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Supplementary Note 1: Model

For reasons explained in the main text, we model the interphase chromosome as a self-avoiding

AB-copolymer with A (B) type beads representing the active (repressive) chromatin (Supple-

mentary Fig.1 and Fig.1a in the main text). Note that in many of the polymer models developed

to reproduce Hi-C contact maps, self-avoidance is not strictly enforced, which is partially jus-

tified because Topoisomerase facilitates chain crossing. We do not find it necessary to impose

this restriction. The chromosome copolymer model (CCM) potential energy is,

U(r1, ..., rN) =
N−1∑
i=1

US
i +

N−1∑
i=1

N∑
j=i+1

UP
i,j +

∑
{p,q}

UL
{p,q} (A1)

For the bond stretch potential, U s
i , we use the FENE (Finite Extensible Nonlinear Elastic)

potential given by,

US
i = −1

2
KSR

2
0ln
[
1−

( |ri+1 − ri|
R0

)2]
(A2)

where R0 is the equilibrium bond length, and KS is the spring constant.

The interaction between beads accounting for steric repulsion and attraction is given by the

Lennard-Jones potential with different parameters for the distinct bead types. The potential

between the active locus and repressive locus is,

UP
i,j ≡ Uαβ(r = |ri − rj|) = 4εαβ

[(σ
r

)12

−
(σ
r

)6]
(A3)

where α and β can be either A (active/euchromatin) or B (repressive/heterochromatin). For

simplicity, we assume that the σ value for the active state (A) and the repressive state (B) is

identical.

The interaction between the loop anchors is modeled using a harmonic potential,

UL
{p,q} = KL(|rp − rq| − a)2 (A4)

where {p, q} is the index of the loop, and a is the equilibrium bond length between the loop

pairs. The indices of loop anchors, modeling the role of CTCF motifs, taken from the Hi-C data

[1], are listed in Table I. The values of all the parameters in the CCM model of the chromosome

are given in Table II.
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The virtue of the CCM is that it has essentially only one energy scale ε given that we

have assumed that εAA = εBB. Explicit simulations show that this is sufficient to capture not

only the compartments and TADs in the contact map reasonably well but also the chromosome

dynamics. The inclusion of other epigenetic states identified in experiments may produce better

agreement with the contact map inferred from Hi-C experiment but comes at the expense of

introducing additional parameters. It is unlikely that such a model would alter the chromosome

dynamics, which is the focus of model study.

In the main text, we made references to copolymer models, which have been previously used

to study chromatin organization. The one that is most similar to CCM is the block copolymer

model used to describe the architecture of the roughly one Mbps Drosophila genome [2]. In

their model micro-phase separation results by adjusting a non-specific energy scale between all

loci pairs to induce global chain compaction and specific interaction (the analog of εAA, εBB

and εAB in the CCM) between identical epigenetic states. A related minimal model, with three

epigenetic states, was recently introduced in [3] that accounts for active, inactive, and unmarked

states. These models, along with CCM, show that many aspects of chromosome organization

can be captured using a minimum number of free parameters.

With the assumption that εAA = εBB = ε, the only free parameter in the CCM is εAB. The

only physical requirement for choosing a specific value of εAB is that loci with distinct epigenetic

state should segregate in order to capture the compartment feature that is prominent in the Hi-C

maps. For the interaction parameter values listed in the third row of Table II, which is most

appropriate for interphase chromosomes 5 and 10, loci A and B do not mix. In other words they

phase separate. This can be rationalized by adopting a Flory-Huggins type argument, which

involves calculating the second virial coefficient, B2,αβ = 2π
∫

drr2[1 − e−Uαβ/(kBT )]. We find

that for the parameters in the third row of Table 2, |B2,AB| < |B2AA|, which implies that A and

B loci tend not to mix. Note that B2AA = B2BB in the CCM. This argument shows that for any

value of εAB for which the inequality |B2,AB| < |B2AA| is satisfied, the copolymer would exhibit

microphase separation. However, the extent of segregation will depend on the precise numerical
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values. For our energy function, the values listed in third row of Table II is optimal, be-

cause simulations using them provide the best agreement with the measured Hi-C contact maps.

Supplementary Note 2: Identification of the monomer type and loop anchors from

experimental data

The epigenetic state of each bead is determined using the Broad ChromHMM track [4–6].

There are a total of 15 chromatin states in the track. For simplicity, we assign states 1-11

to be in the active state (A) and states 12-15 to be in the repressive state (B). This is

reasonable since all the states between 1 and 11 are related to gene transcription, and hence

can be modeled as euchromatin. States 12 to 15 are polycomb repressed, heterochromatin or

repetitive region, which we modeled as heterochromatin. ChromHMM track has a resolution

of 200bps which is smaller than 1,200bps representing one monomer in the CCM. We first

count the number of basepairs of state A and B within the 1,200 basepairs segment represented

by each monomer. Then the type of each monomer is assigned as the state with a larger

number of basepairs. Such a coarse-graining procedure may not be appropriate when the

number of bps of the two types has a similar value in the 1,200bps segment. Although this

is a possible outcome, we found that most of the 1,200bps long segments are overwhelmingly

occupied by only one state, corresponding to either active or repressive state. For loop

anchors, we directly used the Hi-C data [1]. The locations of loops are provided in the file

GSE63525 GM12878 primary+replicate HiCCUPS looplist with motifs.txt.gz under the GEO

accession number GSE63525. We only selected the loops with CTCF motifs “uniquely” called

at both anchors (see Section VI.e.7 of the Extended Experimental Procedures of [1]). For

each pair of CTCF loop anchors, we assign a harmonic constraint (Eq. A4) between the two

corresponding loci.

