistic, the Sensitivity and Specificity values and model accuracy score when a mean 

probability distribution cutoff threshold is applied to each of the 24 monthly habitat suitability layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  2015       2016       

  Kappa Sensitivity Specificity Accuracy Kappa Sensitivity Specificity Accuracy 

January 0.29 0.93 0.75 0.72 0.38 0.93 0.75 0.77 

February 0.31 0.93 0.75 0.73 0.39 0.93 0.75 0.77 

March 0.32 0.88 0.74 0.74 0.35 0.88 0.74 0.76 

April 0.28 0.90 0.74 0.70 0.37 0.90 0.74 0.76 

May 0.34 0.90 0.76 0.74 0.43 0.90 0.76 0.78 

June 0.36 0.91 0.75 0.75 0.40 0.91 0.75 0.77 

July 0.33 0.91 0.75 0.74 0.42 0.91 0.75 0.77 

August 0.33 0.94 0.75 0.73 0.40 0.94 0.75 0.77 

September 0.32 0.92 0.74 0.73 0.37 0.92 0.74 0.76 

October 0.32 0.88 0.73 0.73 0.35 0.88 0.73 0.75 

November 0.28 0.90 0.74 0.72 0.35 0.90 0.74 0.76 

December 0.32 0.93 0.75 0.73 0.39 0.93 0.75 0.77 



 
 

Table S5. Results from the Wilcoxon signed-rank test comparing the performance of monthly models to the 

temporally averaged model. Results show that 14 of the 16 model performance metrics were statistically 

dissimilar between the monthly models and the temporally averaged model using all 24 months of data. The V-

statistic is the sum of ranks assigned to the differences with positive sign. 

Year Threshold 
Performance 

metric V p-value 

2015 MPD Accuracy 78 4.90E-04 

2015 MPD Kappa 78 4.90E-04 

2015 MPD Sensitivity 0 4.90E-04 

2015 MPD Specificity 78 4.90E-04 

2015 ROC Accuracy 78 4.90E-04 

2015 ROC Kappa 78 4.90E-04 

2015 ROC Sensitivity 55 2.30E-01 

2015 ROC Specificity 78 4.90E-04 

2016 MPD Accuracy 78 4.90E-04 

2016 MPD Kappa 48 5.20E-01 

2016 MPD Sensitivity 78 4.90E-04 

2016 MPD Specificity 78 4.90E-04 

2016 ROC Accuracy 78 4.90E-04 

2016 ROC Kappa 72 6.90E-03 

2016 ROC Sensitivity 78 4.90E-04 

2016 ROC Specificity 78 4.90E-04 
 

 

Table S6. Amount of fundamental niche occupied by pelagic longliners. This estimate of occupancy is calculated 

as the percentage of monthly suitable habitat where fishing was detected in 2015 and 2016 using the mean 

probability distribution and Receiver Operator Characteristic thresholds. 

Year 

Thresho

ld 

Januar

y 

Februa

ry 

Marc

h April May June July 

Augus

t 

Septemb

er 

Octob

er 

Novemb

er 

Decemb

er 

2015 ROC 49% 51% 59% 54% 61% 49% 55% 54% 54% 60% 59% 55% 

2015 MPD 31% 35% 38% 38% 39% 40% 42% 39% 37% 39% 35% 36% 

2016 ROC 62% 57% 68% 72% 66% 61% 67% 63% 66% 54% 66% 68% 

2016 MPD 45% 45% 47% 49% 49% 49% 53% 49% 49% 41% 40% 48% 

 

 

 

 

 



 
 

Table S7. The 2015 VI scores. Each of the 14 biophysical covariates assessed in the monthly environmental niche 

models was assigned a variable importance score, the scores in each month add up to 100. 