Supplementary Note 3: Simulation details

We use both low friction Langevin Dynamics (LD) and Brownian dynamics (BD) to simulate
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the equilibrium and dynamical properties of the chromosome. The equation of motion for the

ith locus is given by,

mir̈i = Fi − ξṙi + Ri(t), (B1)

where ξ is the friction coefficient, Fi is the systematic force − ∂U
∂ri

experienced by each bead, and

Ri(t) is the random force mimicking the thermal fluctuation of the surrounding environment. In

Eq. (B1), Ri(t) is the Gaussian random force that satifies the fluctuation-dissipation theorem

〈Ri〉 = 0 and 〈Ri(t) ·Rj(t
′
)〉 = 6kBTξδ(t− t

′
)δij. The LD simulations are performed using the

Molecular Dynamics software LAMMPS [7, 8] in which the equation of motion are integrated

using the velocity-Verlet algorithm. The sampling of the conformations are accelerated in LD,

as was shown previously [9], and hence, we use LD simulations to generate well-equilibrated

conformations.

The equation of motion for BD, derived by neglecting the inertial term in Eq. (B1), is,

ṙi =
1

ξ
Fi +

1

ξ
Ri(t). (B2)

We modified the LAMMPS software to perform the BD simulations, thus allowing us to obtain

a realistic description of the dynamics. The use of BD also allows us to calculate the timescales

for the chromosome dynamics, which can be directly compared to experiments. We employed

the Euler algorithm to integrate the equation of motion in Eq. (B2).

For BD, the relevant time scale is τB = σ2/D where D = kT/ξ, and ξ = 6πησ/2. We

choose our integration time step to be ∆tB = 0.0001τB. With the choice of σ = 70nm, we

obtain D = kT
6πησ/2

≈ 7.0µm2/s with η = 0.89 × 10−3Pa · s. Thus, the value of τB ≈ 0.0007s.

For the LD simulations, we use the time step ∆tL = 0.01τL where τL =
√
mσ2/kT .

Supplementary Note 4: Generation of the initial conformations and production runs

The copolymer is initially prepared as a rod. After determining the positions of the loop anchors,

we performed simulations using LD with temperature T = 1.0 (measured in the unit of kBT )

using the WCA potential with the same parameter values regardless of the bead type. We used
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the WCA potential,

Uαβ(r = |ri − rj|) =

4ε
[(

σ
r

)12

−
(
σ
r

)6]
+ ε, if 0 < r < 21/6σ.

0, otherwise.
(C1)

with ε = 1.0kBT and σ = 1. Since all the loop anchor pairs initially are spatially well-separated,

we first performed simulations using a small time step (∆tL = 10−6τL) to avoid numerical

instabilities. After a certain number of time steps, all the loop pair beads are in proximity

fluctuating around their equilibrium bond distance. At this stage, we increased the value of

the time step to ∆tL = 0.01τL, and turned on the attractive pairwise interaction (Eq.A3), and

continued the simulations for an additional 108∆tL. We monitored the radius of gyration,

Rg, to ensure that Rg fluctuates around a mean value as one indication of thermalization

(Supplementary Fig.3a). In addition, the potential energy (Supplementary Fig.3b) has reached

plateau values, which is a necessary condition indicating that the copolymer has adequately

sampled a large number of distinct conformations. We also computed the evolution of P (s)

during the pre-production run (Supplementary Fig.5). The negligible change in P (s) also

suggest convergence of our simulations from the perspective of structural measures. We then

performed LD simulations for an additional 108∆tL to compute the static structural properties.

The final chain conformations obtained at the end of production runs are used as initial

conformations in the subsequent BD simulations.

Supplementary Note 5: Determination of TADs boundaries using the Directionality

Index and Hidden Markov Model

We adopt the methods first introducted in [10] to determine TAD boundaries. The Directionality

Index (DI) for the ith loci is computed using,

DIi =

(
Bi − Ai
|Bi − Ai|

)(
(Ai − Ei)2

Ei
+

(Bi − Ei)2

Ei

)
, (D1)

where Ai, Bi are, respectively, the number of contacts the ith locus forms with one that is L bps

upstream and the number of contacts from the same locus to the one L bps downstream, and
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Ei = (Ai +Bi)/2. We calculated Ai and Bi using Ai =
∑j=i+L

j=i+1 Cij and Bi =
∑j=i−1

j=i−LCij where

Cij is the number of contacts between ith and jth loci. The results shown in Fig.1e in the main

text are computed using L = 375 kbps.

The boundaries of the TADs are then determined by a Hidden Markov Model (HMM)

with Gaussian emissions. HMM takes the DIi as input, and produces an output which is the

inferred hidden state. Unlike in the study by Dixon et al [10], we use only two states. The

boundaries of each TADs are the loci where the hidden states change. For instance, suppose we

have hidden states (−1,−1,−1, 1, 1, 1, 1,−1,−1) where the ith element represents the hidden

state of ith loci, then there are three TADs and the location of the boundaries of each TAD

would be (1, 3),(4, 7) and (8, 9).

Supplementary Note 6: Approximate equivalence of the distance between the loci

and centroid distance between TADs

In Ref. [11], the spatial distance is measured between the centroid locations of a pair of TADs,

which can be used to extract information about TAD structures. Let us consider two TADs

labeled k and l. We denote the radii of gyration of the two TADs as Rk and Rl and the

centroids as Ck and Cl. We show here that under the condition that sizes of the TADs are

small compared to the distance between the two centroids (Rk + Rl � |Ck −Cl|), the spatial

distance measured in the simulations is equivalent to the distance between TADs inferred from

the imaging experiment. More precisely, (Ck −Cl)
2 ≈ (r(k) − r(l))2, where r(k) and r(l) are the

positions of the loci in the kth and the lth TADs. If Nk and Nl are the genomic sizes of the two

TADs, then the average square of the distance between two loci belonging to the kth and the lth

TADs is,

(r(k) − r(l))2 ≡ 1

NkNl

∑
i

∑
j

(r
(k)
i − r

(l)
j )2, (E1)

where r
(k)
i and r

(l)
j are the ith loci in the kth TAD and the jth loci in the lth TAD, respectively.
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Expansion of the the right hand side of Eq. (E1) gives,

(r(k) − r(l))2 =
1

Nk

Nk∑
i=1

r
(k)2

i +
1

Nl

Nl∑
j=1

r
(l)2

j − 2CkCl

=
1

Nk

Nk∑
i=1

r
(k)2

i +
1

Nl

Nl∑
j=1

r
(l)2

j −C2
i −C2

j + (Ck −Cl)
2

=
1

Nk

Nk∑
i=1

(r
(k)
i −Ck)

2 +
1

Nl

Nl∑
j=1

(r
(l)
j −Cl)

2 + (Ck −Cl)
2

= R2
k +R2

l + (Ck −Cl)
2 ≈ (Ck −Cl)

2,

(E2)

where the last step is a result of the assumption that Rk + Rl � |Ck − Cl|. Thus, the

monomer-monomer spatial distance computed from simulations is approximately equivalent

to the experimental measurement of the distance between the TADs. The good correlation

between experiment and simulation (in Fig.3a in the main text) justifies our assumption.

Supplementary Note 7: Spearman correlation map

In order to quantitatively assess the closeness of the simulated and experimental contact maps,

we first calculated the Spearman correlation maps. When computing the Spearman correlation

map, the contact map obtained from our simulations or the Hi-C data is first transformed to

a log scale. For each entry, cij, in the transformed log scale contact map, we calculated the

Z-Score using zij = (cij − 〈cs〉)/σs where 〈cs〉 = (1/(N − s))
∑

i<j δ(s− (j − i))cij, and σs is the

standard deviation of cs. The Spearman correlation coefficient, ρij, is calculated between the

ith row, Xi, and the jth column, Yj, of the matrix Z whose elements are zij. The Spearman

correlation coefficient is defined as the Pearson correlation coefficient between the ranked

variables. First, the raw vector Xi and Yj are converted to rank variable RXi and RYj by

assigning a rank of 1 to the lowest value in the RXi and RYj vectors, and 2 to the next lowest

and so on. The Spearman correlation coefficient is the Pearson correlation coefficient between

two rank variable vectors RXi and RYj , computed using ρij = cov(RXi ,RYj)/(σRXi
σRYj

) where

cov(RXi ,RYj) is the covariance between RXi and RYj and σRXi
,σRYj

are the standard deviation

of RXi and RYj . The elements in the Spearman correlation matrix, ρij, are the Spearman
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correlation coefficients between Xi and Yj.

Supplementary Note 8: Comparison of the Correlation Maps

We use quantitative measures to assess if the simulated and experimentally inferred contact and

correlation maps are similar. In particular, we compare as precisely as possible, the compartment

patterns suggested in the Hi-C map and the simulation results from the CCM. For a fixed

genomic distance, the contact probability between two loci of the same type is greater than

between two loci of different types. The task is to partition the loci based on the contact map

such that each partition corresponds to one distinct loci type while being consistent with the

observed checkerboard pattern. This relationship allows us to extract additional information

about TAD organization than is possible from experiment alone [11]. It is carried out in two

steps. (1) Since the contact probability is a function of both s and their epigenetic states, it is

necessary to minimize the effect of the genomic separation in order to highlight the enrichment

of contacts between loci of the same epigenetic state in the compartments. The correlation

between the same type of loci is more transparent if the Spearman correlation matrix is used

because it is based on the rank order (see above). (2) We treat the Spearman correlation matrix,

A, as an Adjacency matrix, where the vertices are the loci and the edge weight between the ith

and jth loci is the Spearman correlation coefficient, ρij.

With these two steps, our clustering problem can be solved by finding the minimum cut

vertex in a bipartite graph between the loci. This problem was solved by Dhillon using a

spectral co-clustering algorithm [12] in a different context (clustering of documents and words).

It is noteworthy that the underlying assumption of this method for our problem is that a pair

of loci with positive Spearman correlation coefficient should be the same type. Similarly, a pair

of loci with negative Spearman correlation coefficient should be distinct.

The Dhillon spectral biclustering algorithm is implemented as follows [12]:

1. Given the Spearman correlation map, A, construct

An = D−1/2AD−1/2. (F1)
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2. Compute the left and right second singular vectors of An, u2 and v2 and form the vector z2

using,

z2 =

D−1/2u2

D−1/2v2

 . (F2)

3. Perform the k-means algorithm on the 1-dimensional data z2 to obtain the needed clustering.

The matrix D where Dii =
∑

j Aij and Dij = 0 for i 6= j is the degree matrix of the graph.

Note that by definition A and An are symmetric matrices. The left and right second singular

vectors u2 and v2 would be the same. Thus, the simpler algorithm is to construct z2 = D−1/2u2

in step 2, and run step 3. The reason for using k-means clustering is that the values in u2

and v2 should have a bi-modal distribution, which is an approximation of the optimal two-

valued partition vector [12]. The use of k-means algorithm allows us to find the two clusters

corresponding to the bi-modal distribution.

Using the Dhillon’s method, the Spearman correlation map A is bi-clustered into two

clusters, with labeling vector L, where Li = 1 if the ith loci belongs to one cluster and Li = 0

if the ith loci belongs to the other cluster. Note that swapping 0 and 1 in the labeling does not

change the meaning.

The second step is to compare the cluster labeling between experiment and the prediction of

the CCM. We denote the label assignment of the experimental data as Lexp and that extracted

from the simulations as Lsim. To measure the similarity between Lexp and Lsim, we use the

Adjusted Mutual Information score (AMI) measure. The Mutual Information score (MI) is,

MI(Lexp,Lsim) =
2∑
i=1

2∑
j=1

P (i, j)log
( P (i, j)

P (i)P ′(j)

)
. (F3)

where P (i) = |Liexp|/N is the probability that a loci (monomer) picked at random from Lexp

falls into type i, Liexp is the set of loci (monomers) of type i, and N is the total number of loci

(monomers). Similarly, P ′(j) = |Ljsim|/N . In the above equation, P (i, j) = |Liexp∩L
j
sim|/N is the

probability that a locus picked at random belongs to both set Liexp and Ljsim. Since the expected
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value of mutual information is non-zero, it is preferable to define the normalized AMI,

AMI(Lexp,Lsim) =
MI(Lexp,Lsim)− E[MI(Lexp,Lsim)]

max{H(Lexp), H(Lsim)} − E[MI(Lexp,Lsim)]
(F4)

where H(Lexp) = −
∑2

i=1 P (i)log
(
P (i)

)
and H(Lsim) = −

∑2
j=1 P

′(j)log
(
P ′(j)

)
. In the above

equation, E[MI(Lexp,Lsim)] is the expected value of the mutual information, which can be cal-

culated using the following equation [13],

2∑
i=1

2∑
j=1

min(ai,bj)∑
nij=(ai+bj−N)+

nij
N

log

(
Nnij
aibj

)
ai!bj!(N − ai)!(N − bj)!