2015 Januar
y 

Februar
y 

March April May June July August Septembe
r 

Octobe
r 

Novembe
r 

Decembe
r 

BATH 6.87 6.66 6.31 7.36 5.83 7.71 6.26 5.75 6.96 8.55 9.16 5.40 

DCS 16.73 16.64 11.37 9.92 9.67 9.23 10.46 14.58 10.89 16.01 15.40 14.48 

DSM 7.97 6.68 7.53 5.07 6.25 5.72 5.05 4.98 4.95 6.04 4.74 4.16 

MLD 8.10 10.20 11.79 9.93 8.37 6.01 7.49 11.45 9.42 8.56 6.06 7.18 

NPP 7.69 8.64 8.92 10.65 7.64 11.62 9.28 8.64 10.18 10.06 9.51 8.67 

SOC 0.17 0.09 0.47 0.94 0.70 0.50 0.79 0.67 0.84 0.88 0.34 5.87 

O400 7.83 11.31 15.20 5.97 5.26 5.35 5.10 4.48 5.67 8.25 6.99 5.72 

POC 2.42 2.99 1.95 5.22 6.39 8.18 10.60 6.72 3.77 3.28 6.72 7.28 

S000 4.28 2.95 4.44 2.65 5.88 5.73 5.46 3.80 3.29 2.68 2.52 2.67 

S400 1.23 1.88 0.83 1.64 1.01 1.68 1.23 0.35 0.84 2.37 1.99 3.00 

SST 15.45 14.29 8.93 19.29 22.94 21.92 24.00 22.19 23.76 18.95 19.56 13.72 

T400 16.18 12.89 18.03 14.32 12.93 11.93 9.33 12.21 12.70 9.21 11.62 14.03 

TKE 0.02 0.03 0.07 0.00 0.00 0.00 0.13 0.02 0.12 0.16 0.02 0.14 

ZEU 5.07 4.75 4.17 7.03 7.13 4.44 4.81 4.16 6.60 5.00 5.39 7.66 

 

Table S8. The 2016 VI scores. Each of the 14 biophysical covariates assessed in the monthly environmental niche 

models was assigned a variable importance score, the scores in each month add up to 100. 

2016 Januar
y 

Februar
y 

March April May June July August Septembe
r 

Octobe
r 

Novembe
r 

Decembe
r 

BATH 3.74 3.83 3.61 4.37 4.25 3.37 3.38 3.35 3.74 4.09 3.74 3.05 

DCS 13.06 12.08 6.56 7.03 6.55 5.41 8.19 8.53 7.36 10.03 9.13 10.77 

DSM 3.90 3.97 3.95 3.53 3.88 3.35 3.51 2.60 3.97 5.52 4.65 3.95 

MLD 7.15 8.00 8.62 5.32 4.96 6.84 5.23 4.72 4.27 4.01 4.89 6.65 

NPP 3.82 4.40 7.80 9.75 10.55 8.54 9.14 8.20 8.09 8.14 8.75 5.81 

SOC 13.88 10.85 6.81 7.13 4.19 5.86 4.68 5.42 9.46 10.88 8.20 10.53 

O400 13.06 16.14 15.65 12.52 10.12 8.35 10.24 10.85 11.16 12.55 12.76 12.74 

POC 4.69 3.49 2.95 4.83 3.31 4.85 4.64 2.87 4.43 4.04 3.00 3.78 

S000 6.92 6.22 8.36 8.08 13.03 12.95 10.67 9.35 8.97 6.80 9.57 9.29 

S400 7.28 7.94 9.71 9.24 8.71 7.83 7.87 6.53 7.29 9.40 9.16 8.48 

SST 8.36 10.81 12.54 11.41 17.55 21.16 19.32 25.07 17.38 11.40 16.03 13.26 

T400 8.78 6.49 7.55 9.47 6.50 5.83 5.64 5.20 7.19 6.71 5.55 5.90 

TKE 1.80 1.92 2.46 2.45 1.75 2.21 1.91 1.40 2.66 2.39 1.39 2.67 

ZEU 3.55 3.87 3.44 4.88 4.64 3.46 5.57 5.90 4.01 4.04 3.19 3.11 

 

Table S9. Average 2016 model performance metrics using different environmental variables. The three 

models assessed include a model with only static variables (n=3), a model with only variables (n=11) and 

a final model which included both types (n=14).  

  Kappa Accuracy Sensitivity Specificity 

Static 0.26 0.61 0.77 0.54 

Dynamic 0.53 0.76 0.94 0.67 

Static + dynamic 0.66 0.91 0.98 0.75 



 
 

Table S10. Description of the variable type and source for each of the 14 biophysical and physiographic 

predictors. 

Variable Code Variable type Source 

Sea surface temperature SST Monthly climatology 

Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. 

Baranova, M. M. Zweng, C. R. Paver, J. R. Reagan, D. R. Johnson, M. Hamilton, 

and D. Seidov, 2013. World Ocean Atlas 2013, Volume 1: Temperature. S. 

Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 73, 40 pp. 

Temperature at 400 meters T400 Monthly climatology 

Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. 

Baranova, M. M. Zweng, C. R. Paver, J. R. Reagan, D. R. Johnson, M. Hamilton, 

and D. Seidov, 2013. World Ocean Atlas 2013, Volume 1: Temperature. S. 

Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 73, 40 pp. 