N !nij!(ai − nij)!(bj − nij)!(N − ai − bj + nij)!
(F5)

where ai = |Liexp| and bj = |Ljsim|, and (ai + bj −N)+ denotes max (1, ai + bj −N).

Supplementary Fig.9 compare the AMI between experimental data and results from

simulations. The AMI scores for the CCM model are significantly higher than those for the

homopolymer model. Thus the long-range compartment pattern can only be obtained using

the minimal CCM or other copolymer model.

Supplementary Note 9: Ward Linkage Matrix

The method described in the previous section allows for a quantitative comparison of simulated

and measured contact maps. However, it cannot be used as a measure to compare 3D structures

(spatial patterns obtained in super-resolution experiments, for example) of chromosomes. In

order to achieve this goal, we first relate the information contained in the contact maps to

spatial distances. As shown in Fig.3b in the main text, the contact probability is inversely

proportional to a power of the spatial distance, P (s) ∝ R(s)−4.1 which provides a way to

convert a Hi-C contact matrix to the spatial distance matrix, differing from the physical spatial

distance matrix by only a constant prefactor. We then compare the “pseudo” spatial distance

matrix with our simulated spatial distance matrix. Needless to say that in simulations Rij can

be directly computed.

Matrix norm is often used to measure the distance between two matrices. However, it

has severe drawbacks in the context of chromosome organization for two reasons. First, the
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element-wise differences cannot capture the similarities of higher order structure embedded in

the matrix. Second, it suffers from “curse of dimensionality” [14], i.e. there is little difference

in the distances between different pairs of matrices, which makes it impossible to differentiate

between the experimentally inferred spatial distance matrix and the matrices obtained in the

simulations with different parameters. To overcome these difficulties, we adopted the method

described recently [15], which suggests treating the original matrix as a graph where the matrix

element is a measure of the distance (which is naturally satisfied in our context), and transform

it to a cophenetic matrix. In the process, the topological structure of the information embedded

in the matrix is preserved. By adopting this method, we can compare the simulated structures

of the folded chromosomes with that inferred from Hi-C data.

We converted the Hi-C contact matrix to a “pseudo” spatial distance matrix Rexp, using

the relation Rij = P
−1/4.1
ij (|i− j| ∝ s). We constructed the Ward Linkage Matrix (WLM), W,

from Rexp and the simulated spatial distance matrices Rsim. The algorithm to construct a WLM

is the following. First, start with each locus in a cluster of its own. Second, find the pair of

clusters with the smallest Ward distance (see below) and merge them. Third, repeat the second

step until there is only one cluster. Finally, the WLM is constructed as follows. Suppose i and

j belong to two disjoint clusters S and T and are joined by a direct parent cluster. The entry

of the WLM, wij, is the Ward distance between clusters S and T , given by,

d(S, T ) =

( ∑
i∈S∪T

||xi−cS∪T ||2−
∑
i∈S

||xi−cS||2−
∑
i∈T

||xi−cT ||2
)1/2

=

(
nSnT
nS + nT

||cS−cT ||2
)1/2

(G1)

where cS and cT are the centers of S and T , respectively; nS (nT ) is the number of monomers in

S (T ), and xi is the position of point i. The initial clustering occurs between singleton clusters

(cluster on its own). The distance between two singleton clusters, i and j, is,

d(i, j) = ||xi − xj|| = (xi − xj)
1/2 (G2)

which in our case is simply Rij, the spatial distance between the ith and jth loci.

In practice, we used the Lance-Williams recursive algorithms [16] to compute the Ward
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distance. Suppose we have three clusters Ci, Cj and Ck, and the Ward distances between them,

d(Ci, Ck), d(Cj, Ck) and d(Ci, Cj), are known. The Ward distance between the union of clusters

i and j, Ci ∪ Cj and Ck, is obtained using the recursive equation,

d(Ci∪Cj, Ck) =

(
ni + nk

ni + nj + nk
d2(Ci, Ck)+

nj + nk
ni + nj + nk

d2(Cj, Ck)−
nk + nk

ni + nj + nk
d2(Ci, Cj)

)1/2

(G3)

where Ci, Cj and Ck are disjoint clusters with sizes ni, nj and nk.

Supplementary Note 10: Shape of TADs

We use shape parameters, to investigate the shape of the 32 TADs in Chr 5 (Table I) formed by

loop anchors. We calculated three metrics to quantify the shapes, radius of gyration Rg, relative

shape anisotropy, κ2 and shape parameter, S. The value of R2
g is,

R2
g = λ1 + λ2 + λ3, (H1)

where λi are the eigenvalues of the gyration tensor; κ2 is defined as,

κ2 =
3

2

λ2
1 + λ2

2 + λ2
3

(λ1 + λ2 + λ3)2
− 1

2
. (H2)

The shape parameter, S, is,

S = 27
∏

i=1,2,3

(λi − λ̄)/λ̄ (H3)

where λ̄ = (λ1 +λ2 +λ3)/3. The bounds for κ2 is 0 ≤ κ2 ≤ 1, where 0 is for a highly symmetric

conformation and 1 corresponds to a rod, S satisfies −1/4 ≤ S ≤ 2. If −0.25 < S < 0,

then the shape is predominantly oblate and is prolate for 0 < S < 2 [17, 18]. The results

in the Supplementary Fig.10 (Left panel) show R2
g, κ

2 and S measurements for the CCM for

ε = 2.4kBT . The top figure shows that Rg increases as the size of the TAD increases. Both the

middle and bottom figures show that small TADs deviate from spherical shape (large value of

κ2 and S) but adopt a more spherical shape as the size of TAD increases.

We also calculated the dispersion in the three measurements for each TAD among

trajectories (right column in Supplementary Fig.10). For instance, dispersion of the radius of
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gyration is defined as σR2
g
/µR2

g
, where σR2

g
and µR2

g
are the standard deviation and mean value

of R2
g over trajectories and the bar denotes the time average. The histograms of R2

g, κ
2 and S

normalized by their mean values are shown in Supplementary Fig.11.

Supplementary Note 11: Dispersion of spatial distance R(s)

The differences in the structural properties between various cells can be glanced from the

variance among independent trajectories. To quantify the heterogeneity of the structure of

the chromosome, we computed both the coefficient of variation, δR(s), and variance of the

spatial distance R(s), σ2
R(s). Here, δR(s) = (〈R(s)2 − 〈R(s)〉2)1/2/〈R(s)〉 = σR(s)/µR(s), where

〈·〉 is average over independent trajectories, and R(s) =
∑N

i<j
(ri−rj)2δ(s−|i−j|)

N−s

1/2

with the bar

denoting time average along single trajectory. The variance of R(s) is σ2
R(s) = 〈R2(s)〉−〈R(s)〉2.

Supplementary Figs.12a, b show the results for ε = 1.0kBT and ε = 2.4kBT . Coefficient

of variation and variance of R(s) are also computed using the experimental data [11] (Sup-

plementary Figs.12c, d). σ2
R(s) increases with s for s < 106 bps for both ε = 1.0kBT and

ε = 2.4kBT . It reaches plateau for ε = 1.0kBT for s > 106 bps whereas it continues to increase

for ε = 2.4kBT . Experimental data (Supplementary Fig.12d) show that σ2
R(s) consistently

increases for s up to several 107 bps. More interestingly, curves for δR(s) for the liquid-like

system and glassy-like system have very different shapes. In the glassy state, δR(s) reaches a

peak ∼ 105bps and decrease for s > 105bps, whereas δR(s) in the mobile state reaches a plateau

at s ∼ 106 bps. Surprisingly, the decrease in δR(s) for large s can be seen in the experimental

data (Supplementary Fig.12c), further supporting our conclusion that chromosomes dynamics

is glassy.

Supplementary Note 12: Chromsome 10

In order to check the transferability of the CCM, we obtained the contact maps of Chr 10 with

the same set of parameters (Supplementary Table II) used for simulating Chr5. The locations

of loop anchors used in Chr 10 simulation are summarized in Supplementary Table III. The
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chromatin segments selected is from 70 to 82 Mbps. The types of monomers (chromatin loci)

are determined using the Broad ChromHMM track, as described earlier. The numbers of active

and repressive monomers are 3980 and 6020, respectively. About 80% of compartments inferred

from experiment Hi-C contact map are correctly predicted by the CCM.

For precise comparison between the prediction of the CCM and experiment, we computed

the Ward Linkage Matrices. Supplementary Fig.16 shows the WLM inferred from experiment

and computed directly from simulations. Just as for Chr 5, visual inspection suggests that

ε = 2.4kBT and ε = 2.7kBT agrees best with experiments. To quantitatively compare the

WLMs, we compute the Pearson correlation coefficient between experimental WLM and

simulated WLMs. The values of Pearson correlation coefficients are 0.58, 0.75, 0.92 and 0.92

for ε = (1.0, 2.0, 2.4, 2.7)kBT , respectively, suggesting that ε = 2.4kBT and ε = 2.7kBT give

excellent agreement with experiments. This is consistent with our detailed study on Chr 5.

These results show that the minimal CCM is sufficient to capture the features of the folded

chromosomes. Applications of the CCM to other chromosomes are planned.

Supplementary Note 13: Fs(k, t) and χ4(k, t) for two types of chromatin loci

Supplementary Fig.18a shows Fs(k, t) computed for active and repressive loci for two different

values of ε evaluated at k = 2π/rs, where rs is the position of the first peak of radial distribution

function g(r) (Fig.2 in the main text). For ε = 1.0kBT , both active and repressive loci exhibit

similar relaxation behavior. However, in the glassy state, repressive loci have longer relaxation

times, although the decay of both Fs(k, t) for active and repressive loci can be fit using stretched

exponential functions. Supplementary Fig.18b shows the dynamical fourth order susceptibility

χ4(k, t). In the glassy state, active loci exhibit a similar peak shifted to slightly lower t compared

to repressive loci and the position of the peak (t ∼ 0.1s) is substantially smaller than it for the

repressive loci (t ∼ 1s). We surmise that the structure of active compartments relaxes faster

than repressive compartments, whereas repressive compartments are more “glassy” than active

compartments.
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We also report in Supplementary Figs.18c, d the intermediate scattering function Fs(k, t)

and χ4(k, t) for different values of k. Values of k, measured in the unit of σ−1, are taken to be

5.738, 3.281, 2.256 and 1.717, corresponding to the first, second, third and fourth peak of radial

distribution function g(r). Not unexpectedly, the relaxation times decrease as the length scale

decreases. Interestingly, at all scale probed in Supplementary Fig.18 it appears that the overall

decay is slow. This implies that at all relevant (from a structural organization perspective)

genomic distances, chromosomes exhibit glass-like characteristics (Supplementary Figs.18c, d)

Supplementary Note 14: Details of scaling between P (s) and R(s)

The analysis of the relationship between P (s) and R(s) (P (s) ∝ R(s)−λ) reveals that the

scaling exponent λ is s-dependent. Supplementary Fig.19 shows 1/P (s) as a function of R(s).

1/P (s) ∝ R(s)λ with λ ≈ 2 for R(s) / 0.5µm and λ ≈ 6 for R(s) ' 0.7µm. Fitting over the

whole range of R(s) gives λ ≈ 4.1, which is observed in the experiment[11]. Interestingly, the

Fig.1G in [11] suggests that the value of λ appears to be smaller than 4.1 on short length scale

and greater than 4.1 for large R(s), consistent with what is shown in Supplementary Fig.19.