Turbulent kinetic energy TKE Monthly average 

Roberts, J.J., Best, B.D., Dunn, D.C., Treml, E.A. and Halpin, P.N., 2010. Marine 

Geospatial Ecology Tools: An integrated framework for ecological 

geoprocessing with ArcGIS, Python, R, MATLAB, and C++. Environmental 

Modelling & Software, 25(10), pp.1197-1207. 

Particulate organic carbon POC Monthly average www.hermes.acri.fr  

Net primary productivity NPP Monthly average www.orca.science.oregonstate.edu 

Mixed layer depth MLD   

de Boyer Montégut, C., Madec, G., Fischer, A.S., Lazar, A. and Iudicone, D., 

2004. Mixed layer depth over the global ocean: An examination of profile 

data and a profile?based climatology. Journal of Geophysical Research: 

Oceans, 109(C12). 

Surface oxygen concentration SOC Monthly climatology 

Garcia, H. E., R. A. Locarnini, T. P. Boyer, J. I. Antonov, O.K. Baranova, M.M. 

Zweng, J.R. Reagan, D.R. Johnson, 2014. World Ocean Atlas 2013, Volume 3: 

Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. S. 

Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 75, 27 pp.  

Oxygen concentration at 400 meters O400 Monthly climatology 

Garcia, H. E., R. A. Locarnini, T. P. Boyer, J. I. Antonov, O.K. Baranova, M.M. 

Zweng, J.R. Reagan, D.R. Johnson, 2014. World Ocean Atlas 2013, Volume 3: 

Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. S. 

Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 75, 27 pp.  

Sea surface salinity SSS Monthly climatology 

Zweng, M.M, J.R. Reagan, J.I. Antonov, R.A. Locarnini, A.V. Mishonov, T.P. 

Boyer, H.E. Garcia, O.K. Baranova, D.R. Johnson, D.Seidov, M.M. Biddle, 2013. 

World Ocean Atlas 2013, Volume 2: Salinity. S. Levitus, Ed., A. Mishonov 

Technical Ed.; NOAA Atlas NESDIS 74, 39 pp. 

Salinity at 400 meters S400 Monthly climatology 

Zweng, M.M, J.R. Reagan, J.I. Antonov, R.A. Locarnini, A.V. Mishonov, T.P. 

Boyer, H.E. Garcia, O.K. Baranova, D.R. Johnson, D.Seidov, M.M. Biddle, 2013. 

World Ocean Atlas 2013, Volume 2: Salinity. S. Levitus, Ed., A. Mishonov 

Technical Ed.; NOAA Atlas NESDIS 74, 39 pp. 

Euphotic depth ZEU Monthly average www.hermes.acri.fr  

Bathymetry BATH Static 

Arndt, J.E., Schenke, H.W., Jakobsson, M., Nitsche, F.O., Buys, G., Goleby, B., 

Rebesco, M., Bohoyo, F., Hong, J., Black, J. and Greku, R., 2013. The 

International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0—

A new bathymetric compilation covering circum?Antarctic 

waters. Geophysical Research Letters, 40(12), pp.3111-3117. 

Distance to continental shelf DCS Static http://www.continentalshelf.org/ 

Distance to seamount DSM Static 

Wessel, P., Sandwell, D.T. and Kim, S.-S., 2010, The global seamount census, 

Oceanography, 23(1), 24-33.  

 

http://www.hermes.acri.fr/
http://www.hermes.acri.fr/


 
 

Table S11. The number of presence and pseudoabsence points in 2015. Each of the 12 monthly environmental 

niche models in 2015 had double the number of pseudoabsences as well as the percentage of the total number of 

presence points in each month. 

2015 Presence points Proportion of presence points Pseudoabsences points 

January 2395 7.1% 4790 

February 2532 7.5% 5064 

March 2820 8.4% 5640 

April 2868 8.5% 5736 

May 3009 8.9% 6018 

June 3054 9.1% 6108 

July 3012 8.9% 6024 

August 2881 8.5% 5762 

September 2890 8.6% 5780 

October 2919 8.7% 5838 

November 2561 7.6% 5122 

December 2772 8.2% 5544 

 

Table S12. The number of presence and pseudoabsence points in 2016. Each of the 12 monthly environmental 

niche models in 2016 had double the number of pseudoabsences as well as the percentage of the total number of 

presence points in each month. 

2016 Presence points Proportion of presence points Pseudoabsences points 

January 2956 7.8% 5912 

February 3014 8.0% 6028 

March 3016 8.0% 6032 

April 3216 8.5% 6432 

May 3534 9.3% 7068 

June 3401 9.0% 6802 

July 3563 9.4% 7126 

August 3176 8.4% 6352 

September 3075 8.1% 6150 

October 3083 8.1% 6166 

November 2817 7.4% 5634 

December 3014 8.0% 6028 
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