The relation between P (s) and R(s) is only meaningful in an average sense. Given the

value of P (s), the structure derived from relation P (s)−1/λ can only be interpreted as an “en-

semble/population averaged” structure. This is vividly demonstrated in Fig.5 in the main text.

It shows that although each individual chromosome structure varies greatly the ensemble aver-

aged simulated structure of chromosome agrees well with experiments in the sense that the Hi-C

contact map and the average distance map from FISH experimentally emerge from the CCM.
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Loop

Repressive loci

Active loci

Loop anchor

Supplementary Figure 1: The sketch of the Chromosome Copolymer Model (CCM). Each bead

represents 1, 200 basepairs (representing roughly six nucleosomes (orange circles) connected by

linker DNAs). Red (Blue) corresponds to repressive (active) chromatin. The three pairs of loop

anchors (in this cartoon) are marked by beads with black boundaries. A crucial aspect of the

model, based on the experimental observation [1] is that the loops are consecutive and do not

overlap with each other. The CCM accounts for two epigenetic states and the locations of the

loop anchors. These two criteria are sufficient to reproduce all the subtle structural features

noted in the Hi-C and super-resolution experiment.

17



Supplementary Figure 2: The distribution of loop size l, P (l), where l is the genomic separation

between the anchors. The blue bar (orange bar) is the P (l) for the selected range of Human

Chromosome 5 (Chromosome 10) modeled in this work. The green curve is the P (l) for the

whole genome of the 23 chromosomes [1].
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a b

Supplementary Figure 3: Preparation of the initial conformations. (a) The ensemble average

radius of gyration 〈Rg(t)〉 as function of time step t after the attractive interactions are turned on.

〈Rg(t)〉 = (1/M)
∑M

i=1R
(i)
g (t) where i is the ith trajectory, and M is total number of independent

trajectories. R
(i)
g (t) is the radius of gyration of trajectory i at time t. In our simulations, M = 90.

(b) The average potential energy per bead as a function of the number of time steps t after the

attractive interactions are turned on. The average is over the 90 independent trajectories. The

plateau in (a) and (b) suggest that the polymer conformations are well sampled.
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ε=2.0kBTε=1.0kBT ε=2.4kBT ε=2.7kBT

Conformation

Distance Maps

Ward Linkage Matrix

Supplementary Figure 4: The top panel shows typical structures of the simulated folded Chr5

for ε = (1.0, 2.0, 2.4, 2.7)kBT from left to right. The color indicates the index of the locus,

from the 5′ to 3′-end. The spatial distance map and the corresponding Ward Linkage Matrices

(WLMs) are shown in the middle and bottom panels, respectively.
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Supplementary Figure 5: The time evolution of the contact probability P (s) as a function of

s during Chr 5 folding calculated using Langevin Dynamics simulations. The four graphs are

for different ε values (Supplementary Table II). The color bar on the right marks the value of

time t in the unit of ∆tL (see the section “Simulation details”). At t = 0, the chromosome is

swollen (purple curve). The slope of the dashed black line is Θ3 = 2.181, which is the value of

Des Cloizeaux [19] prediction for Θ3 derived for long homopolymers in a good solvent. The Θ3

exponent describes the probability P (s) of forming a loop of size s between two interior points

and is given by P (s) ∼ s−Θ3 . After the initial condensation of the chromosome, the copolymer

adopts compact conformation with a shallower s-dependent of P (s) at all ε values. The change

in P (s) as a function of time t is small, suggesting that the time evolution of P (s) is sluggish
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Supplementary Figure 6: Spearman correlation map computed for ε = (1.0, 2.0, 2.4, 2.7)kBT .

For each figure, left lower triangle is the Spearman correlation map computed from the Hi-

C data, and the upper right triangle is the simulated map. The color bar shows the value

of the Spearman correlation coefficient with the value of 1 (-1) indicating perfect correlation

anti-correlation; 0 implies no correlation. When the copolymer goes from displaying liquid-like

behavior (ε < 2.4kBT ) to exhibiting glassy dynamics (ε > 2.4kBT ), the distinction between

anti-correlation (blue) and correlation (red) becomes less transparent. Note that the agreement

between simulation and experiment is best for ε = 2.4kBT .
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Supplementary Figure 7: Comparison of the histograms of the Spearman correlation coefficient,

ρ, from simulations and experiment. We plot the distribution of ρij for every pair of (i, j).

The black line is from the Hi-C experiment. The bimodal shape of the distribution is a result

of two different compartment patterns in the Hi-C map. The inset shows the distribution for

ε = 1.0kBT (cyan) and ε = 2.0kBT (orange). As the dynamics becomes increasingly glassy, the

extent of bimodality becomes weaker and exhibits only one peak for ε = 2.7kBT . The closest

agreement between simulations and the experiment data occurs when ε = 2.4kBT , thus justifying

this value in simulating Chr 5 and 10.
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Supplementary Figure 8: Spatial distance map for ε = (1.0, 2.0, 2.4, 2.7)kBT . Each element in

the distance map is Rij = 〈|ri − rj|〉 where the bracket 〈·〉 is the average over both ensembles

(trajectories) and time. The color bar gives the value of Rij in the unit of µm.
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Supplementary Figure 9: Percentage of correctly predicted compartments based Adjusted Mu-

tual Information score (AMI) for the CCM and homopolymer models. CCM correctly reproduces

≈ 83%, 82%, 81%, 80% of the compartments found in experiments for ε = (1.0, 2.0, 2.4, 2.7)kBT ,

respectively. The values for the homopolymer are very low, which implies that it cannot capture

the structures of the chromosomes. The inset shows the AMI score for different cases. Note

that AMI score is more sensitive compared to the percentage of compartments reproduced.
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Supplementary Figure 10: (Left panel) 〈R2
g〉(top) (Eq.H1), 〈κ2〉(middle) (eq.H2) and

〈S〉(bottom) (eq.H3) for each TAD, where 〈·〉 denotes both ensemble and time average. The

black line in the top figure is the fit to the data, 〈R(g)〉 ∼ l0.27, where l is the TAD size.

(Right panel) Distribution P (σR2
g
/µR2

g
)(top), P (σκ2/µκ2)(middle) and P (σS/µS)(bottom) over

all TADs. σR2
g

=
[〈
R2
g

2〉
−
〈
R2
g

〉2]1/2
, σκ2 =

[〈
κ2

2〉
−
〈
κ2
〉2]1/2

and σS2 =
[〈
S2

2〉
−
〈
S2
〉2]1/2

where · denotes time average over single trajectory and 〈·〉 denotes ensemble average over dif-

ferent trajectories.
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Supplementary Figure 11: The distribution of R2
g/
〈
R2
g

〉
for the thirty-two TADs in Chr5 where

R2
g is the time average value of the squared radius of gyration of single trajectory and

〈
R2
g

〉
is its

mean value averaged over all independent trajectories. TADs are represented by different colors.

Distribution of κ2/
〈
κ2
〉

and S2/
〈
S2
〉

are shown in the middle and bottom panels, respectively.
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a b

c d

Supplementary Figure 12: Dependence of the coefficient of variation of R(s) (a) and variance

of R(s) (b) averaged over the 90 trajectories on s. The value of s beyond the vertical dashed

line is in the range probed in the experiment [11]. The experimental counterpart is computed

from FISH data (Table S4 and Fig.S3 in Ref. [11]). The blue dots in (c) and (d) are computed

from the distribution of spatial distance for pairs of TADs over the 120 individual cells reported

in Ref. [11]. The s scale in the experiment covers s ' 4 · 105bps up to ≈ 3 · 107bps whereas

in simulation s varies from 103bps to 107bps. For s ' 4 · 105bps the result for simulations and

experiment are qualitatively similar. The red curve is the window average of the scatter in the

data shown with error bars.
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Supplementary Figure 13: (a) Contact probability P (s) as a function of s for ε =

(1.0, 2.0, 2.4, 2.7)kBT . As ε increases, the local short-range contact probability (/ 3 · 105 bps)

increases by several folds, whereas the probability of non-local long-range contact (' 3 ·106 bps)

decreases. Black line is the Hi-C experimental result [1], which is displaced for a clear com-

parison. Solid and dashed grey lines demarcate the two scaling regimes in P (s). (b). P (s)

for the CCM (blue) and homopolymer with (green dashed) or without (red dashed) loop con-

straints. For the homopolymer, εAA = εBB = εAB = 2.4kBT . The minor difference between the

CCM, homopolymer model and Hi-C experiment suggests that P (s) is too simple a measure for

discriminating between different chromosome structural models.
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Supplementary Figure 14: The normalized Van Hove function P (∆x/γ) for ε = 1.0kBT at

various lag times ∆t. γ is the standard deviation of ∆x. The distributions (P (∆x/γ)) for

different lag times collapse onto a master curve. Black dashed line is the Gaussian fit with

mean −0.06 and standard deviation 0.95. The Gaussian behavior is in stark contrast with the

dramatically non-gaussian behavior in the Chr 5 with ε = 2.4kBT (Fig.7d in the main text) - a

value needed to reproduce the experimentally inferred structural features.
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Supplementary Figure 15: The normalized radial density for Chr 10, ρ
(N)
α (r) =

〈Nα(r)〉/(4πr2Nα), where Nα is the number of loci of given type α found in the spherical shell

between r and r+∆r, Nα is the total number of loci of that type. The bracket 〈·〉 is the ensemble

average.
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70 Mbps 82 Mbps 70 Mbps 82 Mbps 70 Mbps 82 Mbps 70 Mbps 82 Mbps

Chr10 Chr10 Chr10 Chr10

Experiment Experiment Experiment Experiment

ε=1.0kBT ε=2.0kBT ε=2.4kBT ε=2.7kBT

ε=1.0kBT ε=2.0kBT ε=2.4kBT ε=2.7kBT

Supplementary Figure 16: Structural organization of Chromosome 10. (Upper panel) Dis-

tance maps of Chr10 for ε = (1.0, 2.0, 2.4, 2.7)kBT . (Lower panel) Comparison between the

experimental WLM (lower triangle) and the simulated Ward Linkage Matrix (WLMs) (upper

triangle). Just as we found in Chr5, ε = 2.4kBT provides the best comparison with experiment,

implying that the CCM is transferable.
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Supplementary Figure 17: Normalized surface contacts, A(s), obtained using simulations and

inferred from the Hi-C data; A(s) is the normalized number of contacts between a segment of size

s and the rest of the chromosome, given by A(s) = (1/(N − s)
∑

i<j Aij)
∑

i<j(
∑

l<i

∑k=j
k=i Ckl +∑

l>j

∑k=j
k=i Ckl)δ(s− (j − i)). The grey lines give the expected scalings.
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Supplementary Figure 18: Intermediate scattering function Fs(k, t) (a) and χ4(k, t) (b) for active

(euchromatin) and repressive (heterochromatin) loci for Chr5. (c) and (d) show Fs(k, t) and

χ4(k, t) for different values of k. In both c and d, dashed and solid curves are for ε = 1.0kBT and

ε = 2.4kBT , respectively. Curves with different colors are for (k = 5.738, 3.281, 2.256, 1.717) σ−1

where σ = 0.07µm, corresponding to the first, second, third and fourth peak of the radial

distribution function g(r) (see Fig.2 in the main text). The relaxation times associated with

the longest length scales is about an order of magnitude greater than the short length scale

relaxation.

34



Supplementary Figure 19: The relation between 1/P (s) and R(s) depends on s. P (s) =〈∑N
i<j

Θ(rc−|ri−rj |)δ(s−|i−j|)
N−s

〉
, where Θ(x) is the Heaviside step function and rc is the cutoff dis-

tance of contacts. R(s) =
〈∑N

i<j
(ri−rj)2δ(s−|i−j|)

N−s

〉1/2
.
〈
·
〉

is both ensemble and time average.

Two thick gray lines are fit to the data, for 0.2µm ≤ R(s) ≤ 0.5µm and 0.7µm ≤ R(s) ≤ 1.0µm,

respectively. Dashed line has slope 4.1. The subtle relationship between P (s) (Hi-C data) and

R(s) (FISH data) requires clarification (also see Ref. [20]).
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Supplementary Figure 20: Comparison between the Principle Components Analysis (PCA) and

spectral co-clustering method. The upper panel shows the correlation matrix computed from

experimental Hi-C data. The lower panel shows the results using the first principle component

(blue) and the spectral co-clustering method (orange). It is clear that the results obtained from

both methods are congruent.
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Supplementary Figure 21: MSD(t) experimental data collected from a number of works for

human interphase cells. The simulation data for ε = 1.0kBT and CCM is also plotted for

comparison. The experimental data are taken from Bronstein et al., 2009 [21], Levi et al., 2005

[22], Shinkai et al., 2016 [23], Lucas et al., 2014 [24], Zidovska et al., 2013 [25], Chen et al., 2013

[26] and Bronshtein et al., 2015 [27]
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43(B),396(B) 43(B),582(B) 143(B),396(B) 948(B),1110(B)

1407(B),1570(B) 1628(A),2120(B) 2355(B),2562(A) 2409(B),2562(A)

2622(A),2917(B) 3059(A),3106(B) 3307(A),3378(A) 3307(A),3630(B)

3307(A),3471(B) 4131(B),4175(A) 4131(B),4307(A) 4445(A),5012(B)

4445(A),4710(B) 5058(B),5548(B) 6318(B),6766(B) 6318(B),6408(B)

6318(B),6595(A) 6408(B),6595(A) 6647(B),6766(B) 7605(B),8907(A)

7917(B),8644(B) 7917(B),8743(A) 7917(B),8907(A) 8743(A),8907(A)

8921(B),9008(B) 9157(B),9396(A) 9481(A),9562(A) 9510(A),9562(A)

Supplementary Table 1: Loop anchor indices for Chromosome 5 (Chr 5) derived from the exper-

imental data [1] for use in the CCM. Each pair of numbers represents single loop corresponding 

to the locations of the loop anchors along the backbone of the copolymer. The letter A (B) 

after each number indicates the type of the loop anchor. The number of loops in the simulation 

using the CCM is thirty-two. Fifteen out of thirty-two pairs have loop anchors formed from loci 

of the same type.

KS/kBTσ
−2 R0/σ KL/kBTσ

−2 εAA/kBT εBB/kBT εAB/kBT a/σ

30 1.5 300 1.0 1.0 0.82 1.13

30 1.5 300 2.0 2.0 1.64 1.13

30 1.5 300 2.4 2.4 1.96 1.13

30 1.5 300 2.7 2.7 2.21 1.13

Supplementary Table 2: Parameters values in the CCM for Chr5 and 10. Energy is in the unit of 

kBT (kB is the Boltzmann constant and T is the room temperature 300K), bead diameter σ is used 

as a measure of length. Without loss of generality, we choose εAA = εBB = ε.
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637(A),818(B) 637(A),960(A) 637(A),711(A) 831(B),960(A)

1924(A),2099(B) 1924(A),2199(A) 2146(B),2199(A) 2238(B),2474(B)

2620(B),2774(B) 2620(B),2890(B) 3096(B),3173(B) 3436(B),3828(A)

4186(B),4503(A) 4407(B),4503(A) 4674(A),4704(B) 4674(A),4750(B)

4704(B),4867(A) 4704(B),4750(B) 6922(B),7287(B) 9278(B),9356(B)

9435(A),9741(B) 9919(B),9985(A) 9940(A),9985(A)

Supplementary Table 3: Loop anchor indices derived from the experimental data [1] for use in 

the CCM for Chr 10. Each pair of numbers represents single loop corresponding to the locations 

of the loop anchors along the backbone of the copolymer. The letter A (B) after each number 

indicates the type of the loop anchor.

39



Supplementary References

1. Rao, S. S. et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of

Chromatin Looping. Cell 159, 1665–1680 (2014).

2. Jost, D., Carrivain, P., Cavalli, G. & Vaillant, C. Modeling epigenome folding: Formation and dy-

namics of topologically associated chromatin domains. Nucleic Acids Res. 42, 9553–9561 (2014).

3. Michieletto, D., Orlandini, E. & Marenduzzo, D. Polymer model with Epigenetic Recoloring

Reveals a Pathway for the de novo Establishment and 3D Organization of Chromatin Domains.

Phys. Rev. X 6 (2016).

4. Rosenbloom, K. R. et al. ENCODE Data in the UCSC Genome Browser: year 5 update. Nucleic

Acids Res. 41, D56–D63 (2012).

5. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation

of the human genome. Nat. Biotechnol. 28, 817–825 (2010).

6. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types.

Nature 473, 43–49 (2011).

7. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys.

117, 1–19 (1995).

8. LAMMPS http://lammps.sandia.gov. Accessed: 2017-08-01. 2017.

9. Honeycutt, J. D. & Thirumalai, D. The nature of folded states of globular proteins. Biopolymers

32, 695–709 (1992).

10. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin

interactions. Nature 485, 376–380 (2012).

11. Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromo-

somes. Science 353, 598–602 (2016).

12. Dhillon, I. S. Co-clustering documents and words using bipartite spectral graph partitioning in

Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and

data mining (2001), 269–274.

13. Vinh, N. X., Epps, J. & Bailey, J. Information theoretic measures for clusterings comparison: Vari-

ants, properties, normalization and correction for chance. Journal of Machine Learning Research

11, 2837–2854 (2010).

40

http://lammps.sandia.gov


14. Indyk, P. & Motwani, R. Approximate nearest neighbors: towards removing the curse of dimen-

sionality in Proceedings of the thirtieth annual ACM symposium on Theory of computing (1998),

604–613.

15. Chung, M. K., Lee, H., Solo, V., Davidson, R. J. & Pollak, S. D. in Connectomics in NeuroImaging

161–170 (Springer International Publishing, 2017).
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